Difference between revisions of "Aufgaben:Exercise 5.2: Inverse Discrete Fourier Transform"
m (Oezdemir moved page Aufgabe 5.2: Inverse Diskrete Fouriertransformation to Exercise 5.2: Inverse Discrete Fourier Transform) |
|||
(4 intermediate revisions by 3 users not shown) | |||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1138__Sig_A_5_2.png|250px|right|frame| | + | [[File:P_ID1138__Sig_A_5_2.png|250px|right|frame|Five different sets for the spectral coefficients D(μ)]] |
− | + | With the '''Discrete Fourier Transform''' $\rm (DFT)$, | |
− | + | *the N spectral range coefficients D(μ) are calculated | |
− | * | ||
+ | *from the N time coefficients d(ν) ⇒ samples of the continuous-time signal x(t). | ||
− | + | ||
+ | With \nu = 0, ... , N – 1 and \mu = 0, ... , N – 1 holds: | ||
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} | :$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} | ||
d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$ | d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$ | ||
− | + | Here w denotes the complex rotation factor: | |
:$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} | :$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} | ||
Line 21: | Line 22: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | For the '''Inverse Discrete Fourier Transform''' $\rm (DFT)$ ⇒ "inverse function" of the DFT, the following applies accordingly: | |
:$$d(\nu) = \sum_{\mu = 0 }^{N-1} | :$$d(\nu) = \sum_{\mu = 0 }^{N-1} | ||
D(\mu) \cdot {w}^{-\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$ | D(\mu) \cdot {w}^{-\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$ | ||
− | In | + | In this task, the time coefficients d(\nu) are to be determined for various sequences D(\mu) (which are labelled \rm A, ... , \rm E in the table above). Thus, N = 8 always applies. |
Line 35: | Line 36: | ||
− | '' | + | ''Hints:'' |
− | * | + | *This task belongs to the chapter [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Discrete Fourier Transformation (DFT)]]. |
− | * | + | *The topic dealt with here is also dealt with in the interactive applet [[Applets:Discrete_Fouriertransform_and_Inverse|Discrete Fourier Transform and Inverse]]. |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What are the time coefficients d(\nu) for the D(\mu) values of column \rm A? |
|type="{}"} | |type="{}"} | ||
d(0)\ = \ { 1 3% } | d(0)\ = \ { 1 3% } | ||
d(1)\ = \ { 1 3% } | d(1)\ = \ { 1 3% } | ||
− | { | + | {What are the time coefficients d(ν) for the D(\mu) values of column \rm B? |
|type="{}"} | |type="{}"} | ||
d(0)\ = \ { 1 3% } | d(0)\ = \ { 1 3% } | ||
d(1)\ = \ { 0.707 3% } | d(1)\ = \ { 0.707 3% } | ||
− | { | + | {What are the time coefficients d(ν) for the D(\mu) values of column \rm C? |
|type="{}"} | |type="{}"} | ||
d(0)\ = \ { 1 3% } | d(0)\ = \ { 1 3% } | ||
d(1)\ = \ { 0. } | d(1)\ = \ { 0. } | ||
− | { | + | {What are the time coefficients d(ν) for the D(\mu) values of column \rm D? |
|type="{}"} | |type="{}"} | ||
d(0)\ = \ { 1 3% } | d(0)\ = \ { 1 3% } | ||
d(1)\ = \ { -1.03--0.97 } | d(1)\ = \ { -1.03--0.97 } | ||
− | { | + | {What are the time coefficients d(ν) for the D(\mu) values of column \rm E? |
|type="{}"} | |type="{}"} | ||
d(0)\ = \ { 2 3% } | d(0)\ = \ { 2 3% } | ||
Line 73: | Line 74: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' From the IDFT equation, with D(\mu) = 0 for \mu \ne 0: |
:d(\nu) = D(0) \cdot w^0 = D(0) =1\hspace{0.5cm}(0 \le \nu \le 7)\ \hspace{0.5cm} \Rightarrow\hspace{0.5cm}\hspace{0.15 cm}\underline{d(0) = d(1) = 1}. | :d(\nu) = D(0) \cdot w^0 = D(0) =1\hspace{0.5cm}(0 \le \nu \le 7)\ \hspace{0.5cm} \Rightarrow\hspace{0.5cm}\hspace{0.15 cm}\underline{d(0) = d(1) = 1}. | ||
− | * | + | *This parameter set describes the discrete form of the Fourier correspondence of the DC signal: |
:$$x(t) = 1 \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} | :$$x(t) = 1 \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} | ||
Line 85: | Line 86: | ||
− | '''(2)''' | + | '''(2)''' All spectral coefficients are zero except D_1 = D_7 = 0.5. It follows for 0 ≤ ν ≤ 7: |
