Difference between revisions of "Signal Representation/The Convolution Theorem and Operation"

From LNTwww
m (Text replacement - "low pass" to "low-pass")
 
(33 intermediate revisions by 3 users not shown)
Line 6: Line 6:
 
}}
 
}}
  
==Convolution in Time Domain==
+
==Convolution in the time domain==
 
<br>
 
<br>
The &bdquo;convolution theorem&rdquo; is one of the most important laws of the Fourier transform, to which an own subchapter is dedicated in this tutorial.
+
The&nbsp; &raquo;Convolution Theorem&laquo;&nbsp; is one of the most important laws of the Fourier transform,&nbsp; to which an own subchapter is dedicated in this tutorial.&nbsp; We will first consider the convolution theorem in the time domain and assume that the spectra of two time functions&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; are known:
 
 
We will first consider the convolution theorem in the time domain and assume that the spectra of two time functions&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; are known:
 
 
   
 
   
 
:$$X_1 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}x_1( t ),\quad X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}x_2 ( t ).$$
 
:$$X_1 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}x_1( t ),\quad X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}x_2 ( t ).$$
  
Then for the time function of the product&nbsp; $X_1(f) \cdot X_2(f)$ applies:
+
Then for the time function of the product&nbsp; $X_1(f) \cdot X_2(f)$&nbsp; applies:
  
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}\int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}\int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
 
   
 
   
Here&nbsp; $\tau$&nbsp; is a formal integration variable with the dimension of a time.
+
$\tau$&nbsp; is a formal integration variable with the dimension of a time.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; The above connection of the time function&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; is called&nbsp; '''convolution'''&nbsp; and represents this functional connection with a star:
+
$\text{Definition:}$&nbsp;  
 +
 
 +
The above connection of the time function&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; is called&nbsp; &raquo;'''convolution'''&laquo;.&nbsp; One represents this functional connection with a star:
 
   
 
   
 
:$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  ) }  \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau =  x_{\rm{2} } (t) * x_{\rm{1} } (t) .$$
 
:$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  ) }  \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau =  x_{\rm{2} } (t) * x_{\rm{1} } (t) .$$
  
Thus the above Fourier correspondence can be written as follows:
+
*Thus the above Fourier correspondence can be written as follows:
  
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$
  
The&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Beweis_des_Faltungssatzes|Proof]]&nbsp; will be shown at the end of the chapter.}}
+
*The convolution is&nbsp; &raquo;commutative&laquo;  &nbsp; ⇒  &nbsp;The order of the operands can be changed:
 +
 +
:$$x_1(t) * x_2(t) =x_2(t) * x_1(t).$$
 +
 
 +
*The&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Proof_of_the_Convolution_Theorem|&raquo;Proof&laquo;]]&nbsp; will be shown at the end of this chapter.}}
  
  
''Remark'': &nbsp; The convolution is&nbsp; '''commutative'''  &nbsp; ⇒  &nbsp;The order of the operands can be changed: &nbsp;  ${ {x}}_{\rm{1}} ( t ) * { {x}}_{\rm{2}} (t ) ={ {x}}_{\rm{2}} ( t ) * { {x}}_{\rm{1}} (t ) $.
 
  
 +
{{GraueBox|TEXT=
 +
[[File:EN_Sig_T_3_4_S1.png|right|frame|On calculation of signal and spectrum of  the LTI output]] 
 +
$\text{Example 1:}$&nbsp; Every linear time-invariant&nbsp; $\rm (LTI)$&nbsp; system can be described both,
 +
#by the frequency response&nbsp; $H(f)$,
 +
#by the impulse response&nbsp; $h(t)$.
  
[[File:EN_Sig_T_3_4_S1.png|right|frame|On Calculation of Signal and Spectrum of  LTI&ndash;Output]]
 
{{GraueBox|TEXT= 
 
$\text{Example 1:}$&nbsp; Every linear time-invariant (LTI) system can be described by the frequency response&nbsp; $H(f)$&nbsp; as well as by the impulse response&nbsp; $h(t)$&nbsp; where the relation between these two system quantities is also given by the Fourier transform.
 
  
If a signal&nbsp; $x(t)$&nbsp; with the spectrum&nbsp; $X(f)$&nbsp; is applied to the input, the spectrum of the output signal is:
+
The relation between these two system quantities is also given by the Fourier transform.
 +
 
 +
*If the signal&nbsp; $x(t)$&nbsp; with spectrum&nbsp; $X(f)$&nbsp; is applied to the input,&nbsp; then the spectrum of the output signal is:
 
   
 
   
 
:$$Y(f) = X(f) \cdot H(f)\hspace{0.05cm}.$$
 
:$$Y(f) = X(f) \cdot H(f)\hspace{0.05cm}.$$
  
It is possible to calculate the output signal in the time domain with the convolution theorem:
+
*It is possible to calculate the output signal in the time domain with the convolution theorem:
 
   
 
   
 
:$$y( t ) = x(t) * h( t ) = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm}{x( \tau  )}  \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau =  \int_{ - \infty }^{ + \infty } \hspace{-0.15cm} {h( \tau  )}  \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau = h(t) * x( t ).$$
 
:$$y( t ) = x(t) * h( t ) = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm}{x( \tau  )}  \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau =  \int_{ - \infty }^{ + \infty } \hspace{-0.15cm} {h( \tau  )}  \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau = h(t) * x( t ).$$
  
This equation shows again ''commutativity''&nbsp; of the convolution operation.  }}
+
*This equation shows again the&nbsp; &raquo;commutativity&laquo;&nbsp; of the&nbsp; &raquo;convolution operation&laquo;.  }}
  
  
==Convolution in the Frequency Domain==
+
==Convolution in the frequency domain==
 
<br>
 
<br>
 
The duality between time and frequency domain also allows statements regarding the spectrum of the product signal:
 
The duality between time and frequency domain also allows statements regarding the spectrum of the product signal:
Line 56: Line 63:
 
