Difference between revisions of "Aufgaben:Exercise 4.1: Low-Pass and Band-Pass Signals"

From LNTwww
 
(10 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID691__Sig_A_4_1.png|250px|right|frame|Vorgegebene Signalverläufe]]
+
[[File:P_ID691__Sig_A_4_1.png|250px|right|frame|Given signal curves]]
  
 
Three signal curves are sketched on the right, the first two having the following curve:
 
Three signal curves are sketched on the right, the first two having the following curve:
Line 13: Line 13:
 
{t}/{T_y}) .$$
 
{t}/{T_y}) .$$
 
   
 
   
$T_x = 100 \,{\rm µ}\text{s}$  and  $T_y = 166.67 \,{\rm µ}\text{s}$  indicate the first zero of  $x(t)$  bzw.  $y(t)$ respectively.
+
$T_x = 100 \,{\rm µ}\text{s}$  and  $T_y = 166.67 \,{\rm µ}\text{s}$  indicate the first zero of  $x(t)$  and  $y(t)$ respectively.
 
The signal  $d(t)$  results from the difference of the two upper signals (lower graph):
 
The signal  $d(t)$  results from the difference of the two upper signals (lower graph):
  
 
 
:$$d(t)  =  x(t)-y(t)  .$$
 
:$$d(t)  =  x(t)-y(t)  .$$
  
In the subtask  '''(4)'''  the integral areas of the impulsive signals  $x(t)$  and  $d(t)$  are asked for. For these holds:
+
In subtask  '''(4)'''  the integral areas of the pulses  $x(t)$  and  $d(t)$  are asked for.  For these holds:
 
   
 
   
 
:$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$
 
:$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$
Line 41: Line 40:
  
 
''Hints:''  
 
''Hints:''  
*This exercise belongs to the chapter  [[Signal_Representation/Differences_and_Similarities_of_LP_and_BP_Signals|Differences and Similarities of LP and BP Signals]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Differences_and_Similarities_of_Low-Pass_and_Band-Pass_Signals|Differences and Similarities of Low-Pass and Band-Pass Signals]].
 
   
 
   
*The Fourier retransform of a rectangular spectrum  $X(f)$  leads to an  $\rm si$–shaped time function $x(t)$:  
+
*The inverse Fourier transform of a rectangular spectrum  $X(f)$  leads to an  $\rm si$–shaped time function $x(t)$:  
  
 
:$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it f| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right. \;\;
 
:$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it f| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right. \;\;
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \;\;x(t)  =  2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t) .$$  
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \;\;x(t)  =  2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t) .$$  
  
*In this task, the function $\rm si(x) = \rm sin(x)/x = \rm sinc(x/π)$ is used.
+
*In this task, the&nbsp; function $\rm si(x) = \rm sin(x)/x = \rm sinc(x/π)$&nbsp; is used.
  
  
Line 54: Line 53:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What is the spectrum&nbsp; $X(f)$&nbsp; of the signal&nbsp; $x(t)$? What are the magnitudes of&nbsp; $X(f = 0)$&nbsp; and the physical, one-sided bandwidth&nbsp; $B_x$&nbsp; of&nbsp; $x(t)$?
+
{What is the spectrum&nbsp; $X(f)$&nbsp; of the signal&nbsp; $x(t)$?&nbsp; What are the magnitudes of&nbsp; $X(f = 0)$&nbsp; and the physical, one-sided bandwidth&nbsp; $B_x$&nbsp; of&nbsp; $x(t)$?
 
|type="{}"}
 
|type="{}"}
 
$X(f=0)\ = \ $  { 1 3% } &nbsp;$\text{mV/Hz}$
 
$X(f=0)\ = \ $  { 1 3% } &nbsp;$\text{mV/Hz}$
Line 65: Line 64:
  
