Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.1Z: Sum Signal"

From LNTwww
 
(13 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID319__Sig_Z_2_1.png|right|frame|Rechtecksignal, Dreiecksignal und Summensignal]]
+
[[File:P_ID319__Sig_Z_2_1.png|right|frame|Rectangular signal, triangular signal, sum signal]]
In nebenstehender Grafik sind die beiden periodischen Signale  x(t)  und  y(t)  dargestellt, aus denen das Summensignal  s(t)  – im unteren Bild skizziert sowie das Differenzsignal  d(t)  gebildet werden.
+
The adjacent diagram shows the periodic signals  x(t)  and  y(t),  from which the sum   s(t)  – sketched in the lower diagram and the difference  d(t)  are formed.
  
Weiterhin betrachten wir in dieser Aufgabe das Signal  w(t), das sich aus der Summe der beiden periodischen Signalen  u(t)  und  v(t)  ergibt. Die Grundfrequenzen der Signale seien
+
Furthermore, in this task we consider the signal  w(t), which results from the sum of two periodic signals  u(t)  and  v(t) .  The base frequencies of these signals are
  
 
:* fu=998Hz,
 
:* fu=998Hz,
Line 12: Line 12:
 
:* fv=1002Hz.
 
:* fv=1002Hz.
  
Mehr ist von diesen Signalen  u(t)  und  v(t)  nicht bekannt.
+
That is all we know about the signals  u(t)  and  v(t).
  
  
Line 20: Line 20:
  
  
''Hinweis:''  
+
''Hints:''  
*Die Aufgabe gehört zum Kapitel  [[Signal_Representation/General_Description|Allgemeine Beschreibung periodischer Signale]].
+
*The exercise belongs to the chapter  [[Signal_Representation/General_Description|General description of periodic signals]].
*Mit dem interaktiven Applet  [[Applets:Periodendauer_periodischer_Signale|Periodendauer periodischer Signale]]  lässt sich die resultierende Periodendauer zweier harmonischer Schwingungen ermitteln.  
+
*With the interactive applet  [[Applets:Period_Duration_of_Periodic_Signals|Period Duration of Periodic Signals]]  the resulting period duration of two harmonic oscillations can be determined.  
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist Periodendauer&nbsp; Tx&nbsp; und Grundfrequenz&nbsp; fx&nbsp; des Signals&nbsp; x(t)?
+
{What is the period duration&nbsp; Tx&nbsp; and the basic frequency&nbsp; fx&nbsp; of the signal&nbsp; x(t)?
 
|type="{}"}
 
|type="{}"}
 
fx =   { 1 3% } &nbsp; kHz
 
fx =   { 1 3% } &nbsp; kHz
  
  
{Wie groß ist Periodendauer&nbsp; Ty&nbsp; und Grundfrequenz&nbsp; fy&nbsp; des Signals&nbsp; y(t)?
+
{What is the period duration&nbsp; Ty&nbsp; and the basic frequency&nbsp; fy&nbsp; of the signal&nbsp; y(t)?
 
|type="{}"}
 
|type="{}"}
 
fy =  { 0.4 3% } &nbsp; kHz
 
fy =  { 0.4 3% } &nbsp; kHz
  
  
{Bestimmen Sie die Grundfrequenz&nbsp; fs&nbsp; sowie die Periodendauer&nbsp; Ts&nbsp; des Summensignals&nbsp; s(t)&nbsp; und überprüfen Sie das Ergebnis anhand der Skizze.
+
{Determine the basic frequency&nbsp; fs&nbsp; and the period duration&nbsp; Ts&nbsp; of the sum signal&nbsp; s(t).&nbsp; <br>Verify your results with the help of the sketched signal.
 
|type="{}"}
 
|type="{}"}
 
Ts =  { 5 3% } &nbsp; ms
 
Ts =  { 5 3% } &nbsp; ms
  
  
{Welche Periodendauer&nbsp; Td&nbsp; weist das Differenzsignal&nbsp; d(t)&nbsp; auf?
+
{What is the period duration&nbsp; Td&nbsp; of the difference signal&nbsp; d(t)&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
Td =  { 5 3% } &nbsp; ms
 
Td =  { 5 3% } &nbsp; ms
  
  
{Welche Periodendauer&nbsp; Tw&nbsp; besitzt das Signal&nbsp; w(t)=u(t)+v(t)?
+
{What is the period duration&nbsp; Tw&nbsp; of the signal&nbsp; w(t)=u(t)+v(t)?
 
|type="{}"}
 
|type="{}"}
 
Tw =  { 500 3% } &nbsp; ms
 
Tw =  { 500 3% } &nbsp; ms
Line 55: Line 55:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Für das Rechtecksignal gilt&nbsp; Tx=1ms  &nbsp; &rArr; &nbsp; fx=1kHz_.
+
'''(1)'''&nbsp;  The following applies to the rectangular signal:&nbsp; Tx=1ms  &nbsp; &rArr; &nbsp;
 +
:$$f_x \hspace{0.15cm}\underline{= 1 \, \text{kHz}}.$$
  
 +
'''(2)'''&nbsp;  The following applies to the triangular signal:&nbsp; Ty=2.5ms&nbsp; und&nbsp;
 +
:fy=0.4kHz_.
  
