Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Signal Representation/Analytical Signal and its Spectral Function"

From LNTwww
 
(25 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Bandpass Signals
+
|Untermenü=Band-Pass Signals
 
|Vorherige Seite=Differences and Similarities of LP and BP Signals
 
|Vorherige Seite=Differences and Similarities of LP and BP Signals
|Nächste Seite=Equivalent Low Pass Signal and Its Spectral Function
+
|Nächste Seite=Equivalent Low-Pass Signal and Its Spectral Function
 
}}
 
}}
  
==Definition in the Frequency Domain==
+
==Definition in the frequency domain==
 
<br>
 
<br>
We consider a real bandpass-like signal&nbsp; x(t)&nbsp; with the corresponding bandpass spectrum&nbsp; X(f), which has an even real and an odd imaginary part with respect to the frequency zero point. It is assumed that the carrier frequency&nbsp; fT&nbsp; is much larger than the bandwidth of the bandpass signal&nbsp; x(t)&nbsp;.
+
We consider a real band-pass signal&nbsp; x(t)&nbsp; with the corresponding band-pass spectrum&nbsp; X(f),&nbsp; which has an even real and an odd imaginary part with respect to the frequency zero point.&nbsp; It is assumed that the carrier frequency&nbsp; fT&nbsp; is much larger than the bandwidth of the band-pass signal&nbsp; x(t).
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
Definition:&nbsp; The time function belonging to the physical signal&nbsp; x(t)&nbsp; '''analytical signal'''&nbsp; x+(t)&nbsp; is that time function, whose spectrum fulfills the following property
+
Definition:&nbsp; The&nbsp; &raquo;'''analytical signal'''&laquo;&nbsp; $x_+(t)&nbsp; belonging to the physical signal&nbsp;x(t)$&nbsp; is that time function, whose spectrum fulfills the following property:
[[File:Sig_T_4_2_S1a_Version2.png|right|frame|Analytical Signal in the Frequency Domain]]
+
[[File:EN_Sig_T_4_2_S1a.png|right|frame|Analytical signal in the frequency domain]]
 
:$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot
 
:$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot
 
X(f) \; \hspace{0.2cm}\rm for\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm for\hspace{0.2cm} {\it f} < 0.} }\right.$$
 
X(f) \; \hspace{0.2cm}\rm for\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm for\hspace{0.2cm} {\it f} < 0.} }\right.$$
  
The so called &bdquo;signum function&rdquo; is for positive values of&nbsp; f&nbsp; equal to&nbsp; +1&nbsp; and for negative&nbsp; f-values equal to&nbsp; 1.  
+
The&nbsp; &raquo;'''sign function'''&laquo;&nbsp; is equal to&nbsp; +1&nbsp; for positive f&ndash;values and for negative&nbsp; f-values equal to&nbsp; 1.  
*The (double sided) limit value returns&nbsp; sign(0)=0.  
+
*The&nbsp; $($double sided$)$&nbsp; limit value returns&nbsp; sign(0)=0.
*The index "+" should make clear that&nbsp; X+(f)&nbsp; has only parts at positive frequencies.
+
 +
*The index&nbsp; "+"&nbsp; should make clear that&nbsp; X+(f)&nbsp; has only parts at positive frequencies.
  
  
From the graphic you can see the calculation rule for&nbsp; X+(f):  
+
From the graphic you can see the calculation rule for&nbsp; X+(f):&nbsp; The actual band-pass spectrum&nbsp; X(f)&nbsp; will
 +
*be doubled at the positive frequencies, and
  
The actual bandpass spectrum&nbsp; X(f)&nbsp; will
 
*doubled at the positive frequencies, and
 
 
*set to zero at the negative frequencies.}}
 
*set to zero at the negative frequencies.}}
 
<br clear=all>
 
<br clear=all>
[[File:P_ID711__Sig_T_4_2_S1b_neu.png|right|frame|Example of a Spectrum of an Analytical Signal ]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
Example 1:&nbsp;
+
Example 1:&nbsp; The graph
 +
[[File:P_ID711__Sig_T_4_2_S1b_neu.png|right|frame|Spectrum&nbsp; X(f)&nbsp; and Spectrum&nbsp; X+(f)&nbsp; of the analytical signal ]]
  
The graphic
+
*on the left shows the&nbsp; $($discrete and complex$)$&nbsp; spectrum&nbsp; X(f)&nbsp; of the&nbsp; "physical band-pass signal"
*at left shows the (complex) spectrum&nbsp; X(f)&nbsp; of the bandpass signal
 
  
 