  
{Calculate the spectrum&nbsp; $D(f)$&nbsp; of the difference signal&nbsp; $d(t) = x(t) - y(t)$. How large are&nbsp; $D(f = 0)$&nbsp; and the (one-sided) bandwidth&nbsp; $B_d$?
+
{Calculate the spectrum&nbsp; $D(f)$&nbsp; of the difference signal&nbsp; $d(t) = x(t) - y(t)$.&nbsp; How large are&nbsp; $D(f = 0)$&nbsp; and the (one-sided) bandwidth&nbsp; $B_d$?
 
|type="{}"}
 
|type="{}"}
 
$D(f=0)\ = \ $ { 0. } &nbsp;$\text{mV/Hz}$
 
$D(f=0)\ = \ $ { 0. } &nbsp;$\text{mV/Hz}$
Line 85: Line 84:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die si–förmige Zeitfunktion&nbsp; $x(t)$&nbsp; lässt auf ein Rechteckspektrum&nbsp; $X(f)$&nbsp; schließen.  
+
'''(1)'''&nbsp; The&nbsp; $\rm si$–shaped time function&nbsp; $x(t)$&nbsp; suggests a rectangular spectrum&nbsp; $X(f)$&nbsp;.
*Die absolute, zweiseitige Bandbreite&nbsp; $2 \cdot B_x$&nbsp; ist gleich dem Kehrwert der ersten Nullstelle. Daraus folgt:
+
*The absolute, two-sided bandwidth&nbsp; $2 \cdot B_x$&nbsp; is equal to the reciprocal of the first zero.&nbsp; It follows that:
 
   
 
   
 
:$$B_x = \frac{1}{2 \cdot T_x}  =  \frac{1}{2 \cdot 0.1
 
:$$B_x = \frac{1}{2 \cdot T_x}  =  \frac{1}{2 \cdot 0.1
 
\hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
 
\hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
  
*Da der Signalwert bei&nbsp; $t = 0$&nbsp; gleich der Rechteckfläche ist, ergibt sich für die konstante Höhe:
+
*Since the signal value at&nbsp; $t = 0$&nbsp; is equal to the rectangular area, the constant height is given by:
 
   
 
   
 
:$$X(f=0) = \frac{x(t=0)}{2 B_x}  =  \frac{10
 
:$$X(f=0) = \frac{x(t=0)}{2 B_x}  =  \frac{10
Line 99: Line 98:
  
  
'''(2)'''&nbsp; Aus&nbsp; $T_y = 0.167 \,\text{ms}$&nbsp; erhält man&nbsp; $B_y \;\underline{= 3 \,\text{kHz}}$.  
+
'''(2)'''&nbsp; From&nbsp; $T_y = 0.167 \,\text{ms}$&nbsp; we get&nbsp; $B_y \;\underline{= 3 \,\text{kHz}}$.  
*Zusammen mit&nbsp; $y(t = 0) = 6\,\text{V}$&nbsp; führt dies zum gleichen Spektralwert&nbsp; $Y(f = 0)\; \underline{= 1\, \text{mV/Hz}}$&nbsp; wie bei der Teilaufgabe&nbsp; '''(1)'''.
+
*Together with&nbsp; $y(t = 0) = 6\,\text{V}$&nbsp; this leads to the same spectral value&nbsp; $Y(f = 0)\; \underline{= 1\, \text{mV/Hz}}$&nbsp; as in subtaske&nbsp; '''(1)'''.
  
  
  
  
[[File:P_ID701__Sig_A_4_1_c_neu.png|right|frame|Rechteckförmiges BP&ndash;Spektrum]]
+
[[File:P_ID701__Sig_A_4_1_c_neu.png|right|frame|Rectangular band-pass spectrum]]
'''(3)'''&nbsp;  Aus&nbsp; $d(t) = x(t) - y(t)$&nbsp; folgt wegen der Linearität der Fouriertransformation: &nbsp; $D(f)  = X(f) - Y(f).$
+
'''(3)'''&nbsp;  From&nbsp; $d(t) = x(t) - y(t)$&nbsp; follows because of the linearity of the Fourier transform: &nbsp; $D(f)  = X(f) - Y(f).$
  
