Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.8: OVSF Codes"

From LNTwww
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(4 intermediate revisions by one other user not shown)
Line 6: Line 6:
 
The spreading codes for UMTS should
 
The spreading codes for UMTS should
 
*be orthogonal, in order to avoid mutual influence of the participants,
 
*be orthogonal, in order to avoid mutual influence of the participants,
*at the same time also allow a flexible realization of different spreading factors  J .
+
*at the same time also allow a flexible realization of different spreading factors  J.
  
  
An example are the  "Orthogonal Variable Spreading Factor Codes"  (OVSF), which provide the spreading codes of lengths from  J=4  to  J=512 .
+
An example are the  "Orthogonal Variable Spreading Factor Codes"  (OVSF), which provide the spreading codes of lengths from  J=4  to  J=512.
  
As shown in the graphic, these can be created with the help of a code tree.  In doing so, each branching from a code   C results in two new codes   (+C +C)  and  (+\mathcal{C} \ –\mathcal{C}).
+
As shown in the graphic, these can be created with the help of a code tree.  In doing so, each branching from a code  \mathcal{C} results in two new codes  (+\mathcal{C}\  +\mathcal{C})  and  (+\mathcal{C} \ –\mathcal{C}).
  
 
The diagram illustrates the principle given here using the following example  J = 4.  If you number the spreading sequences from  0  to  J -1, the spreading sequences result
 
The diagram illustrates the principle given here using the following example  J = 4.  If you number the spreading sequences from  0  to  J -1, the spreading sequences result
Line 22: Line 22:
  
 
It should be noted that no predecessor or successor of a code may be used by other participants.  
 
It should be noted that no predecessor or successor of a code may be used by other participants.  
*In the example, four spreading codes with spreading factor  J = 4  could be used, or  
+
*In the example, four spreading codes with spreading factor J = 4  could be used, or  
*the three codes highlighted in yellow – once with  J = 2  and twice with   J = 4.
+
*the three codes highlighted in yellow – once with J = 2  and twice with J = 4.
  
  
Line 32: Line 32:
  
 
''Notes:''
 
''Notes:''
*This task belongs to the chapter  [[Modulation_Methods/Spreizfolgen_für_CDMA|Spreading Sequences for CDMA]].
+
*This task belongs to the chapter  [[Modulation_Methods/Spreizfolgen_für_CDMA|Spreading sequences for CDMA]].
*Particular reference is made to the page  [[Modulation_Methods/Spreizfolgen_für_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29|Codes mit variablem Spreizfaktor (OVSF–Code)]].
+
*Particular reference is made to the page  [[Modulation_Methods/Spreading_Sequences_for_CDMA#Codes_with_variable_spreading_factor_.28OVSF_codes.29|Codes with variable spreading factor]].
 
   
 
   
  
Line 41: Line 41:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Construct the tree diagram for&nbsp; J = 8. What are the resulting OVSF codes?
+
{Construct the tree diagram for&nbsp; J = 8.&nbsp; What are the resulting OVSF codes?
 
|type="[]"}
 
|type="[]"}
 
+ \langle c_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1,
 
+ \langle c_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1,
Line 56: Line 56:
 
K \ = \ { 5 }
 
K \ = \ { 5 }
  
{The tree structure applies to&nbsp; J = 32. &nbsp;Is the following assignment feasible: &nbsp; <br>twice &nbsp; J = 4, once&nbsp; J = 8, once&nbsp; J = 164&nbsp; and eight times&nbsp; J = 32?
+
{The tree structure applies to&nbsp; J = 32. &nbsp;Is the following assignment feasible: &nbsp; Twice &nbsp; J = 4, once&nbsp; J = 8, once&nbsp; J = 164&nbsp; and eight times&nbsp; J = 32?
 
|type="()"}
 
|type="()"}
 
+ Yes.
 
+ Yes.
Line 67: Line 67:
  
 
[[File:P_ID2263__Bei_A_4_6a.png|right|frame|OVSF tree structure for J = 8]]
 
[[File:P_ID2263__Bei_A_4_6a.png|right|frame|OVSF tree structure for J = 8]]
'''(1)'''&nbsp; The following graphic shows the OVSF tree structure for J = 8 users.  
+
'''(1)'''&nbsp; The following graphic shows the OVSF tree structure for&nbsp; J = 8&nbsp; users.  
  
 
*From this it can be seen that the <u>solutions 1, 3 and 4</u> apply, but not the second.
 
*From this it can be seen that the <u>solutions 1, 3 and 4</u> apply, but not the second.
  
  
'''(2)'''&nbsp; If each user is assigned a spreading code with the spreading degree J = 8, K_{\rm max} \ \underline{= 8} users can be supplied.
 
  
 +
'''(2)'''&nbsp; If each user is assigned a spreading code with the spreading degree&nbsp; J = 8,&nbsp; K_{\rm max} \ \underline{= 8}&nbsp; users can be supplied.
 +
 +
 +
 +
'''(3)'''&nbsp; If three users are supplied with&nbsp; J = 4, only two users can be served by a spreading sequence with&nbsp; J = 8&nbsp; (see example yellow background in the graphic)  \  \Rightarrow \ \ \underline{K = 5}.
  