:$$x_1 ( t ) \cdot x_2 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_1 (f) * X_2 (f) =  \int_{ - \infty }^{ + \infty } {X_1 ( \nu  )}  \cdot X_2 ( {f - \nu })\hspace{0.1cm}{\rm d}\nu.$$
 
:$$x_1 ( t ) \cdot x_2 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_1 (f) * X_2 (f) =  \int_{ - \infty }^{ + \infty } {X_1 ( \nu  )}  \cdot X_2 ( {f - \nu })\hspace{0.1cm}{\rm d}\nu.$$
  
This result can be proved similarly to the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Beweis_des_Faltungssatzes|convolution in the time domain]]&nbsp;. However, the integration variable&nbsp; $\nu$&nbsp; now has the dimension of a frequency.
+
This result can be proved similarly to the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Proof_of_the_Convolution_Theorem|&raquo;convolution in the time domain&laquo;]].&nbsp; However,&nbsp; the integration variable&nbsp; $\nu$&nbsp; now has the dimension of a frequency.
  
[[File:EN_Sig_T_3_4_S2.png|right|frame|Convolution in the Frequency Domain with the Example of DSB&ndash;AM]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT= 
+
[[File:EN_Sig_T_3_4_S2.png|right|frame|Convolution in the frequency domain&nbsp; $($e.g.&nbsp;  DSB&ndash;AM$)$]]  
$\text{Example 2:}$&nbsp; The &nbsp; [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation#Beschreibung_im_Zeitbereich|Double-Sideband Amplitude Modulation]]&nbsp; (DSB-AM) without a carrier is described by the drawn graph.
+
$\text{Example 2:}$&nbsp; The &nbsp; [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation#Beschreibung_im_Zeitbereich|
*The time domain representation (blue) shows the modulated signal&nbsp; $s(t)$&nbsp; as the product of the message signal&nbsp; $q(t)$&nbsp; and the (normalized) carrier signal&nbsp; $z(t)$.
+
&raquo;Double-Sideband Amplitude Modulation&raquo;]]&nbsp; $\text{(DSB-AM)}$&nbsp; with carrier suppression is described by the drawn model.
*According to the convolution theorem it follows for the frequency range (red) that the output spectrum&nbsp; $S(f)$&nbsp; is equal to the convolution product of&nbsp; $Q(f)$&nbsp; and&nbsp; $Z(f)$&nbsp;.}}
 
  
 +
*The time domain representation&nbsp; $\rm (blue)$&nbsp; shows the modulated signal&nbsp; $s(t)$&nbsp; as the product of the source signal&nbsp; $q(t)$&nbsp; and the&nbsp; $($normalized$)$&nbsp; carrier signal&nbsp; $z(t)$.
  
==Convolution of a Function With a Dirac Function==  
+
 
 +
*According to the convolution theorem it follows for the frequency domain&nbsp; $\rm (red)$&nbsp; that the output spectrum&nbsp; $S(f)$&nbsp; is equal to the convolution product of&nbsp;  $Q(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \ q(t)$&nbsp; and&nbsp; $Z(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \ z(t)$.}}
 +
 
 +
 
 +
==Convolution of a function with a Dirac delta function==  
 
<br>
 
<br>
The convolution operation becomes very simple, if one of the two operands is a&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal#Diracfunktion_im_Frequenzbereich|Dirac function]]&nbsp;.This applies equally to the convolution in the time and frequency domain.
+
The convolution operation becomes very simple,&nbsp; if one of the operands is a&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal#Dirac_.28delta.29_function_in_frequency_domain|&raquo;Dirac delta function&laquo;]].&nbsp; This applies both to the convolution in time and frequency domain.
  
We will consider the convolution of a function&nbsp; $x_1(t)$&nbsp; with the function
+
*We will consider the convolution of a function&nbsp; $x_1(t)$&nbsp; with the function
 
   
 
   
 
:$$x_2 ( t ) = \alpha  \cdot \delta ( {t - T} ) \quad \circ\,\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad X_2 ( f )= \alpha \cdot  {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm}\cdot\hspace{0.05cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.05cm}\cdot\hspace{0.05cm}f\hspace{0.05cm}\cdot\hspace{0.05cm}T}.$$
 
:$$x_2 ( t ) = \alpha  \cdot \delta ( {t - T} ) \quad \circ\,\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad X_2 ( f )= \alpha \cdot  {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm}\cdot\hspace{0.05cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.05cm}\cdot\hspace{0.05cm}f\hspace{0.05cm}\cdot\hspace{0.05cm}T}.$$
  
For the spectral function of the signal&nbsp; $y(t) = x_1(t) \ast x_2(t)$&nbsp; it follows:
+
*For the spectral function of the signal&nbsp; $y(t) = x_1(t) \ast x_2(t)$&nbsp; it follows:
 
   
 
   
 
:$$Y( f ) = X_1 ( f ) \cdot X_2 ( f ) = X_1 ( f ) \cdot  \alpha  \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm}\cdot\hspace{0.05cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.05cm}\cdot\hspace{0.05cm}f\hspace{0.05cm}\cdot\hspace{0.05cm}T}.$$
 
:$$Y( f ) = X_1 ( f ) \cdot X_2 ( f ) = X_1 ( f ) \cdot  \alpha  \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm}\cdot\hspace{0.05cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.05cm}\cdot\hspace{0.05cm}f\hspace{0.05cm}\cdot\hspace{0.05cm}T}.$$
  
The complex exponential function leads to a shift by&nbsp; $T$ &nbsp; &rArr; &nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Shifting Theorem]], the factor&nbsp; $\alpha$&nbsp; to a damping&nbsp; $(\alpha < 1)$&nbsp; or amplification&nbsp; $(\alpha > 1)$.  
+
*The complex exponential function leads to a shift by&nbsp; $T$ &nbsp; &rArr; &nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|&raquo;Shifting Theorem&laquo;]],&nbsp; the factor&nbsp; $\alpha$&nbsp; to an attenuation&nbsp; $(\alpha < 1)$&nbsp; or amplification&nbsp; $(\alpha > 1)$.&nbsp; From this follows:
 
 
From this follows:
 