*Die Differenz der zwei gleich hohen Rechteckfunktionen führt zu einem rechteckförmigen Bandpass–Spektrum zwischen&nbsp; $3 \,\text{kHz}$&nbsp; und&nbsp; $5 \,\text{kHz}$.  
+
*The difference of the two equal high rectangular functions leads to a rectangular band-pass spectrum between&nbsp; $3 \,\text{kHz}$&nbsp; and&nbsp; $5 \,\text{kHz}$.  
*Die (einseitige) Bandbreite beträgt somit&nbsp; $B_d \;\underline{= 2 \,\text{kHz}}$. In diesem Frequenzintervall ist&nbsp; $D(f) = 1 \,\text{mV/Hz}$. Außerhalb, also auch bei&nbsp; $f = 0$, gilt&nbsp; $D(f)\;\underline{ = 0}$.
+
*The (one-sided) bandwidth is thus&nbsp; $B_d \;\underline{= 2 \,\text{kHz}}$.&nbsp; In this frequency interval&nbsp; $D(f) = 1 \,\text{mV/Hz}$.&nbsp; Outside, i.e. also at&nbsp; $f = 0$, &nbsp; $D(f)\;\underline{ = 0}$ applies.
  
  
  
  
'''(4)'''&nbsp; Nach den fundamentalen Gesetzmäßigkeiten der Fouriertransformation ist das Integral über die Zeitfunktion gleich dem Spektralwert bei&nbsp; $f = 0$. Daraus folgt:
+
'''(4)'''&nbsp; According to the fundamental laws of the Fourier transform, the integral over the time function is equal to the spectral value at&nbsp; $f = 0$.&nbsp; It follows: :
 
   
 
   
 
:$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  10^{-3}
 
:$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  10^{-3}
Line 121: Line 120:
 
:$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$
 
:$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$
 
   
 
   
&rArr;&nbsp; Bei jedem Bandpass–Signal sind die Flächen der positiven Signalanteile gleich groß wie die Flächen der negativen Anteile.
+
&rArr;&nbsp; For each band-pass signal, the areas of the positive signal components are equal to the areas of the negative components.
 
 
  
  
'''(5)'''&nbsp; In beiden Fällen ist die Berechnung der Signalenergie im Frequenzbereich einfacher als im Zeitbereich, da hier die Integration auf eine Flächenberechnung von Rechtecken zurückgeführt werden kann:
+
'''(5)'''&nbsp; In both cases, the calculation of the signal energy is easier in the frequency domain than in the time domain, because here the integration can be reduced to an area calculation of rectangles:
 
   
 
   
 
:$$E_x =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5
 
:$$E_x =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5
Line 137: Line 135:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^4.1 Differences and Similarities of LP and BP Signals^]]
+
[[Category:Signal Representation: Exercises|^4.1 Differences between Low-Pass and Band-Pass^]]

Latest revision as of 14:38, 5 May 2021

Given signal curves

Three signal curves are sketched on the right, the first two having the following curve:

$$x(t) = 10\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot {t}/{T_x}) ,$$
$$y(t) = 6\hspace{0.05cm}{\rm V} \cdot {\rm si}( \pi \cdot {t}/{T_y}) .$$

$T_x = 100 \,{\rm µ}\text{s}$  and  $T_y = 166.67 \,{\rm µ}\text{s}$  indicate the first zero of  $x(t)$  and  $y(t)$ respectively. The signal  $d(t)$  results from the difference of the two upper signals (lower graph):

$$d(t) = x(t)-y(t) .$$

In subtask  (4)  the integral areas of the pulses  $x(t)$  and  $d(t)$  are asked for.  For these holds:

$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$

On the other hand, for the corresponding signal energies with  Parseval's theorem:

$$E_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|x(t)|^2\hspace{0.1cm}{\rm d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|X(f)|^2\hspace{0.1cm}{\rm d}f ,$$
$$E_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|d(t)|^2\hspace{0.1cm}{\rm d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|D(f)|^2\hspace{0.1cm}{\rm d}f .$$





Hints:

  • The inverse Fourier transform of a rectangular spectrum  $X(f)$  leads to an  $\rm si$–shaped time function $x(t)$:
$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it f| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right. \;\; \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \;\;x(t) = 2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t) .$$
  • In this task, the  function $\rm si(x) = \rm sin(x)/x = \rm sinc(x/π)$  is used.