'''(3)'''&nbsp; If three users are supplied with J = 4, only two users can be served by a spreading sequence with J = 8 (see example yellow background in the graphic)  \  \Rightarrow \ \ \underline{K = 5}.
 
  
  
 
'''(4)'''&nbsp;  We denote
 
'''(4)'''&nbsp;  We denote
*K_{4} = 2 as the number of spreading sequences with J = 4,
+
*K_{4} = 2&nbsp; as the number of spreading sequences with&nbsp; J = 4,
*K_{8} = 1 as the number of spreading sequences with J = 8,
+
*K_{8} = 1&nbsp; as the number of spreading sequences with&nbsp; J = 8,
*K_{16} = 2 as the number of spreading sequences with J = 16,
+
*K_{16} = 2&nbsp; as the number of spreading sequences with&nbsp; J = 16,
*K_{32} = 8 as the number of spreading sequences with J = 32,
+
*K_{32} = 8&nbsp; as the number of spreading sequences with&nbsp; J = 32,
  
  
Line 88: Line 91:
 
:$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm}
 
:$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
*Because 2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32 the desired assignment is just allowed  &nbsp; &rArr; &nbsp;  <u>The answer is YES</u>.  
+
*Because&nbsp; 2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32&nbsp; the desired assignment is just allowed  &nbsp; &rArr; &nbsp;  <u>The answer is YES</u>.  
*For example, providing the J = 4 twice blocks the upper half of the tree, after providing a J = 8 spreading code, 3 of the 8 branches remain to be occupied at the J = 8 level, and so on and so forth.
+
*For example, providing the&nbsp; J = 4&nbsp; twice blocks the upper half of the tree, after providing a&nbsp; J = 8&nbsp; spreading code,&nbsp; 3&nbsp; of the&nbsp; 8&nbsp; branches remain to be occupied at the&nbsp; J = 8&nbsp; level, and so on and so forth.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 95: Line 98:
  
  
[[Category:Exercises for Mobile Communications|^3.4 Characteristics of UMTS^]]
+
[[Category:Mobile Communications: Exercises|^3.4 Characteristics of UMTS^]]

Latest revision as of 14:37, 23 March 2021

Tree diagram to construct
an OVSF–Code

The spreading codes for UMTS should

  • be orthogonal, in order to avoid mutual influence of the participants,
  • at the same time also allow a flexible realization of different spreading factors  J.


An example are the  "Orthogonal Variable Spreading Factor Codes"  \rm (OVSF), which provide the spreading codes of lengths from  J = 4  to  J = 512.

As shown in the graphic, these can be created with the help of a code tree.  In doing so, each branching from a code  \mathcal{C} results in two new codes  (+\mathcal{C}\ +\mathcal{C})  and  (+\mathcal{C} \ –\mathcal{C}).

The diagram illustrates the principle given here using the following example  J = 4.  If you number the spreading sequences from  0  to  J -1, the spreading sequences result

\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},
\langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},
\langle c_\nu^{(2)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},
\langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.

According to this nomenclature, there are the spreading sequences  \langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle  for the spreading factor  J = 8

It should be noted that no predecessor or successor of a code may be used by other participants.

  • In the example, four spreading codes with spreading factor J = 4  could be used, or
  • the three codes highlighted in yellow – once with J = 2  and twice with J = 4.




Notes:


Questionnaire

1

Construct the tree diagram for  J = 8.  What are the resulting OVSF codes?

\langle c_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1,
\langle c_\nu^{(3)}\rangle = +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1,
\langle c_\nu^{(5)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1,
\langle c_\nu^{(7)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1.

2

How many UMTS users can be served with  J = 8  at maximum?

K_{\rm max} \ = \

3

How many users can be supplied with  J = 8  if three of them should use a spreading code with  J = 4 ?

K \ = \

4

The tree structure applies to  J = 32.  Is the following assignment feasible:   Twice   J = 4, once  J = 8, once  J = 164  and eight times  J = 32?

Yes.
No.


Solution

OVSF tree structure for J = 8

(1)  The following graphic shows the OVSF tree structure for  J = 8  users.

  • From this it can be seen that the solutions 1, 3 and 4 apply, but not the second.


(2)  If each user is assigned a spreading code with the spreading degree  J = 8K_{\rm max} \ \underline{= 8}  users can be supplied.


(3)  If three users are supplied with  J = 4, only two users can be served by a spreading sequence with  J = 8  (see example yellow background in the graphic) \ \Rightarrow \ \ \underline{K = 5}.


(4)  We denote

  • K_{4} = 2  as the number of spreading sequences with  J = 4,
  • K_{8} = 1  as the number of spreading sequences with  J = 8,
  • K_{16} = 2  as the number of spreading sequences with  J = 16,
  • K_{32} = 8  as the number of spreading sequences with  J = 32,


Then the following condition must be fulfilled:

K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.
  • Because  2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32  the desired assignment is just allowed   ⇒   The answer is YES.
  • For example, providing the  J = 4  twice blocks the upper half of the tree, after providing a  J = 8  spreading code,  3  of the  8  branches remain to be occupied at the  J = 8  level, and so on and so forth.