 
   
 
   
 
:$$x_1 (t) * x_2 (t) = \alpha  \cdot x_1 ( {t - T} ).$$
 
:$$x_1 (t) * x_2 (t) = \alpha  \cdot x_1 ( {t - T} ).$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{In Words: }$&nbsp; The convolution of any function with a Dirac function at&nbsp; $t = T$&nbsp; results in the function shifted to the right by&nbsp; $T$&nbsp; while the weighting of the Dirac function by the factor&nbsp; $\alpha$&nbsp; has to be taken into account.}}
+
$\text{In Words: }$&nbsp;  
 +
*The convolution of any function with a Dirac delta function at&nbsp; $t = T$&nbsp; results in the function shifted to the right by&nbsp; $T$,&nbsp;
 +
 +
*while the weighting of the Dirac delta function by the factor&nbsp; $\alpha$&nbsp; has to be taken into account.}}
 +
 
  
{{GraueBox|TEXT=
+
{{GraueBox|TEXT=
$\text{Example 3:}$&nbsp; A square wave signal $x(t)$ is delayed by an LTI-system by the delay time&nbsp; $\tau = 3\,\text{ ms}$&nbsp; and attenuated by the factor&nbsp; $\alpha = 0.5$&nbsp;.
+
$\text{Example 3:}$&nbsp; A rectangle pulse&nbsp; $x(t)$&nbsp; is delayed by an LTI system by the delay time&nbsp; $\tau = 3\,\text{ ms}$&nbsp; and attenuated by the factor&nbsp; $\alpha = 0.5$.
 +
[[File:P_ID522__Sig_T_3_4_S3_neu.png|right|frame|Convolution of a rectangle pulse with a Dirac  delta  function]] 
  
[[File:P_ID522__Sig_T_3_4_S3_neu.png|center|frame|Convolution of a Rectangle Pulse with a Dirac Function]]
 
  
Shift and attenuation can be recognized by the output signal&nbsp; $y(t)$&nbsp; as well as by the impulse response&nbsp; $h(t)$.}}
 
  
 +
Shift and attenuation can be recognised both
 +
*by the output signal&nbsp; $y(t)$,&nbsp;
 +
 +
*by the impulse response&nbsp; $h(t)$.
 +
}}
  
==Graphical Convolution==
+
 
 +
==Graphical convolution==
 
<br>
 
<br>
For the descriptions on this page the following convolution operation is assumed:
+
[[File:P_ID2723__Sig_T_3_4_programm.png|right|frame|Screenshot of an older&nbsp; $($German$)$ version &nbsp;$\rm LNTwww$ applet&nbsp; &raquo;Convolution&laquo;:<br>&nbsp; &nbsp; $x_1(t)$&nbsp; is denoted as&nbsp; $x(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; as&nbsp; $h(t)$]]
[[File:P_ID2723__Sig_T_3_4_programm.png|right|frame|Screenshot of an older version of the &nbsp;$\rm LNTwww$&ndash;Applet „Convolution”:<br>&nbsp; &nbsp; $x_1(t)$&nbsp; is denoted as&nbsp; $x(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; as&nbsp; $h(t)$ ]]
+
For the descriptions in this section the following convolution operation is assumed:
 +
 
 
:$$y(t) = x_1 (t) * x_2 (t) $$
 
:$$y(t) = x_1 (t) * x_2 (t) $$
 
:$$\Rightarrow \hspace{0.3cm}y(t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
 
:$$\Rightarrow \hspace{0.3cm}y(t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
  
The solution of the convolution integral shall be done graphically. It is assumed that&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; are continuous time signals.  
+
The solution of the convolution integral shall be done graphically.&nbsp; It is assumed that&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; are continuous time signals.  
  
 
Then the following steps are required:
 
Then the following steps are required:
#&nbsp; The&nbsp; '''time variables'''  of the two functions&nbsp; '''change'':&nbsp; <br>&nbsp; &nbsp; $x_1(t) \to x_1(\tau)$, &nbsp; $x_2(t) \to x_2(\tau)$.
+
#&nbsp; &raquo;'''Change time variables'''&laquo; of the functions:&nbsp; $x_1(t) \to x_1(\tau)$, &nbsp; $x_2(t) \to x_2(\tau)$.
#&nbsp; '''Mirroring the second function''': &nbsp; $x_2(\tau) \to x_2(-\tau)$.
+
#&nbsp; &raquo;'''Mirroring the second function'''&laquo;: &nbsp; $x_2(\tau) \to x_2(-\tau)$.
#&nbsp; '''Shifting''' the '''mirrorred function''' by $t$&nbsp; &nbsp; $x_2(-\tau) \to x_2(t-\tau)$.
+
#&nbsp; &raquo;'''Shifting the mirrorred function'''&laquo; by&nbsp; $t$:&nbsp; $x_2(-\tau) \to x_2(t-\tau)$.
#&nbsp; '''Multiplication'''&nbsp; of both functions&nbsp; $x_1(\tau)$&nbsp; and&nbsp; $x_2(t-\tau)$.
+
#&nbsp; &raquo;'''Multiplication'''&laquo;&nbsp; of both functions&nbsp; $x_1(\tau)$&nbsp; and&nbsp; $x_2(t-\tau)$.
#&nbsp; '''Integration'''&nbsp; over the product respective&nbsp; $\tau$&nbsp; between the limits&nbsp; $-\infty$&nbsp; to&nbsp; $+\infty$.
+
#&nbsp; &raquo;'''Integration'''&laquo;&nbsp; over the product resp.&nbsp; $\tau$&nbsp; between the limits&nbsp; $-\infty$&nbsp; to&nbsp; $+\infty$.
 +
 
 +
 
  
 +
<u>Note:</u>
 +
*Since convolution is commutative,&nbsp; $x_1(\tau)$&nbsp; can also be mirrored instead of&nbsp; $x_2(\tau)$.
  