:$$x(t) = 4\hspace{0.05cm}{\rm V}
 
:$$x(t) = 4\hspace{0.05cm}{\rm V}
 
  \cdot  {\cos} ( 2 \pi f_{\rm u} \hspace{0.03cm}t) + 6\hspace{0.05cm}{\rm V}
 
  \cdot  {\cos} ( 2 \pi f_{\rm u} \hspace{0.03cm}t) + 6\hspace{0.05cm}{\rm V}
  \cdot  {\sin} ( 2 \pi f_{\rm o} \hspace{0.03cm}t).$$
+
  \cdot  {\sin} ( 2 \pi f_{\rm o} \hspace{0.03cm}t),$$
 +
 
 +
*on the right the&nbsp; (also discrete and complex)&nbsp; spectrum&nbsp; X+(f)&nbsp; of the corresponding&nbsp; "analytical signal"&nbsp; $x_{+}(t)$.}}
  
*and on the right the  (complex)  spectrum of the analytical signal&nbsp; x+(t).
 
  
}}
+
==General calculation rule in the time domain==
 +
<br>
 +
Now we will take a closer look at the spectrum&nbsp; X+(f)&nbsp; of the analytical signal and divide it with respect to&nbsp; f=0&nbsp; into 
 +
[[File:Sig_T_4_2_S2a_Version2.png|right|frame|For a clear explanation of the analytical signal]]
  
 +
*an even&nbsp; (German:&nbsp; "gerade" &nbsp; &rArr; &nbsp; "\rm g")&nbsp; part&nbsp; X_{\rm +g}(f),&nbsp; and
  
==Allgemeingültige Berechnungsvorschrift im Zeitbereich==
+
*an odd &nbsp; (German:&nbsp; "ungerade" &nbsp; &rArr; &nbsp; "$\rm u$")&nbsp; part&nbsp; X_{\rm +u}(f):  
<br>
 
[[File:Sig_T_4_2_S2a_Version2.png|right|frame|To Derive the Analytical Signal]]
 
Now we will take a closer look at the spectrum&nbsp; $X_+(f)$&nbsp; of the analytical signal and divide it into a with respect to&nbsp; f = 0&nbsp; even part&nbsp; $X_{\rm +g}(f)$&nbsp; and an odd part&nbsp; X_{\rm +u}(f)&nbsp;:  
 
 
:X_+(f) = X_{\rm +g}(f) + X_{\rm +u}(f).  
 
:X_+(f) = X_{\rm +g}(f) + X_{\rm +u}(f).  
 
All these spectra are generally complex.
 
All these spectra are generally complex.
  
If one considers the nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Mapping Theorem]]&nbsp; of the Fourier transform, then the following statements are possible on the basis of the graphic:
+
If one considers the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|&raquo;Assignment Theorem&laquo;]]&nbsp; of the Fourier transform,&nbsp; then the following statements are possible on basis of the graph:
*Der gerade Anteil&nbsp; X_{\rm +g}(f)&nbsp; von&nbsp; X_{+}(f)&nbsp; führt nach der Fouriertransformation zu einem reellen Zeitsignal, der ungerade Anteil&nbsp; X_{\rm +u}(f)&nbsp; zu einem imaginären.
+
*The even part&nbsp; X_{\rm +g}(f)&nbsp; of&nbsp; X_{+}(f)&nbsp; leads after the Fourier transform to a real time signal,&nbsp; and the odd part&nbsp; X_{\rm +u}(f)&nbsp; to an imaginary one.
*Es ist offensichtlich, dass&nbsp; X_{\rm +g}(f)&nbsp; gleich dem tatsächlichen Fourierspektrum&nbsp; X(f)&nbsp; und damit der Realteil von&nbsp; x_{\rm +g}(t)&nbsp; gleich dem vorgegebenen Signal&nbsp; x(t)&nbsp; mit Bandpasseigenschaften ist.
+
 
*Bezeichnen wir den Imaginärteil mit&nbsp; y(t), so lautet das analytische Signal:
+
 
 +
*It is obvious that&nbsp; X_{\rm +g}(f)&nbsp; is equal to the physical Fourier spectrum&nbsp; X(f)&nbsp; and thus the real part of&nbsp; x_{\rm +g}(t)&nbsp; is equal to the given physical signal&nbsp; x(t)&nbsp; with band-pass properties.
 +
 
 +
 
 +
*If we denote the imaginary part with&nbsp; y(t),&nbsp; the analytical signal is:
 
:x_+(t)= x(t) + {\rm j} \cdot y(t) .
 
