Difference between revisions of "Aufgaben:Exercise 4.4: Pointer Diagram for DSB-AM"
m (Oezdemir moved page Aufgabe 4.4: Zeigerdiagramm bei ZSB-AM to Exercise 4.4: Vector Diagram for DSB-AM) |
|||
(14 intermediate revisions by 3 users not shown) | |||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID718__Sig_A_4_4.png|250px|right|frame| | + | [[File:P_ID718__Sig_A_4_4.png|250px|right|frame|Spectrum of the analytical signal]] |
− | + | We assume a cosine-shaped source signal q(t) with | |
− | * | + | *amplitude AN=0.8 V and |
− | * | + | *frequency fN=10 kHz. |
− | + | The frequency conversion is done by means of [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation#ZSB-Amplitudenmodulation_mit_Tr.C3.A4ger|"Double-Sideband Amplitude Modulation with Carrier"]]. | |
− | + | The modulated signal s(t) is with the (normalised) carrier z(t)=cos(ωT⋅t) and the DC component q0=1 V: | |
:$$\begin{align*} s(t) & = \left(q_0 + q(t)\right) \cdot z(t)= \left({\rm 1 \hspace{0.05cm} | :$$\begin{align*} s(t) & = \left(q_0 + q(t)\right) \cdot z(t)= \left({\rm 1 \hspace{0.05cm} | ||
Line 20: | Line 20: | ||
+ {A_{\rm N}}/{2} \cdot {\cos} ( (\omega_{\rm T}- \omega_{\rm N}) \cdot t).\end{align*}$$ | + {A_{\rm N}}/{2} \cdot {\cos} ( (\omega_{\rm T}- \omega_{\rm N}) \cdot t).\end{align*}$$ | ||
− | + | The first term describes the carrier, the second term the so-called upper sideband $\rm (OSB) and the last term the lower sideband \rm (USB)$. | |
− | + | The sketch shows the spectrum S+(f) of the corresponding analytical signal for fT=50 kHz. You can see | |
− | * | + | *the carrier (red), |
− | * | + | *the upper sideband (blue), and |
− | * | + | *the lower sideband (grün). |
− | In | + | In subtask '''(5)''' the magnitude of s+(t) is asked for. This is the length of the resulting pointer. |
Line 34: | Line 34: | ||
+ | ''Hints:'' | ||
+ | *This exercise belongs to the chapter [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]]. | ||
+ | *The interactive applet [[Applets:Physical_Signal_%26_Analytic_Signal|Physical and Analytical Signal]] illustrates the topic covered here. | ||
+ | *In this task we use the following nomenclature because of the German original: | ||
+ | #The index N stands for "source signal" ⇒ (German: "Nachrichtenignal"). | ||
+ | #The index T stands for "carrier" ⇒ (German: "Trägersignal"). | ||
+ | #OSB denotes the "upper sideband" ⇒ (German: "oberes Seitenband"). | ||
+ | #USB denotes the "lower sideband" ⇒ (German: "unteres Seitenband"). | ||
− | + | ===Questions=== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | === | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the analytical signal s+(t). What is its magnitude at time t=0? |
|type="{}"} | |type="{}"} | ||
Re[s+(t=0)] = { 1.8 3% } V | Re[s+(t=0)] = { 1.8 3% } V | ||
Im[s+(t=0)] = { 0. } V | Im[s+(t=0)] = { 0. } V | ||
− | { | + | {Which of the following statements are true? |
|type="[]"} | |type="[]"} | ||
− | + s+(t) | + | + s+(t) results from s(t), if cos(...) is replaced by ej(...) . |
− | - | + | - If s(t) is an even time function, s+(t) is purely real. |
− | - | + | - At no time does the imaginary part of s+(t) disappear. |
− | { | + | {What is the value of the analytical signal at time t = 5 \ {\rm µ}\text{s}? |
|type="{}"} | |type="{}"} | ||
\text{Re}[s_+(t=5 \ {\rm µ} \text{s})]\ = \ { 0. } V | \text{Re}[s_+(t=5 \ {\rm µ} \text{s})]\ = \ { 0. } V | ||
\text{Im}[s_+(t=5 \ {\rm µ} \text{s})]\ = \ { 1.761 3% } V | \text{Im}[s_+(t=5 \ {\rm µ} \text{s})]\ = \ { 1.761 3% } V | ||
− | { | + | {What is the value of s+(t) at time t = 20 \ {\rm µ}\text{s}? |
|type="{}"} | |type="{}"} | ||
\text{Re}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ { 1.236 3% } V | \text{Re}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ { 1.236 3% } V | ||
\text{Im}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ { 0. } V | \text{Im}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ { 0. } V | ||
− | { | + | {What is the smallest possible pointer length? At what time tmin does this value occur for the first time? |
|type="{}"} | |type="{}"} | ||
|s+(t)|min = { 0.2 3% } V | |s+(t)|min = { 0.2 3% } V | ||