Since the convolution is commutative, instead of&nbsp; $x_2(\tau)$&nbsp; also&nbsp; $x_1(\tau)$&nbsp; can be mirrored.
+
*The topic is also illustrated by the HTML5 applet&nbsp; [[Applets:Graphical_Convolution|&raquo;Graphical Convolution&laquo;]].  
 
<br clear=all>
 
<br clear=all>
Die Thematik wird auch durch das (neuere) HTML 5&ndash;Applet&nbsp; [[Applets:Zur_Verdeutlichung_der_grafischen_Faltung|Zur Verdeutlichung der grafischen Faltung]]&nbsp; veranschaulicht.  
+
{{GraueBox|TEXT=
 +
[[File:P_ID582__Sig_T_3_4_S4_neu.png|right|frame|Jump function convoluted with the exponential function]]  
 +
$\text{Example 4:}$&nbsp;
 +
 
 +
The procedure for the graphical convolution is now explained with a detailed example:
 +
#At the input of a filter there is a jump function&nbsp; $x(t) = \gamma(t)$.
 +
#The impulse response of the first order low-pass filter is&nbsp; $h( t ) = {1}/{T} \cdot {\rm{e} }^{ - t/T}.$
 +
#The time axis is already renamed to&nbsp; $\tau$.
  
[[File:P_ID582__Sig_T_3_4_S4_neu.png|right|frame|Example of a Convolution: <br>Jump Function Convoluted With The Exponential Function]]
 
{{GraueBox|TEXT= 
 
$\text{Example 4:}$&nbsp;
 
The procedure for the graphic convolution is now explained with a detailed example:
 
*At the input of a filter there is a jump function&nbsp; $x(t) = \gamma(t)$&nbsp;.
 
*The impulse response of the RC low-pass filter is&nbsp; $h( t ) = {1}/{T} \cdot {\rm{e} }^{ - t/d}.$
 
  
 +
The graphic shows
 +
#the&nbsp; $($red colored$)$&nbsp;  input signal&nbsp; $x(\tau)$,
 +
#the&nbsp; $($blue colored$)$&nbsp; impulse response&nbsp; $h(\tau)$,&nbsp;
 +
#the&nbsp; $($grey colored$)$&nbsp; output signal&nbsp; $y(\tau)$.
  
The graphic shows the red colored input signal&nbsp; $x(\tau)$, blue the impulse response&nbsp; $h(\tau)$&nbsp; and grey the output signal&nbsp; $y(\tau)$.
 
The time axis is already renamed to $\tau$.
 
  
The output signal can be calculated using the following equation, for example:
+
The output signal can be calculated for example using the following equation:
 
   
 
   
 
:$$y(t) = h(t) * x(t) = \int_{ - \infty }^{ + \infty } {h( \tau  )}  \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
 
:$$y(t) = h(t) * x(t) = \int_{ - \infty }^{ + \infty } {h( \tau  )}  \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
  
Some more remarks on graphic folding:
+
Some more remarks:
*The output value at&nbsp; $t = 0$&nbsp; is obtained by mirroring the input signal&nbsp; $x(\tau)$&nbsp; this mirrored signal&nbsp; $x(-\tau)$&nbsp; is multiplied by the impulse response&nbsp; $h(\tau)$&nbsp; and integrated above it.
+
*The output value at&nbsp; $t = 0$&nbsp; is obtained by mirroring the input signal&nbsp; $x(\tau)$.&nbsp; This mirrored signal&nbsp; $x(-\tau)$&nbsp; is multiplied by the impulse response&nbsp; $h(\tau)$&nbsp; and integrated over it.
*As there is no time interval here, where both the blue curve&nbsp; $h(\tau)$&nbsp; and at the same time also the red dashed mirroring&nbsp; $x(-\tau)$&nbsp; is not equal to zero, the result is&nbsp; $y(t=0)=0$.
+
 
*For any other time&nbsp; $t$ the input signal must&nbsp; be shifted &nbsp; ⇒ &nbsp; $x(t-\tau)$, for example according to the green dotted curve for&nbsp; $t=T$.
+
*As there is no time interval,&nbsp; where both the blue curve&nbsp; $h(\tau)$&nbsp; and at the same time also the red dashed mirrored curve&nbsp; $x(-\tau)$&nbsp; is not equal to zero,&nbsp; the result is&nbsp; $y(t=0)=0$.
*As in this example also&nbsp; $x(t-\tau)$&nbsp; only&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; the integration&nbsp; $($general from&nbsp; $\tau_1$&nbsp; to&nbsp; $\tau_2)$&nbsp; is very simple and you get here with&nbsp; $\tau_1 = 0$&nbsp;  and&nbsp; $\tau_2 = t$&nbsp;:
+
 
 +
*For any other time&nbsp; $t$&nbsp; the input signal must be shifted &nbsp; ⇒ &nbsp; $x(t-\tau)$,&nbsp; for example according to the green dotted curve for&nbsp; $t=T$.
 +
 
 +
*As in this example&nbsp; $x(t-\tau)$&nbsp; is only&nbsp; $0$&nbsp; or&nbsp; $1$&nbsp; the integration&nbsp; $($general from&nbsp; $\tau_1$&nbsp; to&nbsp; $\tau_2)$&nbsp; is very simple and you get here with&nbsp; $\tau_1 = 0$&nbsp;  and&nbsp; $\tau_2 = t$&nbsp;:
 
:$$y( t) = \int_0^{\hspace{0.05cm} t} {h( \tau)}\hspace{0.1cm} {\rm d}\tau = \frac{1}{T}\cdot\int_0^{\hspace{0.05cm} t} {{\rm{e}}^{ - \tau /T } }\hspace{0.1cm} {\rm d}\tau = 1 - {{\rm{e}}^{ - t /T } }.$$
 
:$$y( t) = \int_0^{\hspace{0.05cm} t} {h( \tau)}\hspace{0.1cm} {\rm d}\tau = \frac{1}{T}\cdot\int_0^{\hspace{0.05cm} t} {{\rm{e}}^{ - \tau /T } }\hspace{0.1cm} {\rm d}\tau = 1 - {{\rm{e}}^{ - t /T } }.$$
 +
*This sketch is valid for &nbsp; $t=T$&nbsp; and results in the output value&nbsp; $y(t=T) = 1 - 1/\text{e} \approx 0.632$.}}
  