:x_+(t)= x(t) + {\rm j} \cdot y(t) .
*Nach den allgemein gültigen Gesetzen der Fouriertransformation entsprechend dem&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Zuordnungssatz]]&nbsp; gilt somit für die Spektralfunktion des Imaginärteils:
+
*According to the generally valid laws of Fourier transform corresponding to the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|&raquo;Assignment Theorem&laquo;]],&nbsp; the following applies to the spectral function of the imaginary part:
 
:$${\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f)
 
:$${\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f)
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm
 
sign}(f)}{ {\rm j}}\cdot X(f).$$
 
sign}(f)}{ {\rm j}}\cdot X(f).$$
*Transformiert man diese Gleichung in den Zeitbereich, so wird aus der Multiplikation die&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|Faltungsoperation]], und man erhält:
+
*After transforming this equation into the time domain,&nbsp; the multiplication becomes the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|&raquo;convolution&laquo;]],&nbsp; and one gets:
 
:$$y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star
 
:$$y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star
 
\hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot
 
\hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot
Line 65: Line 70:
 
\tau}}\hspace{0.15cm} {\rm d}\tau.$$
 
\tau}}\hspace{0.15cm} {\rm d}\tau.$$
  
==Darstellung mit der Hilberttransformation==
+
==Representation with Hilbert transform==
 
<br>
 
<br>
An dieser Stelle ist es erforderlich, kurz auf eine weitere Spektraltransformation einzugehen, die im Buch&nbsp; [[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Lineare zeitinvariante Systeme]]&nbsp; noch eingehend behandelt wird.
+
At this point it is necessary to briefly discuss a further spectral transformation,&nbsp; which is dealt thoroughly in the book&nbsp; [[Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem#Hilbert_transform|&raquo;Linear and Time-invariant Systems&laquo;]]&nbsp;.
 
 
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
\text{Definition:}&nbsp; Für die&nbsp; '''Hilberttransformierte'''&nbsp; {\rm H}\left\{x(t)\right\}&nbsp; einer Zeitfunktion&nbsp; x(t)&nbsp; gilt:
+
\text{Definition:}&nbsp; For the&nbsp; &raquo;'''Hilbert transform'''&laquo;&nbsp; {\rm H}\left\{x(t)\right\}&nbsp; of a time function&nbsp; x(t)&nbsp; applies:
 
   
 
   
 
:$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot
 
:$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot
Line 76: Line 80:
 
\tau} }\hspace{0.15cm} {\rm d}\tau.$$
 
\tau} }\hspace{0.15cm} {\rm d}\tau.$$
  
*Dieses bestimmte Integral ist nicht auf einfache, herkömmliche Art lösbar, sondern muss mit Hilfe des&nbsp; [https://de.wikipedia.org/wiki/Cauchyscher_Hauptwert Cauchy–Hauptwertsatzes]&nbsp; ausgewertet werden.  
+
*This particular integral cannot be solved in a simple,&nbsp; conventional way,&nbsp; but must be evaluated using the&nbsp; [https://en.wikipedia.org/wiki/Cauchy_principal_value &raquo;Cauchy principal value&laquo;].
  
*Entsprechend gilt im Frequenzbereich:
+
*Correspondingly valid in the frequency domain:
 
   
 
   
 
:Y(f) = - {\rm j} \cdot {\rm sign}(f) \cdot X(f) \hspace{0.05cm} .}}
 
:Y(f) = - {\rm j} \cdot {\rm sign}(f) \cdot X(f) \hspace{0.05cm} .}}
  
  
Das Ergebnis der letzten Seite lässt sich mit dieser Definition wie folgt zusammenfassen:
+
Thus,&nbsp; the result of the last section can be summarized with this definition as follows:
*Man erhält aus dem realen, physikalischen Bandpass–Signal&nbsp; x(t)&nbsp; das analytische Signal&nbsp; x_+(t), indem man zu&nbsp; x(t)&nbsp; einen Imaginärteil entsprechend der Hilberttransformierten hinzufügt:
+
*You get from the real,&nbsp; physical band-pass signal&nbsp; x(t)&nbsp; the analytic signal&nbsp; x_+(t)&nbsp; by adding to&nbsp; x(t)&nbsp; an imaginary part according to the Hilbert transform:
 
   
 
   
 
:x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .
 
:x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .
  
*Die Hilberttransformierte&nbsp; \text{H}\{x(t)\}&nbsp; verschwindet nur für den Fall&nbsp; x(t) = \rm const. &nbsp; &rArr; &nbsp; Gleichsignal  Bei allen anderen Signalformen ist das analytische Signal&nbsp; x_+(t)&nbsp; somit stets komplex.
+
*The Hilbert transform&nbsp; \text{H}\{x(t)\}&nbsp; disappears only in the case of&nbsp; x(t) = \rm const. &nbsp; &rArr; &nbsp; DC signal.&nbsp; With all other signal forms the analytic signal&nbsp; x_+(t)&nbsp; is always complex.
*Aus dem analytischen Signal&nbsp; x_+(t)&nbsp; kann das reale Bandpass–Signal in einfacher Weise durch Realteilbildung ermittelt werden:
+
 
 +
*From the analytical signal&nbsp; x_+(t)&nbsp; the real band-pass signal can be easily determined by real part formation:
 
:x(t) = {\rm Re}\left\{x_+(t)\right\} .
 