 
+
'''(3)'''&nbsp;  The basic frequency&nbsp; fs&nbsp; of the sum signal&nbsp; s(t)&nbsp; is the greatest common divisor&nbsp; fx=1kHz&nbsp; and&nbsp; fy=0.4kHz.
'''(2)'''&nbsp;  Für das Dreiecksignal gilt&nbsp; Ty=2.5ms&nbsp; und&nbsp; fy=0.4kHz_.
+
[[File:P_ID320__Sig_Z_2_1_d_neu.png|right|frame|Difference&nbsp; d(t)=x(t)y(t)]]
 
+
   
 
+
*From this follows&nbsp; $f_s = 200 \,\text{Hz}$&nbsp; and the period duration&nbsp; Ts=5ms_.
 
+
* This is also evident from the graphic on the information page.
'''(3)'''&nbsp;  Die Grundfrequenz&nbsp; fs&nbsp; des Summensignals&nbsp; s(t)&nbsp; ist der größte gemeinsame Teiler von&nbsp; fx=1kHz&nbsp; und&nbsp; fy=0.4kHz.  
 
*Daraus folgt&nbsp; fs=200Hz&nbsp; und die Periodendauer&nbsp; Ts=5ms_, wie auch aus der grafischen Darstellung des Signals&nbsp; s(t)&nbsp; auf der Angabenseite hervorgeht.
 
 
 
 
 
 
 
[[File:P_ID320__Sig_Z_2_1_d_neu.png|right|frame|Differenzsignal d(t)=x(t)y(t)]]
 
'''(4)'''&nbsp; Die Periodendauer&nbsp; $T_d&nbsp; ändert sich gegenüber der Periodendauer&nbsp;T_s$&nbsp; nicht, wenn das Signal&nbsp; ${y(t)}$&nbsp; nicht addiert, sondern subtrahiert wird: &nbsp; &nbsp; $T_d = T_s \hspace{0.15cm}\underline{= 5\, \text{ms}}$.
 
  
  
 +
'''(4)'''&nbsp;  The period duration&nbsp; Td&nbsp; does not change compared to the period duration&nbsp; Ts,&nbsp; if the signal&nbsp; y(t)&nbsp; is not added but subtracted: &nbsp; &nbsp;
 +
:Td=Ts=5ms_.
  
'''(5)'''&nbsp;  Der größte gemeinsame Teiler von&nbsp; fu=998Hz&nbsp; und&nbsp; fv=1002Hz&nbsp; ist&nbsp; fw=2Hz.  
+
'''(5)'''&nbsp;  The greatest common divisor of&nbsp; fu=998Hz&nbsp; and&nbsp; fv=1002Hz&nbsp; is&nbsp; fw=2Hz.&nbsp; The inverse of this gives the period duration&nbsp;  Tw=500ms_.
*Der Kehrwert hiervon ergibt die Periodendauer Tw=500ms_.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Exercises for Signal Representation|^2.1 General Description about Periodic Signals^]]
+
[[Category:Signal Representation: Exercises|^2.1 Description of Periodic Signals^]]

Latest revision as of 14:33, 12 April 2021

Rectangular signal, triangular signal, sum signal

The adjacent diagram shows the periodic signals  x(t)  and  y(t),  from which the sum   s(t)  – sketched in the lower diagram – and the difference  d(t)  are formed.

Furthermore, in this task we consider the signal  w(t), which results from the sum of two periodic signals  u(t)  and  v(t) .  The base frequencies of these signals are

  • fu=998Hz,
  • fv=1002Hz.

That is all we know about the signals  u(t)  and  v(t).




Hints:


Questions

1

What is the period duration  Tx  and the basic frequency  fx  of the signal  x(t)?

fx = 

  kHz

2

What is the period duration  Ty  and the basic frequency  fy  of the signal  y(t)?

fy = 

  kHz

3

Determine the basic frequency  fs  and the period duration  Ts  of the sum signal  s(t)
Verify your results with the help of the sketched signal.

Ts = 

  ms

4

What is the period duration  Td  of the difference signal  d(t) ?

Td = 

  ms

5

What is the period duration  Tw  of the signal  w(t)=u(t)+v(t)?

Tw = 

  ms


Solution

(1)  The following applies to the rectangular signal:  Tx=1ms   ⇒  

fx=1kHz_.

(2)  The following applies to the triangular signal:  Ty=2.5ms  und 

fy=0.4kHz_.

(3)  The basic frequency  fs  of the sum signal  s(t)  is the greatest common divisor  fx=1kHz  and  fy=0.4kHz.

Difference  d(t)=x(t)y(t)
  • From this follows  fs=200Hz  and the period duration  Ts=5ms_.
  • This is also evident from the graphic on the information page.


(4)  The period duration  Td  does not change compared to the period duration  Ts,  if the signal  y(t)  is not added but subtracted:    

Td=Ts=5ms_.

(5)  The greatest common divisor of  fu=998Hz  and  fv=1002Hz  is  fw=2Hz.  The inverse of this gives the period duration  Tw=500ms_.