This sketch is valid for &nbsp; $t=T$&nbsp; and results in the output value&nbsp; $y(t=T) = 1 – 1/\text{e} \approx 0.632$.}}
 
  
 +
==Descriptive interpretation of convolution==
 +
<br>
 +
We assume an impulse response&nbsp; $h(t)$&nbsp; which is first constant for one millisecond and then decreases linearly to zero until &nbsp; $t = 3 \,\text{ms}$.
 +
[[File:P_ID524__Sig_T_3_4_S5_rah.png|right|frame|An interpretation of&nbsp; "Convolution"]]
 +
*If&nbsp; $K_0 \cdot \delta(t)$&nbsp; is applied to the input of this low-pass filter,&nbsp; the output signal&nbsp; $y(t)$&nbsp; has the same shape as the impulse response&nbsp; $h(t)$.&nbsp; The situation is shown in red in the figure.
  
==Clear Interpretation of The Convolution==
+
*The&nbsp; $($blue$)$&nbsp; $T= 1 \,\text{ms}$&nbsp; shifted  Dirac delta with weight&nbsp; $K_1 > K_0$&nbsp; results in the output signal&nbsp; $y_1(t)$&nbsp; which is delayed with respect to the red signal and increased in amplitude.
<br>
 
We assume an impulse response&nbsp; $h(t)$&nbsp; which is first constant for one millisecond and then decreases linearly to zero until &nbsp; $t = 3 \,\text{ms}$&nbsp;.
 
*If a Dirac impulse&nbsp; $K_0 \cdot \delta(t)$&nbsp; is applied to the input of this low-pass filter, the output signal&nbsp; $y(t)$&nbsp; has the same shape as the impulse response&nbsp; $h(t)$. The situation is shown in red in the picture.
 
*An &nbsp; $T= 1 \,\text{ms}$&nbsp; shifted  Dirac impulse with weight&nbsp; $K_1 > K_0$&nbsp; results in the output signal&nbsp; $y_1(t)$&nbsp; which is delayed with respect to the red signal and increased in amplitude.
 
  
  
[[File:P_ID524__Sig_T_3_4_S5_rah.png|right|frame|On a Clear Interpretation of The Convolution]]
+
Now we consider the input signal consisting of seven differently weighted Dirac deltas:
We now consider the input signal consisting of seven differently weighted and shifted Dirac impulses
 
 
   
 
   
 
:$$x( t ) = \sum\limits_{n = 0}^6 {K_n  \cdot \delta ( {t - n \cdot T} ),}$$
 
:$$x( t ) = \sum\limits_{n = 0}^6 {K_n  \cdot \delta ( {t - n \cdot T} ),}$$
  
which can be understood as a time discrete approximation of a time continuous signal.  
+
which can be understood as a time&ndash;discrete approximation of a time&ndash;continuous signal.  
  
*The signal at the output of the linear system is the sum of the seven partial signals marked with different colors in the image:
+
*The output signal of the linear system is the sum of the seven partial signals marked with different colors in the figure:
 
   
 
   
 
:$$y( t ) = \sum\limits_{n = 0}^6 {K_n  \cdot h( {t - n \cdot T} ).}$$
 
:$$y( t ) = \sum\limits_{n = 0}^6 {K_n  \cdot h( {t - n \cdot T} ).}$$
  
*We now look at the signal value at time&nbsp; $t = 4.5T$&nbsp; (see dotted lines):
+
*We now look at the signal value at time&nbsp; $t = 4.5T$&nbsp; $($see dotted line$)$:
 
   
 
   
 
:$$y( {t = 4.5T} ) = K_2  \cdot h( {2.5T} ) + K_3  \cdot h(1.5 T ) + K_4  \cdot h( 0.5 T ).$$
 
:$$y( {t = 4.5T} ) = K_2  \cdot h( {2.5T} ) + K_3  \cdot h(1.5 T ) + K_4  \cdot h( 0.5 T ).$$
  
The signal value $y(t=4.5T)$ is thus only determined by the input signal values&nbsp; $K_2$,&nbsp; $K_3$&nbsp; and&nbsp; $K_4$&nbsp; the influence
+
*$y( {t = 4.5T} )$&nbsp; is thus only determined by the input signal values&nbsp; $K_2$,&nbsp; $K_3$&nbsp; and&nbsp; $K_4$.&nbsp; <u>Note:</u>
*from &nbsp; $K_4$&nbsp; due to&nbsp; $h(0.5T) = 1$&nbsp; is  at the peak,
+
 
*from&nbsp; $K_3$&nbsp; due to&nbsp; $h(1.5T) = 0.75$&nbsp;is  less  strong,
+
#The influence of&nbsp; $K_4$&nbsp; is  the greatest due to&nbsp; $h(0.5T) = 1$.&nbsp;  
*and from&nbsp; $K_2$&nbsp; due to&nbsp; $h(2.5T) = 0.25$&nbsp;at the lowest.
+
#The influence of&nbsp; $K_3$&nbsp; is  less  strong due to&nbsp; $h(1.5T) = 0.75$.&nbsp;  
 +
#The influence of&nbsp; $K_2$&nbsp; is the lowest due to&nbsp; $h(2.5T) = 0.25$.&nbsp;
  
  
  
==Proof of The Convolution Theorem==
+
==Proof of the Convolution Theorem==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition: }$&nbsp;
 
$\text{Definition: }$&nbsp;
The following relation of time functions is called&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; the&nbsp; '''convolution'''&nbsp; and represents this functional relation with a star:
+
The following relation of time functions&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; is called the&nbsp; &raquo;'''convolution'''&laquo;&nbsp; and represents this functional relation with a star:
 
   
 
   
 
:$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  ) }  \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 
:$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  ) }  \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
  
This results in the following Fourier correspondence:
+
*This results in the following&nbsp; &raquo;'''Fourier correspondence'''&laquo;:
 
   
 