:$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} | :$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *However, due to periodicity, also holds: |
:$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{4} \cdot \nu \right) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) = {1}/{\sqrt{2}} \approx 0.707} | :$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{4} \cdot \nu \right) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) = {1}/{\sqrt{2}} \approx 0.707} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *It is therefore the discrete-time equivalent of |
:$$x(t) = \cos(2 \pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} | :$$x(t) = \cos(2 \pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} | ||
X(f) = {1}/{2} \cdot {\delta}(f + f_{\rm A}) + {1}/{2} \cdot {\delta}(f - f_{\rm A}) \hspace{0.05cm},$$ | X(f) = {1}/{2} \cdot {\delta}(f + f_{\rm A}) + {1}/{2} \cdot {\delta}(f - f_{\rm A}) \hspace{0.05cm},$$ | ||
− | : | + | :where f_{\rm A} denotes the smallest frequency that can be represented in the DFT. |
− | '''(3)''' | + | '''(3)''' Compared to subtask '''(2)''', the oscillation frequency is now twice as large, namely 2 f_{\rm A} instead of f_{\rm A}: |
:$$x(t) = \cos(2 \pi \cdot (2f_{\rm A}) \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} | :$$x(t) = \cos(2 \pi \cdot (2f_{\rm A}) \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} | ||
X(f) = {1}/{2} \cdot {\delta}(f + 2f_{\rm A}) + {1}/{2} \cdot {\delta}(f - 2f_{\rm A}) \hspace{0.05cm},$$ | X(f) = {1}/{2} \cdot {\delta}(f + 2f_{\rm A}) + {1}/{2} \cdot {\delta}(f - 2f_{\rm A}) \hspace{0.05cm},$$ | ||
− | * | + | *Thus the sequence \langle \hspace{0.1cm}d(ν)\hspace{0.1cm}\rangle describes two periods of the cosine oscillation, and it holds for 0 ≤ ν ≤ 7: |
:$$ d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{2} \cdot \nu \right)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1, \hspace{0.2cm}d(1) = 0} | :$$ d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{2} \cdot \nu \right)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1, \hspace{0.2cm}d(1) = 0} | ||
Line 114: | Line 115: | ||
− | '''(4)''' | + | '''(4)''' By further doubling the cosine frequency to 4 f_{\rm A} one finally arrives at the continuous-time Fourier correspondence |
:$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left(\pi \cdot \nu \right) | :$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left(\pi \cdot \nu \right) | ||
\hspace{0.05cm}$$ | \hspace{0.05cm}$$ | ||
− | : | + | :and thus to the time coefficients |
:$$d(0) =d(2) =d(4) =d(6) \hspace{0.15 cm}\underline{= +1}, \hspace{0.2cm}d(1) =d(3) =d(5) =d(7) \hspace{0.15 cm}\underline{= -1} | :$$d(0) =d(2) =d(4) =d(6) \hspace{0.15 cm}\underline{= +1}, \hspace{0.2cm}d(1) =d(3) =d(5) =d(7) \hspace{0.15 cm}\underline{= -1} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *Note that here the two Dirac functions coincide in the discrete-time representation due to periodicity. |
− | * | + | *The coefficients D (+4) = 0.5 and D (-4) = 0.5 together give D (4) = 1. |
− | '''(5)''' | + | '''(5)''' The Discrete Fourier Transform is also linear. Therefore, the superposition principle is still applicable: |
− | * | + | *The coefficients D(\mu ) from column \rm E result as the sums of columns \rm A and \rm D. |
− | * | + | *Therefore, the alternating sequence \langle \hspace{0.1cm}d(ν) \hspace{0.1cm}\rangle becomes the sequence shifted up by 1 according to subtask '''(4)''': |
:$$ \hspace{0.15 cm}\underline{d(0) =d(2) =d(4) =d(6)= 2}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) =d(3) =d(5) =d(7) = 0} | :$$ \hspace{0.15 cm}\underline{d(0) =d(2) =d(4) =d(6)= 2}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) =d(3) =d(5) =d(7) = 0} | ||
Line 138: | Line 139: | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
− | [[Category: | + | [[Category:Signal Representation: Exercises|^5.2 Discrete Fourier Transform^]] |
Latest revision as of 16:38, 16 May 2021
With the Discrete Fourier Transform \rm (DFT),
- the N spectral range coefficients D(\mu) are calculated
- from the N time coefficients d(\nu) ⇒ samples of the continuous-time signal x(t).