Line 77: | Line 77: | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' By inverse Fourier transform of S+(f) taking into account the "Shifting Theorem": |
− | + | ||
:$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm | :$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm | ||
j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } + {\rm 0.4 | j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } + {\rm 0.4 | ||
Line 88: | Line 88: | ||
40}\hspace{0.05cm} t }.$$ | 40}\hspace{0.05cm} t }.$$ | ||
− | + | [[File:EN_Sig_A_4_4_ML.png|center|frame|Three different analytical signals]] | |
− | *In | + | |
− | * | + | *The expression describes the sum of three pointers rotating at different circular velocities. |
− | * | + | *In the above equation, for example, ω60=2π(fT+fN)=2π⋅60 kHz. |
+ | *At time t=0 all three pointers point in the direction of the real axis (see left graph). | ||
+ | *One obtains the <u>real value</u> s+(t=0)=1.8 V_. | ||
− | |||
<br clear=all> | <br clear=all> | ||
− | '''(2)''' | + | '''(2)''' The <u>first statement</u> is correct and results from the "Hilbert transform". On the other hand, the next two statements are'nt correct: |
− | *s+(t) | + | *s+(t) is always a complex time function with exception of the limiting case $s(t) \equiv 0$. |
− | * | + | *However, every complex function also has purely real values at some points in time. |
− | * | + | *The "pointer group" always rotates in a mathematically positive direction. |
− | * | + | *If the sum vector crosses the real axis, the imaginary part disappears at this point and s+(t) is purely real. |
− | '''(3)''' | + | '''(3)''' The period duration of the carrier signal is T_0 = 1/f_T = 20 \ {\rm µ} \text{s}. |
− | * | + | *After t = 5 \ {\rm µ} \text{s} (see middle graph) the carrier has thus rotated by 90∘. |
− | + | *The blue pointer $\rm (OSB)$ rotates 20% faster, the green one $\rm (USB)$ 20% slower than the red rotary pointer (carrier signal): | |
:$$s_{+}({\rm 5 \hspace{0.05cm} {\rm µ} s}) = {\rm 1 | :$$s_{+}({\rm 5 \hspace{0.05cm} {\rm µ} s}) = {\rm 1 | ||
Line 121: | Line 122: | ||
{\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.$$ | {\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.$$ | ||
− | * | + | *Thus, the angles travelled in 5 \ {\rm µ} \text{s} by OSB and USB are 108∘ and 72∘ respectively. |
− | * | + | *Since at this time the real parts of OSB and USB compensate, s_+(t=5 \ {\rm µ} \text{s}) is <u>purely imaginary</u> and we obtain: |
:$${\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} {\rm µ} s})\right] = | :$${\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} {\rm µ} s})\right] = | ||
Line 130: | Line 131: | ||
− | '''(4)''' | + | '''(4)''' After one rotation of the red carrier, i.e. at time t = T_0 = 20 \ {\rm µ} \text{s}, the blue pointer has already covered 72∘ more and the green pointer correspondingly 72∘ less. The sum of the three pointers is again <u>real</u> and results in accordance with the graph on the right: |
:$${\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm µ} s})\right] = | :$${\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm µ} s})\right] = | ||
Line 137: | Line 138: | ||
− | '''(5)''' | + | '''(5)''' The magnitude is minimum when the pointers of the two sidebands are offset from the carrier by 180∘ . It follows: |
:$$|s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm | :$$|s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm | ||
0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.$$ | 0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.$$ | ||
− | + | Within one period T0 of the carrier, a phase offset of ±72∘ occurs with respect to the pointers of the two sidebands. From this follows: | |
:t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0 \;\underline{= 50 \ {\rm µ} \text{s}}. | :t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0 \;\underline{= 50 \ {\rm µ} \text{s}}. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
− | [[Category: | + | [[Category:Signal Representation: Exercises|^4.2 Analytical Signal and its Spectral Function^]] |
Latest revision as of 15:29, 7 May 2021
We assume a cosine-shaped source signal q(t) with
- amplitude AN=0.8 V and
- frequency fN=10 kHz.