:x(t) = {\rm Re}\left\{x_+(t)\right\} .
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Das Prinzip der Hilbert–Transformation wird durch die folgende Grafik nochmals verdeutlicht:  
+
$\text{Example 2:}$&nbsp; The principle of the Hilbert transformation is illustrated here by the following diagram:  
*Nach der linken Darstellung&nbsp; \rm (A)&nbsp; kommt man vom physikalischen Signal&nbsp; $x(t)$&nbsp; zum analytischen Signal&nbsp; $x_+(t)$, indem man einen Imaginärteil&nbsp; {\rm j} \cdot y(t)&nbsp; hinzufügt.  
+
*According to the left representation&nbsp; \rm (A),&nbsp; one gets the analytical signal&nbsp; $x_+(t)$&nbsp; from the physical signal&nbsp; $x(t)$&nbsp;  by adding an imaginary part &nbsp; {\rm j} \cdot y(t).
*Hierbei ist&nbsp; y(t) = {\rm H}\left\{x(t)\right\}&nbsp; eine reelle Zeitfunktion, die sich am einfachsten im Spektralbereich durch die Multiplikation des Spektrums&nbsp; X(f)&nbsp; mit&nbsp; - {\rm j} \cdot \sign(f)&nbsp; angeben lässt.
+
 +
*Here,&nbsp; y(t) = {\rm H}\left\{x(t)\right\}&nbsp; is a real time function,&nbsp; which can be calculated easily in the spectral domain by multiplying the spectrum&nbsp; X(f)&nbsp; with&nbsp; - {\rm j} \cdot \sign(f).
  
[[File:P_ID2729__Sig_T_4_2_S2b_neu.png|center|frame|Zur Verdeutlichung der Hilbert–Transformierten]]
+
[[File:P_ID2729__Sig_T_4_2_S2b_neu.png|right|frame|Illustration of the Hilbert transform]]
  
Die rechte Darstellung&nbsp; \rm (B)&nbsp; ist äquivalent zu&nbsp; \rm (A):
 
*Nun gilt&nbsp; x_+(t) = x(t) + z(t)&nbsp; mit der rein imaginären Funktion&nbsp; z(t).
 
*Ein Vergleich der beiden Bilder zeigt, dass tatsächlich&nbsp; z(t) = {\rm j} \cdot y(t)&nbsp; ist.}}
 
  
 +
The right representation&nbsp; \rm (B)&nbsp; is equivalent to&nbsp; \rm (A):
 +
*With the imaginary function&nbsp; z(t)&nbsp; one obtains:
 +
:x_+(t) = x(t) + z(t).
 +
*A comparison of both models shows that it is indeed true:
 +
:z(t) = {\rm j} \cdot y(t).}}
  
==Zeigerdiagrammdarstellung der harmonischen Schwingung==
+
 
 +
 
 +
==Pointer diagram representation of the harmonic oscillation==
 
<br>
 
<br>
Die Spektralfunktion&nbsp; X(f)&nbsp; einer harmonischen Schwingung&nbsp; x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)&nbsp; besteht bekanntlich aus zwei Diracfunktionen bei den Frequenzen
+
The spectral function&nbsp; X(f)&nbsp; of a harmonic oscillation&nbsp; x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)&nbsp; consists of two Dirac delta functions at frequencies
* +f_{\rm T}&nbsp; mit dem komplexen Gewicht&nbsp; A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi},
+
* +f_{\rm T}&nbsp; with complex weight &nbsp; A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi},
* -f_{\rm T}&nbsp; mit dem komplexen Gewicht&nbsp; A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}.
 
  
 +
* -f_{\rm T}&nbsp; with complex weight &nbsp; A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}.
  
Somit lautet das Spektrum des analytischen Signals&nbsp; (also ohne die Diracfunktion bei der Frequenz&nbsp; f =-f_{\rm T}):
+
 
 +
Thus, the spectrum of the analytical signal is&nbsp; (without the Dirac delta function at the frequency&nbsp; f =-f_{\rm T}):
  
 
:$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm
 
:$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm
 
T}) .$$
 
T}) .$$
 
   
 
   
Die dazugehörige Zeitfunktion erhält man durch Anwendung des&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]]:
+
The corresponding time function is obtained by applying the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|&raquo;Shifting Theorem&laquo;]]:
 
   
 
   
 
:$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t
 
:$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
  
Diese Gleichung beschreibt einen mit konstanter Winkelgeschwindigkeit&nbsp; \omega_{\rm T} = 2\pi f_{\rm T}&nbsp; drehenden Zeiger.  
+
This equation describes a rotating pointer with constant angular velocity&nbsp; \omega_{\rm T} = 2\pi f_{\rm T}.
  