Questions

1

What is the spectrum  $X(f)$  of the signal  $x(t)$?  What are the magnitudes of  $X(f = 0)$  and the physical, one-sided bandwidth  $B_x$  of  $x(t)$?

$X(f=0)\ = \ $

 $\text{mV/Hz}$
$B_x \ = \ $

 $\text{kHz}$

2

What are the corresponding characteristics of the signal  $y(t)$?

$Y(f=0)\ = \ $

 $\text{mV/Hz}$
$B_y \ = \ $

 $\text{kHz}$

3

Calculate the spectrum  $D(f)$  of the difference signal  $d(t) = x(t) - y(t)$.  How large are  $D(f = 0)$  and the (one-sided) bandwidth  $B_d$?

$D(f=0)\ = \ $

 $\text{mV/Hz}$
$B_d \ = \ $

 $\text{kHz}$

4

What are the integral areas  $F_x$  and  $F_d$  of the signals  $x(t)$  and  $d(t)$?

$F_x\ = \ $

 $\text{Vs}$
$F_d\ = \ $

 $\text{Vs}$

5

What are the energies (coverted to  $1\ Ω$ ) of these signals?

$E_x \ = \ $

 $\text{V}^2\text{s}$
$E_d \ = \ $

 $\text{V}^2\text{s}$


Solution

(1)  The  $\rm si$–shaped time function  $x(t)$  suggests a rectangular spectrum  $X(f)$ .

  • The absolute, two-sided bandwidth  $2 \cdot B_x$  is equal to the reciprocal of the first zero.  It follows that:
$$B_x = \frac{1}{2 \cdot T_x} = \frac{1}{2 \cdot 0.1 \hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
  • Since the signal value at  $t = 0$  is equal to the rectangular area, the constant height is given by:
$$X(f=0) = \frac{x(t=0)}{2 B_x} = \frac{10 \hspace{0.1cm}{\rm V}}{10 \hspace{0.1cm}{\rm kHz}} \hspace{0.15 cm}\underline{= 1 \hspace{0.1cm}{\rm mV/Hz}}.$$


(2)  From  $T_y = 0.167 \,\text{ms}$  we get  $B_y \;\underline{= 3 \,\text{kHz}}$.

  • Together with  $y(t = 0) = 6\,\text{V}$  this leads to the same spectral value  $Y(f = 0)\; \underline{= 1\, \text{mV/Hz}}$  as in subtaske  (1).



Rectangular band-pass spectrum

(3)  From  $d(t) = x(t) - y(t)$  follows because of the linearity of the Fourier transform:   $D(f) = X(f) - Y(f).$

  • The difference of the two equal high rectangular functions leads to a rectangular band-pass spectrum between  $3 \,\text{kHz}$  and  $5 \,\text{kHz}$.
  • The (one-sided) bandwidth is thus  $B_d \;\underline{= 2 \,\text{kHz}}$.  In this frequency interval  $D(f) = 1 \,\text{mV/Hz}$.  Outside, i.e. also at  $f = 0$,   $D(f)\;\underline{ = 0}$ applies.



(4)  According to the fundamental laws of the Fourier transform, the integral over the time function is equal to the spectral value at  $f = 0$.  It follows: :

$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x} = 10^{-3} \hspace{0.1cm}{\rm V/Hz}\hspace{0.15 cm}\underline{= 0.001 \hspace{0.1cm}{\rm Vs}},$$
$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$

⇒  For each band-pass signal, the areas of the positive signal components are equal to the areas of the negative components.


(5)  In both cases, the calculation of the signal energy is easier in the frequency domain than in the time domain, because here the integration can be reduced to an area calculation of rectangles:

$$E_x = (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5 \hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.01 \hspace{0.1cm}{\rm V^2s}},$$
$$E_d = (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 2 \hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.004 \hspace{0.1cm}{\rm V^2s}}.$$