   
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$}}
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$}}
Line 188: Line 218:
 
:$$X_1 ( f ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }f\tau }\hspace{0.1cm} {\rm{d } }\tau{\rm{,} }$$
 
:$$X_1 ( f ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }f\tau }\hspace{0.1cm} {\rm{d } }\tau{\rm{,} }$$
  
:$$X_2 ( f ) = \int_{ - \infty }^{ + \infty } {x_2 ( {t'} ) }  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft\hspace{0.05cm}'}\hspace{0.1cm} {\rm{d} }t\hspace{0.05cm}'{\rm{.} }$$
+
:$$X_2 ( f ) = \int_{ - \infty }^{ + \infty } {x_2 ( {t\hspace{0.05cm}'} ) }  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft\hspace{0.05cm}'}\hspace{0.1cm} {\rm{d} }t\hspace{0.05cm}'{\rm{.} }$$
 
   
 
   
 
*If you form the product of the spectral functions, you get
 
*If you form the product of the spectral functions, you get
Line 198: Line 228:
 
:$$X_1 ( f ) \cdot X_2 ( f ) = \int_{ - \infty }^{ + \infty } {\left[ {\int_{ - \infty }^{ + \infty } {x_1 ( \tau )}  \cdot x_2 ( {t - \tau} )\hspace{0.1cm}{\rm{d } } }\tau \right] }  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft}\hspace{0.1cm} {\rm{d} }t{\rm{.} }$$
 
:$$X_1 ( f ) \cdot X_2 ( f ) = \int_{ - \infty }^{ + \infty } {\left[ {\int_{ - \infty }^{ + \infty } {x_1 ( \tau )}  \cdot x_2 ( {t - \tau} )\hspace{0.1cm}{\rm{d } } }\tau \right] }  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft}\hspace{0.1cm} {\rm{d} }t{\rm{.} }$$
  
:This equation already takes into account that the exponential function is independent of the inner integration variable&nbsp; $τ$&nbsp; and therefore acts only as a factor of the inner integral.
+
:This equation already takes into account that the exponential function is independent of the inner integration variable &nbsp;  &rArr; &nbsp; $τ$&nbsp; acts only as factor of the inner integral.
  
 
*If we now denote the product of the two spectra with&nbsp; $P(f)$&nbsp; and the corresponding time function with&nbsp; $p(t)$, the corresponding Fourier integral is
 
*If we now denote the product of the two spectra with&nbsp; $P(f)$&nbsp; and the corresponding time function with&nbsp; $p(t)$, the corresponding Fourier integral is
Line 204: Line 234:
 
:$$P(f) = X_1 ( f ) \cdot X_2 ( f ) =\int_{ - \infty }^{ + \infty } {p( t )}  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft} \hspace{0.1cm}{\rm{d} }t{\rm{.} }$$
 
:$$P(f) = X_1 ( f ) \cdot X_2 ( f ) =\int_{ - \infty }^{ + \infty } {p( t )}  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft} \hspace{0.1cm}{\rm{d} }t{\rm{.} }$$
  
*A coefficient comparison of the two integrals shows that the following relationship must apply:
+
*A coefficient comparison of the last two integrals shows that the following relationship apply:
 
   
 
   
 
:$$p( t ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm{d } }\tau{\rm{.} }$$
 
:$$p( t ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm{d } }\tau{\rm{.} }$$
Line 211: Line 241:
  
  
==Exercises for the Chapter==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:Exercise_3.7:_Carrier_Recovery|Exercise 3.7: Carrier Recovery]]
+
[[Aufgaben:Exercise_3.7:_Synchronous_Demodulator|Exercise 3.7: Synchronous Demodulator]]
  
[[Aufgaben:Exercise_3.7Z:_Square_Wave_With_Echo|Exercise 3.7Z: Square Wave With Echo]]
+
[[Aufgaben:Exercise_3.7Z:_Rectangular_Signal_with_Echo|Exercise 3.7Z: Rectangular Signal with Echo]]
  
[[Aufgaben:Exercise_3.8:_Triple_Convolution|Exercise 3.8: Triple Convolution]]
+
[[Aufgaben:Exercise_3.8:_Triple_Convolution|Exercise 3.8: Triple Convolution?]]
  
[[Aufgaben:Exercise_3.8Z:Convolution_of_Two_Rectangles|Exercise 3.8Z:Convolution of Two Rectangles]]
+
[[Aufgaben:Exercise_3.8Z:Convolution_of_Two_Rectangles|Exercise 3.8Z: Convolution of Two Rectangles]]
  
 
[[Aufgaben:Exercise_3.9:_Convolution_of_Rectangle_and_Gaussian_Pulse|Exercise 3.9: Convolution of Rectangle and Gaussian Pulse]]
 
[[Aufgaben:Exercise_3.9:_Convolution_of_Rectangle_and_Gaussian_Pulse|Exercise 3.9: Convolution of Rectangle and Gaussian Pulse]]

Latest revision as of 16:50, 15 June 2023

Convolution in the time domain


The  »Convolution Theorem«  is one of the most important laws of the Fourier transform,  to which an own subchapter is dedicated in this tutorial.  We will first consider the convolution theorem in the time domain and assume that the spectra of two time functions  $x_1(t)$  and  $x_2(t)$  are known:

$$X_1 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}x_1( t ),\quad X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}x_2 ( t ).$$

Then for the time function of the product  $X_1(f) \cdot X_2(f)$  applies:

$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}\int_{ - \infty }^{ + \infty } {x_1 ( \tau )} \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$

$\tau$  is a formal integration variable with the dimension of a time.

$\text{Definition:}$ 

The above connection of the time function  $x_1(t)$  and  $x_2(t)$  is called  »convolution«.  One represents this functional connection with a star:

$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau ) } \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau = x_{\rm{2} } (t) * x_{\rm{1} } (t) .$$
  • Thus the above Fourier correspondence can be written as follows:
$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$
  • The convolution is  »commutative«   ⇒  The order of the operands can be changed:
$$x_1(t) * x_2(t) =x_2(t) * x_1(t).$$
  • The  »Proof«  will be shown at the end of this chapter.