 +
In the following,&nbsp; we will also refer to the time course of an analytical and frequency-discrete  signal&nbsp; x_+(t)&nbsp; as&nbsp; &raquo;'''pointer diagram'''&laquo;.
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp; Aus Darstellungsgründen ist in der folgenden Grafik das Koordinatensystem entgegen der üblichen Darstellung um&nbsp; 90^\circ&nbsp; nach links gedreht (Realteil nach oben, Imaginärteil nach links).
+
$\text{Example 3:}$&nbsp; For illustrative reasons the coordinate system here is rotated&nbsp; (real part upwards,&nbsp; imaginary part to the left),&nbsp; contrary to the usual representation by&nbsp; $90^\circ$.
 +
 
 +
[[File:P_ID712__Sig_T_4_2_S3.png|right|frame|Pointer diagram of a harmonic oscillation]]
 +
 
 +
On the basis of this diagram the following statements are possible:
 +
*At the start time&nbsp; t = 0&nbsp; the pointer of length&nbsp; $A$&nbsp; $(amplitude)&nbsp; lies with angle&nbsp; -\varphi$&nbsp; in the complex plane.&nbsp; In the drawn example,&nbsp; \varphi = 45^\circ.
  
[[File:P_ID712__Sig_T_4_2_S3.png|center|frame|Zeigerdiagramm einer harmonischen Schwingung]]
+
*For times&nbsp; t > 0&nbsp; the pointer rotates with constant angular velocity&nbsp; (circular frequency)&nbsp; \omega_{\rm T}&nbsp; in mathematically positive direction,&nbsp; i.e. counterclockwise.
  
Anhand dieser Grafik sind folgende Aussagen möglich:
+
*The top of the pointer thus always lies on a circle with radius&nbsp; A&nbsp; and requires exactly the time&nbsp; $T_0$,&nbsp; i.e. the&nbsp; &raquo;period duration&laquo;&nbsp; of the harmonic oscillation&nbsp; x(t)&nbsp; for one rotation.
*Zum Startzeitpunkt&nbsp; t = 0&nbsp; liegt der Zeiger der Länge&nbsp; A&nbsp; (Signalamplitude) mit dem Winkel&nbsp; $-\varphi$&nbsp; in der komplexen Ebene. Im gezeichneten Beispiel gilt&nbsp; \varphi = 45^\circ.
 
*Für Zeiten&nbsp; t > 0&nbsp; dreht der Zeiger mit konstanter Winkelgeschwindigkeit (Kreisfrequenz)&nbsp; \omega_{\rm T}&nbsp; in mathematisch positiver Richtung, das heißt entgegen dem Uhrzeigersinn.
 
*Die Spitze des Zeigers liegt somit stets auf einem Kreis mit Radius&nbsp; A&nbsp; und benötigt für eine Umdrehung genau die Zeit&nbsp; T_0, also die Periodendauer der harmonischen Schwingung&nbsp; $x(t)$.
 
*Die Projektion des analytischen Signals&nbsp; $x_+(t)$&nbsp; auf die reelle Achse, durch rote Punkte markiert, liefert die Augenblickswerte von&nbsp; x(t).}}
 
  
 +
*The projection of the analytical signal&nbsp; x_+(t)&nbsp; onto the real axis,&nbsp; marked by red dots,&nbsp; provides the instantaneous values of&nbsp; x(t).}}
  
  
==Zeigerdiagramm einer Summe harmonischer Schwingungen==
+
 
 +
==Pointer diagram  of a sum of harmonic oscillations==
 
<br>
 
<br>
Für die weitere Beschreibung gehen wir für das analytische Signal von folgendem Spektrum aus:
+
For the further description we assume the following spectrum for the analytical signal:
 +
 
 +
[[File:P_ID715__Sig_T_4_2_S4.png|right|frame|Pointer diagram of a sum of three oscillations]]
 
   
 
   
 
:$$X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}
 
:$$X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}
 
\varphi_i}\cdot\delta (f - f_{i}) .$$
 
\varphi_i}\cdot\delta (f - f_{i}) .$$
  
Das linke Bild zeigt ein solches Spektrum für das Beispiel&nbsp; I = 3. Wählt man&nbsp; I&nbsp; relativ groß und den Abstand zwischen benachbarten Spektrallinien entsprechend klein, so können mit obiger Gleichung auch (frequenz&ndash;) kontinuierliche Spektralfunktionen&nbsp; X_+(f)&nbsp; angenähert werden.
+
#The left graphic shows such a spectrum for the example&nbsp; I = 3.&nbsp;
 +
#If one chooses&nbsp; I&nbsp; relatively large and the distance between adjacent spectral lines correspondingly small,&nbsp; then  with this equation frequency&ndash;continuous spectral functions&nbsp; X_+(f)&nbsp; can also be approximated.
  