With \nu = 0, ... , N – 1 and \mu = 0, ... , N – 1 holds:
- D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.
Here w denotes the complex rotation factor:
- w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.
For the Inverse Discrete Fourier Transform \rm (DFT) ⇒ "inverse function" of the DFT, the following applies accordingly:
- d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.
In this task, the time coefficients d(\nu) are to be determined for various sequences D(\mu) (which are labelled \rm A, ... , \rm E in the table above). Thus, N = 8 always applies.
Hints:
- This task belongs to the chapter Discrete Fourier Transformation (DFT).
- The topic dealt with here is also dealt with in the interactive applet Discrete Fourier Transform and Inverse.
Questions
Solution
- d(\nu) = D(0) \cdot w^0 = D(0) =1\hspace{0.5cm}(0 \le \nu \le 7)\ \hspace{0.5cm} \Rightarrow\hspace{0.5cm}\hspace{0.15 cm}\underline{d(0) = d(1) = 1}.
- This parameter set describes the discrete form of the Fourier correspondence of the DC signal:
- x(t) = 1 \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {\delta}(f) \hspace{0.05cm}.
(2) All spectral coefficients are zero except D_1 = D_7 = 0.5. It follows for 0 ≤ ν ≤ 7:
- d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} \hspace{0.05cm}.
- However, due to periodicity, also holds:
- d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{4} \cdot \nu \right) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) = {1}/{\sqrt{2}} \approx 0.707} \hspace{0.05cm}.
- It is therefore the discrete-time equivalent of
- x(t) = \cos(2 \pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {1}/{2} \cdot {\delta}(f + f_{\rm A}) + {1}/{2} \cdot {\delta}(f - f_{\rm A}) \hspace{0.05cm},
- where f_{\rm A} denotes the smallest frequency that can be represented in the DFT.
(3) Compared to subtask (2), the oscillation frequency is now twice as large, namely 2 f_{\rm A} instead of f_{\rm A}:
- x(t) = \cos(2 \pi \cdot (2f_{\rm A}) \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {1}/{2} \cdot {\delta}(f + 2f_{\rm A}) + {1}/{2} \cdot {\delta}(f - 2f_{\rm A}) \hspace{0.05cm},
- Thus the sequence \langle \hspace{0.1cm}d(ν)\hspace{0.1cm}\rangle describes two periods of the cosine oscillation, and it holds for 0 ≤ ν ≤ 7:
- d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{2} \cdot \nu \right)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1, \hspace{0.2cm}d(1) = 0} \hspace{0.05cm}.
(4) By further doubling the cosine frequency to 4 f_{\rm A} one finally arrives at the continuous-time Fourier correspondence
- d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left(\pi \cdot \nu \right) \hspace{0.05cm}
- and thus to the time coefficients
- d(0) =d(2) =d(4) =d(6) \hspace{0.15 cm}\underline{= +1}, \hspace{0.2cm}d(1) =d(3) =d(5) =d(7) \hspace{0.15 cm}\underline{= -1} \hspace{0.05cm}.
- Note that here the two Dirac functions coincide in the discrete-time representation due to periodicity.
- The coefficients D (+4) = 0.5 and D (-4) = 0.5 together give D (4) = 1.
(5) The Discrete Fourier Transform is also linear. Therefore, the superposition principle is still applicable:
- The coefficients D(\mu ) from column \rm E result as the sums of columns \rm A and \rm D.
- Therefore, the alternating sequence \langle \hspace{0.1cm}d(ν) \hspace{0.1cm}\rangle becomes the sequence shifted up by 1 according to subtask (4):
- \hspace{0.15 cm}\underline{d(0) =d(2) =d(4) =d(6)= 2}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) =d(3) =d(5) =d(7) = 0} \hspace{0.05cm}.