The frequency conversion is done by means of "Double-Sideband Amplitude Modulation with Carrier".
The modulated signal s(t) is with the (normalised) carrier z(t)=cos(ωT⋅t) and the DC component q0=1 V:
- s(t)=(q0+q(t))⋅z(t)=(1V+0.8V⋅cos(ωN⋅t))⋅cos(ωT⋅t)==q0⋅cos(ωT⋅t)+AN/2⋅cos((ωT+ωN)⋅t)+AN/2⋅cos((ωT−ωN)⋅t).
The first term describes the carrier, the second term the so-called upper sideband (OSB) and the last term the lower sideband (USB).
The sketch shows the spectrum S+(f) of the corresponding analytical signal for fT=50 kHz. You can see
- the carrier (red),
- the upper sideband (blue), and
- the lower sideband (grün).
In subtask (5) the magnitude of s+(t) is asked for. This is the length of the resulting pointer.
Hints:
- This exercise belongs to the chapter Analytical Signal and its Spectral Function.
- The interactive applet Physical and Analytical Signal illustrates the topic covered here.
- In this task we use the following nomenclature because of the German original:
- The index N stands for "source signal" ⇒ (German: "Nachrichtenignal").
- The index T stands for "carrier" ⇒ (German: "Trägersignal").
- OSB denotes the "upper sideband" ⇒ (German: "oberes Seitenband").
- USB denotes the "lower sideband" ⇒ (German: "unteres Seitenband").
Questions
Solution
- s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 60} \hspace{0.05cm} t }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 40}\hspace{0.05cm} t }.
- The expression describes the sum of three pointers rotating at different circular velocities.
- In the above equation, for example, \omega_{60} = 2\pi (f_{\rm T} + f_{\rm N}) = 2\pi \cdot 60 \ \text{kHz}.
- At time t = 0 all three pointers point in the direction of the real axis (see left graph).
- One obtains the real value s_+(t = 0) \;\underline{= 1.8 \ \text{V}}.
(2) The first statement is correct and results from the "Hilbert transform". On the other hand, the next two statements are'nt correct:
- s_+(t) is always a complex time function with exception of the limiting case s(t) \equiv 0.
- However, every complex function also has purely real values at some points in time.
- The "pointer group" always rotates in a mathematically positive direction.
- If the sum vector crosses the real axis, the imaginary part disappears at this point and s_+(t) is purely real.
(3) The period duration of the carrier signal is T_0 = 1/f_T = 20 \ {\rm µ} \text{s}.
- After t = 5 \ {\rm µ} \text{s} (see middle graph) the carrier has thus rotated by 90^{\circ}.
- The blue pointer \rm (OSB) rotates 20\% faster, the green one \rm (USB) 20\% slower than the red rotary pointer (carrier signal):
- s_{+}({\rm 5 \hspace{0.05cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}50 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}60 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}40 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 90^\circ }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 108^\circ }+{\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.
- Thus, the angles travelled in 5 \ {\rm µ} \text{s} by OSB and USB are 108^{\circ} and 72^{\circ} respectively.
- Since at this time the real parts of OSB and USB compensate, s_+(t=5 \ {\rm µ} \text{s}) is purely imaginary and we obtain:
- {\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} {\rm µ} s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (18^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.761 \hspace{0.05cm} V}}.
(4) After one rotation of the red carrier, i.e. at time t = T_0 = 20 \ {\rm µ} \text{s}, the blue pointer has already covered 72^{\circ} more and the green pointer correspondingly 72^{\circ} less. The sum of the three pointers is again real and results in accordance with the graph on the right:
- {\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm µ} s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (72^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.236 \hspace{0.05cm} V}}.
(5) The magnitude is minimum when the pointers of the two sidebands are offset from the carrier by 180^{\circ} . It follows:
- |s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm 0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.
Within one period T_0 of the carrier, a phase offset of \pm72^{\circ} occurs with respect to the pointers of the two sidebands. From this follows:
- t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0 \;\underline{= 50 \ {\rm µ} \text{s}}.