[[File:P_ID715__Sig_T_4_2_S4.png|center|frame|Zeigerdiagramm eines Verbundes aus drei Schwingungen]]
 
  
Im rechten Bild ist die dazugehörige Zeitfunktion angedeutet. Diese lautet allgemein:
+
In the right graphic the corresponding time function is indicated.&nbsp; This is in general:
 
   
 
   
 
:$$x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i
 
:$$x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i
 
\hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
 
\hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
  
Zu dieser Grafik anzumerken:
+
To note about this graphic:
*Die Skizze zeigt die Ausgangslage der Zeiger zum Startzeitpunkt&nbsp; t = 0&nbsp; entsprechend den Amplituden&nbsp; A_i&nbsp; und den Phasenlagen&nbsp; \varphi_i.
+
*The sketch shows the initial position of the pointers at start time&nbsp; t = 0&nbsp; corresponding to the amplitudes&nbsp; A_i&nbsp; and the phase positions&nbsp; \varphi_i.
*Die Spitze des resultierenden Zeigerverbundes ist durch das violette Kreuz markiert. Man erhält durch vektorielle Addition der drei Einzelzeiger für den Zeitpunkt&nbsp; t = 0:
+
 
 +
*The tip of the resulting pointer compound is marked by the violet cross.&nbsp; One obtains by vectorial addition of the three individual pointers for the time&nbsp; t = 0:
 
:x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1  \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.
 
:x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1  \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.
*Für Zeiten&nbsp; t > 0&nbsp; drehen die drei Zeiger mit unterschiedlichen Winkelgeschwindigkeiten&nbsp; \omega_i = 2\pi f_i. Der rote Zeiger dreht schneller als der grüne, aber langsamer als der blaue Zeiger.
+
*For times&nbsp; t > 0&nbsp; the three pointers rotate at different angular velocities&nbsp; \omega_i = 2\pi f_i.&nbsp; The red pointer rotates faster than the green one,&nbsp; but slower than the blue one.
*Da alle Zeiger entgegen dem Uhrzeigersinn drehen, wird sich auch der resultierende Zeiger&nbsp; x_+(t)&nbsp; tendenziell in diese Richtung bewegen. Zum Zeitpunkt&nbsp; t = 1\,&micro;\text {s}&nbsp; liegt die Spitze des resultierenen Zeigers für die gegebenen Parameterwerte bei
+
 
 +
*Since all pointers rotate counterclockwise, the resulting pointer&nbsp; x_+(t)&nbsp; will also tend to move in this direction.&nbsp;
 +
 +
*At time&nbsp; t = 1\,&micro;\text {s}&nbsp; the tip of the resulting pointer for the given parameter values is
 +
 
 
:$$ \begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}&micro; s}) & =  1 \cdot {\rm e}^{-{\rm
 
:$$ \begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}&micro; s}) & =  1 \cdot {\rm e}^{-{\rm
 
j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm
 
j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm
Line 171: Line 193:
 
e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx
 
e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx
 
1.673- {\rm j} \cdot 0.464.\end{align*}$$
 
1.673- {\rm j} \cdot 0.464.\end{align*}$$
*Die resultierende Zeigerspitze liegt nun aber nicht wie bei einer einzigen Schwingung auf einem Kreis, sondern es entsteht eine komplizierte geometrische Figur.
+
*The resulting pointer tip does not lie on a circle like a single oscillation, but a complicated geometric figure is created.
  
  
Das interaktive Applet&nbsp; [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & Analytisches Signal]]&nbsp; verdeutlicht&nbsp; x_+(t)&nbsp; für die Summe dreier harmonischer Schwingungen.
+
The interactive applet&nbsp; [[Applets:Physical_Signal_%26_Analytic_Signal|&raquo;Physical Signal and Analytical Signal&laquo;]]&nbsp; illustrates&nbsp; x_+(t)&nbsp; for the sum of three harmonic oscillations.
  