On calculation of signal and spectrum of the LTI output

$\text{Example 1:}$  Every linear time-invariant  $\rm (LTI)$  system can be described both,

  1. by the frequency response  $H(f)$,
  2. by the impulse response  $h(t)$.


The relation between these two system quantities is also given by the Fourier transform.

  • If the signal  $x(t)$  with spectrum  $X(f)$  is applied to the input,  then the spectrum of the output signal is:
$$Y(f) = X(f) \cdot H(f)\hspace{0.05cm}.$$
  • It is possible to calculate the output signal in the time domain with the convolution theorem:
$$y( t ) = x(t) * h( t ) = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm}{x( \tau )} \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm} {h( \tau )} \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau = h(t) * x( t ).$$
  • This equation shows again the  »commutativity«  of the  »convolution operation«.


Convolution in the frequency domain


The duality between time and frequency domain also allows statements regarding the spectrum of the product signal:

$$x_1 ( t ) \cdot x_2 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_1 (f) * X_2 (f) = \int_{ - \infty }^{ + \infty } {X_1 ( \nu )} \cdot X_2 ( {f - \nu })\hspace{0.1cm}{\rm d}\nu.$$

This result can be proved similarly to the  »convolution in the time domain«.  However,  the integration variable  $\nu$  now has the dimension of a frequency.

Convolution in the frequency domain  $($e.g.  DSB–AM$)$

$\text{Example 2:}$  The   »Double-Sideband Amplitude Modulation»  $\text{(DSB-AM)}$  with carrier suppression is described by the drawn model.

  • The time domain representation  $\rm (blue)$  shows the modulated signal  $s(t)$  as the product of the source signal  $q(t)$  and the  $($normalized$)$  carrier signal  $z(t)$.


  • According to the convolution theorem it follows for the frequency domain  $\rm (red)$  that the output spectrum  $S(f)$  is equal to the convolution product of  $Q(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \ q(t)$  and  $Z(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \ z(t)$.


Convolution of a function with a Dirac delta function


The convolution operation becomes very simple,  if one of the operands is a  »Dirac delta function«.  This applies both to the convolution in time and frequency domain.

  • We will consider the convolution of a function  $x_1(t)$  with the function
$$x_2 ( t ) = \alpha \cdot \delta ( {t - T} ) \quad \circ\,\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad X_2 ( f )= \alpha \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm}\cdot\hspace{0.05cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.05cm}\cdot\hspace{0.05cm}f\hspace{0.05cm}\cdot\hspace{0.05cm}T}.$$
  • For the spectral function of the signal  $y(t) = x_1(t) \ast x_2(t)$  it follows:
$$Y( f ) = X_1 ( f ) \cdot X_2 ( f ) = X_1 ( f ) \cdot \alpha \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm}\cdot\hspace{0.05cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.05cm}\cdot\hspace{0.05cm}f\hspace{0.05cm}\cdot\hspace{0.05cm}T}.$$
  • The complex exponential function leads to a shift by  $T$   ⇒   »Shifting Theorem«,  the factor  $\alpha$  to an attenuation  $(\alpha < 1)$  or amplification  $(\alpha > 1)$.  From this follows:
$$x_1 (t) * x_2 (t) = \alpha \cdot x_1 ( {t - T} ).$$

$\text{In Words: }$ 

  • The convolution of any function with a Dirac delta function at  $t = T$  results in the function shifted to the right by  $T$, 
  • while the weighting of the Dirac delta function by the factor  $\alpha$  has to be taken into account.


$\text{Example 3:}$  A rectangle pulse  $x(t)$  is delayed by an LTI system by the delay time  $\tau = 3\,\text{ ms}$  and attenuated by the factor  $\alpha = 0.5$.

Convolution of a rectangle pulse with a Dirac delta function


Shift and attenuation can be recognised both

  • by the output signal  $y(t)$, 
  • by the impulse response  $h(t)$.


Graphical convolution


Screenshot of an older  $($German$)$ version  $\rm LNTwww$ applet  »Convolution«:
    $x_1(t)$  is denoted as  $x(t)$  and  $x_2(t)$  as  $h(t)$

For the descriptions in this section the following convolution operation is assumed:

$$y(t) = x_1 (t) * x_2 (t) $$
$$\Rightarrow \hspace{0.3cm}y(t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau )} \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$

The solution of the convolution integral shall be done graphically.  It is assumed that  $x_1(t)$  and  $x_2(t)$  are continuous time signals.

Then the following steps are required:

  1.   »Change time variables« of the functions:  $x_1(t) \to x_1(\tau)$,   $x_2(t) \to x_2(\tau)$.
  2.   »Mirroring the second function«:   $x_2(\tau) \to x_2(-\tau)$.
  3.   »Shifting the mirrorred function« by  $t$:  $x_2(-\tau) \to x_2(t-\tau)$.
  4.   »Multiplication«  of both functions  $x_1(\tau)$  and  $x_2(t-\tau)$.
  5.   »Integration«  over the product resp.  $\tau$  between the limits  $-\infty$  to  $+\infty$.


Note:

  • Since convolution is commutative,  $x_1(\tau)$  can also be mirrored instead of  $x_2(\tau)$.


Jump function convoluted with the exponential function

$\text{Example 4:}$ 

The procedure for the graphical convolution is now explained with a detailed example:

  1. At the input of a filter there is a jump function  $x(t) = \gamma(t)$.
  2. The impulse response of the first order low-pass filter is  $h( t ) = {1}/{T} \cdot {\rm{e} }^{ - t/T}.$
  3. The time axis is already renamed to  $\tau$.


The graphic shows

  1. the  $($red colored$)$  input signal  $x(\tau)$,
  2. the  $($blue colored$)$  impulse response  $h(\tau)$, 
  3. the  $($grey colored$)$  output signal  $y(\tau)$.