 
+
==Exercises for the chapter==
==Aufgaben zum Kapitel==
 
 
<br>
 
<br>
 
[[Aufgaben:Exercise 4.3: Vector Diagram Representation|Exercise 4.3: Vector Diagram Representation]]
 
[[Aufgaben:Exercise 4.3: Vector Diagram Representation|Exercise 4.3: Vector Diagram Representation]]
Line 183: Line 204:
 
[[Aufgaben:Exercise 4.3Z: Hilbert Transformator|Exercise 4.3Z: Hilbert Transformator]]
 
[[Aufgaben:Exercise 4.3Z: Hilbert Transformator|Exercise 4.3Z: Hilbert Transformator]]
  
[[Aufgaben:Exercise 4.3Z: Hilbert Transformator|Exercise 4.3Z: Hilbert Transformator]]
+
[[Aufgaben:Exercise 4.4: Vector Diagram for DSB-AM|Exercise 4.4: Vector Diagram for DSB-AM]]
  
[[Aufgaben:Exercise 4.4Z: Vector Diagram for DSB-AM|Exercise 4.4Z: Vector Diagram for DSB-AM]]
+
[[Aufgaben:Exercise 4.4Z: Vector Diagram for DSB-AM|Exercise 4.4Z: Vector Diagram for SSB-AM]]
  
 
    
 
    

Latest revision as of 17:48, 19 June 2023

Definition in the frequency domain


We consider a real band-pass signal  x(t)  with the corresponding band-pass spectrum  X(f),  which has an even real and an odd imaginary part with respect to the frequency zero point.  It is assumed that the carrier frequency  f_{\rm T}  is much larger than the bandwidth of the band-pass signal  x(t).

\text{Definition:}  The  »analytical signal«  x_+(t)  belonging to the physical signal  x(t)  is that time function, whose spectrum fulfills the following property:

Analytical signal in the frequency domain
X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot X(f) \; \hspace{0.2cm}\rm for\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm for\hspace{0.2cm} {\it f} < 0.} }\right.

The  »sign function«  is equal to  +1  for positive f–values and for negative  f-values equal to  -1.

  • The  (double sided)  limit value returns  \sign(0) = 0.
  • The index  "+"  should make clear that  X_+(f)  has only parts at positive frequencies.


From the graphic you can see the calculation rule for  X_+(f):  The actual band-pass spectrum  X(f)  will

  • be doubled at the positive frequencies, and
  • set to zero at the negative frequencies.


\text{Example 1:}  The graph

Spectrum  X(f)  and Spectrum  X_{+}(f)  of the analytical signal
  • on the left shows the  (discrete and complex)  spectrum  X(f)  of the  "physical band-pass signal"
x(t) = 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi f_{\rm u} \hspace{0.03cm}t) + 6\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi f_{\rm o} \hspace{0.03cm}t),
  • on the right the  (also discrete and complex)  spectrum  X_{+}(f)  of the corresponding  "analytical signal"  x_{+}(t).


General calculation rule in the time domain


Now we will take a closer look at the spectrum  X_+(f)  of the analytical signal and divide it with respect to  f = 0  into

For a clear explanation of the analytical signal
  • an even  (German:  "gerade"   ⇒   "\rm g")  part  X_{\rm +g}(f),  and
  • an odd   (German:  "ungerade"   ⇒   "\rm u")  part  X_{\rm +u}(f):
X_+(f) = X_{\rm +g}(f) + X_{\rm +u}(f).

All these spectra are generally complex.

If one considers the  »Assignment Theorem«  of the Fourier transform,  then the following statements are possible on basis of the graph:

  • The even part  X_{\rm +g}(f)  of  X_{+}(f)  leads after the Fourier transform to a real time signal,  and the odd part  X_{\rm +u}(f)  to an imaginary one.


  • It is obvious that  X_{\rm +g}(f)  is equal to the physical Fourier spectrum  X(f)  and thus the real part of  x_{\rm +g}(t)  is equal to the given physical signal  x(t)  with band-pass properties.


  • If we denote the imaginary part with  y(t),  the analytical signal is:
x_+(t)= x(t) + {\rm j} \cdot y(t) .
  • According to the generally valid laws of Fourier transform corresponding to the  »Assignment Theorem«,  the following applies to the spectral function of the imaginary part:
{\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f) \hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm sign}(f)}{ {\rm j}}\cdot X(f).
  • After transforming this equation into the time domain,  the multiplication becomes the  »convolution«,  and one gets:
y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star \hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau}}\hspace{0.15cm} {\rm d}\tau.

Representation with Hilbert transform


At this point it is necessary to briefly discuss a further spectral transformation,  which is dealt thoroughly in the book  »Linear and Time-invariant Systems« .

\text{Definition:}  For the  »Hilbert transform«  {\rm H}\left\{x(t)\right\}  of a time function  x(t)  applies:

y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau} }\hspace{0.15cm} {\rm d}\tau.
  • This particular integral cannot be solved in a simple,  conventional way,  but must be evaluated using the  »Cauchy principal value«.
  • Correspondingly valid in the frequency domain:
Y(f) = - {\rm j} \cdot {\rm sign}(f) \cdot X(f) \hspace{0.05cm} .