The output signal can be calculated for example using the following equation:

$$y(t) = h(t) * x(t) = \int_{ - \infty }^{ + \infty } {h( \tau )} \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$

Some more remarks:

  • The output value at  $t = 0$  is obtained by mirroring the input signal  $x(\tau)$.  This mirrored signal  $x(-\tau)$  is multiplied by the impulse response  $h(\tau)$  and integrated over it.
  • As there is no time interval,  where both the blue curve  $h(\tau)$  and at the same time also the red dashed mirrored curve  $x(-\tau)$  is not equal to zero,  the result is  $y(t=0)=0$.
  • For any other time  $t$  the input signal must be shifted   ⇒   $x(t-\tau)$,  for example according to the green dotted curve for  $t=T$.
  • As in this example  $x(t-\tau)$  is only  $0$  or  $1$  the integration  $($general from  $\tau_1$  to  $\tau_2)$  is very simple and you get here with  $\tau_1 = 0$  and  $\tau_2 = t$ :
$$y( t) = \int_0^{\hspace{0.05cm} t} {h( \tau)}\hspace{0.1cm} {\rm d}\tau = \frac{1}{T}\cdot\int_0^{\hspace{0.05cm} t} {{\rm{e}}^{ - \tau /T } }\hspace{0.1cm} {\rm d}\tau = 1 - {{\rm{e}}^{ - t /T } }.$$
  • This sketch is valid for   $t=T$  and results in the output value  $y(t=T) = 1 - 1/\text{e} \approx 0.632$.


Descriptive interpretation of convolution


We assume an impulse response  $h(t)$  which is first constant for one millisecond and then decreases linearly to zero until   $t = 3 \,\text{ms}$.

An interpretation of  "Convolution"
  • If  $K_0 \cdot \delta(t)$  is applied to the input of this low-pass filter,  the output signal  $y(t)$  has the same shape as the impulse response  $h(t)$.  The situation is shown in red in the figure.
  • The  $($blue$)$  $T= 1 \,\text{ms}$  shifted Dirac delta with weight  $K_1 > K_0$  results in the output signal  $y_1(t)$  which is delayed with respect to the red signal and increased in amplitude.


Now we consider the input signal consisting of seven differently weighted Dirac deltas:

$$x( t ) = \sum\limits_{n = 0}^6 {K_n \cdot \delta ( {t - n \cdot T} ),}$$

which can be understood as a time–discrete approximation of a time–continuous signal.

  • The output signal of the linear system is the sum of the seven partial signals marked with different colors in the figure:
$$y( t ) = \sum\limits_{n = 0}^6 {K_n \cdot h( {t - n \cdot T} ).}$$
  • We now look at the signal value at time  $t = 4.5T$  $($see dotted line$)$:
$$y( {t = 4.5T} ) = K_2 \cdot h( {2.5T} ) + K_3 \cdot h(1.5 T ) + K_4 \cdot h( 0.5 T ).$$
  • $y( {t = 4.5T} )$  is thus only determined by the input signal values  $K_2$,  $K_3$  and  $K_4$.  Note:
  1. The influence of  $K_4$  is the greatest due to  $h(0.5T) = 1$. 
  2. The influence of  $K_3$  is less strong due to  $h(1.5T) = 0.75$. 
  3. The influence of  $K_2$  is the lowest due to  $h(2.5T) = 0.25$. 


Proof of the Convolution Theorem


$\text{Definition: }$  The following relation of time functions  $x_1(t)$  and  $x_2(t)$  is called the  »convolution«  and represents this functional relation with a star:

$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau ) } \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
  • This results in the following  »Fourier correspondence«:
$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$


$\text{Proof: }$  The Fourier integrals of functions  $x_1(t)$  and  $x_2(t)$  are with modified integration variables:

$$X_1 ( f ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau )} \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }f\tau }\hspace{0.1cm} {\rm{d } }\tau{\rm{,} }$$
$$X_2 ( f ) = \int_{ - \infty }^{ + \infty } {x_2 ( {t\hspace{0.05cm}'} ) } \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft\hspace{0.05cm}'}\hspace{0.1cm} {\rm{d} }t\hspace{0.05cm}'{\rm{.} }$$
  • If you form the product of the spectral functions, you get
$$X_1 (f) \cdot X_2 (f) = \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {x_1 ( \tau ) \hspace{0.05 cm}\cdot } }\hspace{0.05 cm} x_2 ( {t\hspace{0.05cm}'} ) \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }f\left( {\tau + t\hspace{0.05cm}'} \right) }\hspace{0.1cm} {\rm d} \tau \hspace{0.1cm}{\rm d}t\hspace{0.05cm}'{\rm{.} }$$
  • With the substitution  $t = \tau + t\hspace{0.05cm}'$  results:
$$X_1 ( f ) \cdot X_2 ( f ) = \int_{ - \infty }^{ + \infty } {\left[ {\int_{ - \infty }^{ + \infty } {x_1 ( \tau )} \cdot x_2 ( {t - \tau} )\hspace{0.1cm}{\rm{d } } }\tau \right] } \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft}\hspace{0.1cm} {\rm{d} }t{\rm{.} }$$
This equation already takes into account that the exponential function is independent of the inner integration variable   ⇒   $τ$  acts only as factor of the inner integral.
  • If we now denote the product of the two spectra with  $P(f)$  and the corresponding time function with  $p(t)$, the corresponding Fourier integral is
$$P(f) = X_1 ( f ) \cdot X_2 ( f ) =\int_{ - \infty }^{ + \infty } {p( t )} \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft} \hspace{0.1cm}{\rm{d} }t{\rm{.} }$$
  • A coefficient comparison of the last two integrals shows that the following relationship apply:
$$p( t ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau )} \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm{d } }\tau{\rm{.} }$$
q.e.d.


Exercises for the chapter


Exercise 3.7: Synchronous Demodulator

Exercise 3.7Z: Rectangular Signal with Echo

Exercise 3.8: Triple Convolution?

Exercise 3.8Z: Convolution of Two Rectangles

Exercise 3.9: Convolution of Rectangle and Gaussian Pulse

Exercise 3.9Z: Convolution of Gaussian Pulses