Thus,  the result of the last section can be summarized with this definition as follows:

  • You get from the real,  physical band-pass signal  x(t)  the analytic signal  x_+(t)  by adding to  x(t)  an imaginary part according to the Hilbert transform:
x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .
  • The Hilbert transform  \text{H}\{x(t)\}  disappears only in the case of  x(t) = \rm const.   ⇒   DC signal.  With all other signal forms the analytic signal  x_+(t)  is always complex.
  • From the analytical signal  x_+(t)  the real band-pass signal can be easily determined by real part formation:
x(t) = {\rm Re}\left\{x_+(t)\right\} .

\text{Example 2:}  The principle of the Hilbert transformation is illustrated here by the following diagram:

  • According to the left representation  \rm (A),  one gets the analytical signal  x_+(t)  from the physical signal  x(t)  by adding an imaginary part   {\rm j} \cdot y(t).
  • Here,  y(t) = {\rm H}\left\{x(t)\right\}  is a real time function,  which can be calculated easily in the spectral domain by multiplying the spectrum  X(f)  with  - {\rm j} \cdot \sign(f).
Illustration of the Hilbert transform


The right representation  \rm (B)  is equivalent to  \rm (A):

  • With the imaginary function  z(t)  one obtains:
x_+(t) = x(t) + z(t).
  • A comparison of both models shows that it is indeed true:
z(t) = {\rm j} \cdot y(t).


Pointer diagram representation of the harmonic oscillation


The spectral function  X(f)  of a harmonic oscillation  x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)  consists of two Dirac delta functions at frequencies

  • +f_{\rm T}  with complex weight   A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi},
  • -f_{\rm T}  with complex weight   A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}.


Thus, the spectrum of the analytical signal is  (without the Dirac delta function at the frequency  f =-f_{\rm T}):

X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm T}) .

The corresponding time function is obtained by applying the  »Shifting Theorem«:

x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.

This equation describes a rotating pointer with constant angular velocity  \omega_{\rm T} = 2\pi f_{\rm T}.

In the following,  we will also refer to the time course of an analytical and frequency-discrete signal  x_+(t)  as  »pointer diagram«.

\text{Example 3:}  For illustrative reasons the coordinate system here is rotated  (real part upwards,  imaginary part to the left),  contrary to the usual representation by  90^\circ.

Pointer diagram of a harmonic oscillation

On the basis of this diagram the following statements are possible:

  • At the start time  t = 0  the pointer of length  A  (amplitude)  lies with angle  -\varphi  in the complex plane.  In the drawn example,  \varphi = 45^\circ.
  • For times  t > 0  the pointer rotates with constant angular velocity  (circular frequency)  \omega_{\rm T}  in mathematically positive direction,  i.e. counterclockwise.
  • The top of the pointer thus always lies on a circle with radius  A  and requires exactly the time  T_0,  i.e. the  »period duration«  of the harmonic oscillation  x(t)  for one rotation.
  • The projection of the analytical signal  x_+(t)  onto the real axis,  marked by red dots,  provides the instantaneous values of  x(t).


Pointer diagram of a sum of harmonic oscillations


For the further description we assume the following spectrum for the analytical signal:

Pointer diagram of a sum of three oscillations
X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} \varphi_i}\cdot\delta (f - f_{i}) .
  1. The left graphic shows such a spectrum for the example  I = 3
  2. If one chooses  I  relatively large and the distance between adjacent spectral lines correspondingly small,  then with this equation frequency–continuous spectral functions  X_+(f)  can also be approximated.


In the right graphic the corresponding time function is indicated.  This is in general:

x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i \hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.

To note about this graphic:

  • The sketch shows the initial position of the pointers at start time  t = 0  corresponding to the amplitudes  A_i  and the phase positions  \varphi_i.
  • The tip of the resulting pointer compound is marked by the violet cross.  One obtains by vectorial addition of the three individual pointers for the time  t = 0:
x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1 \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.
  • For times  t > 0  the three pointers rotate at different angular velocities  \omega_i = 2\pi f_i.  The red pointer rotates faster than the green one,  but slower than the blue one.
  • Since all pointers rotate counterclockwise, the resulting pointer  x_+(t)  will also tend to move in this direction. 
  • At time  t = 1\,µ\text {s}  the tip of the resulting pointer for the given parameter values is
\begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}µ s}) & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}40 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}50 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}60 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} = \\ & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}45.6^\circ} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}18^\circ}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx 1.673- {\rm j} \cdot 0.464.\end{align*}
  • The resulting pointer tip does not lie on a circle like a single oscillation, but a complicated geometric figure is created.


The interactive applet  »Physical Signal and Analytical Signal«  illustrates  x_+(t)  for the sum of three harmonic oscillations.

Exercises for the chapter


Exercise 4.3: Vector Diagram Representation

Exercise 4.3Z: Hilbert Transformator

Exercise 4.4: Vector Diagram for DSB-AM

Exercise 4.4Z: Vector Diagram for SSB-AM