Difference between revisions of "Aufgaben:Exercise 4.5: Locality Curve for DSB-AM"
(14 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite=Signal_Representation/ | + | {{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function |
}} | }} | ||
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spectrum of the analytical signal]] | [[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spectrum of the analytical signal]] | ||
− | We consider a similar transmission scenario as in [[Aufgaben: | + | We consider a similar transmission scenario as in [[Aufgaben:Exercise_4.4:_Pointer_Diagram_for_DSB-AM|Exrcise 4.4]] (but not the same): |
− | * | + | * A sinusoidal source signal with amplitude $A_{\rm N} = 2 \ \text{V} and frequency f_{\rm N} = 10 \ \text{kHz}$, |
− | * | + | *Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency $f_{\rm T} = 50 \ \text{kHz}$. |
Opposite you see the spectral function S+(f) of the analytical signal s+(t). | Opposite you see the spectral function S+(f) of the analytical signal s+(t). | ||
− | When solving, take into account that the equivalent low pass signal is | + | When solving, take into account that the equivalent low-pass signal is in the form |
− | :$$s_{\rm | + | :$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm} a(t) ≥ 0.$$ |
− | + | For ϕ(t), the range –π<ϕ(t)≤+π is permissible and the generally valid equation applies: | |
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm | :$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm | ||
− | + | TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$ | |
− | |||
− | |||
− | |||
Line 29: | Line 26: | ||
''Hints:'' | ''Hints:'' | ||
− | *This exercise belongs to the chapter [[Signal_Representation/ | + | *This exercise belongs to the chapter [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]]. |
− | *You can check your solution with the interactive applet [[Applets: | + | *You can check your solution with the interactive applet [[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical Signal & Equivalent Low-Pass Signal]] ⇒ "Locality Curve". |
Line 37: | Line 34: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Calculate the equivalent low pass signal $s_{\rm | + | {Calculate the equivalent low-pass signal $s_{\rm TP}(t)$ in the frequency and time domain. What is the value of $s_{\rm TP}(t) at the start time t = 0$? |
|type="{}"} | |type="{}"} | ||
Re[sTP(t=0)] = { 1 3% } V | Re[sTP(t=0)] = { 1 3% } V | ||
Im[sTP(t=0)] = { 0. } V | Im[sTP(t=0)] = { 0. } V | ||
− | {What are the values of sTP(t) at t = 10 \ {\rm µ} \text{s}= T_0/10, t = 25 \ {\rm µ} \text{s}= T_0/4, t = 75 \ {\rm µ} \text{s}= 3T_0/4 and $T_0 = 100 \ {\rm µ} | + | {What are the values of sTP(t) at t = 10 \ {\rm µ} \text{s}= T_0/10, t = 25 \ {\rm µ} \text{s}= T_0/4, t = 75 \ {\rm µ} \text{s}= 3T_0/4 and $T_0 = 100 \ {\rm µs}$? <br>Show that all values are purely real. |
|type="{}"} | |type="{}"} | ||
− | $\text{Re}[s_{\text{ | + | $\text{Re}[s_{\text{TP}}(t=10 \ {\rm µ} \text{s})]\ = \ { 2.176 3% } \text{V}$ |
− | $\text{Re}[s_{\text{ | + | $\text{Re}[s_{\text{TP}}(t=25 \ {\rm µ} \text{s})] \ = \ { 3 3% } \text{V}$ |
− | $\text{Re}[s_{\text{ | + | $\text{Re}[s_{\text{TP}}(t=75 \ {\rm µ} \text{s})]\ = \ { -1.03--0.97 } \text{V}$ |
− | $\text{Re}[s_{\text{ | + | $\text{Re}[s_{\text{TP}}(t=100 \ {\rm µ} \text{s})]\ = \ { 1 3% } \text{V}$ |
− | {What is the magnitude function a(t) | + | {What is the magnitude function a(t) in the time domain? What are the values at times t = 25 \ {\rm µ} \text{s} and t = 75 \ {\rm µ} \text{s}? |
|type="{}"} | |type="{}"} | ||
a(t=25 \ {\rm µ} \text{s})\ = \ { 3 3% } V | a(t=25 \ {\rm µ} \text{s})\ = \ { 3 3% } V | ||
a(t=75 \ {\rm µ} \text{s})\ = \ { 1 3% } V | a(t=75 \ {\rm µ} \text{s})\ = \ { 1 3% } V | ||
− | {Give the phase function ϕ(t) in the time domain | + | {Give the phase function ϕ(t) in the time domain. What values result at the times t = 25 \ {\rm µ} \text{s} and t = 75 \ {\rm µ} \text{s}? |
|type="{}"} | |type="{}"} | ||
\phi(t=25 \ {\rm µ} \text{s}) \ = \ { 0. } Grad | \phi(t=25 \ {\rm µ} \text{s}) \ = \ { 0. } Grad | ||
Line 66: | Line 63: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | [[File:EN_Sig_A_4_5_a.png|250px|right|frame| | + | [[File:EN_Sig_A_4_5_a.png|250px|right|frame|Locality curve at time t=0]] |
− | '''(1)''' If all | + | '''(1)''' If all Dirac delta lines are shifted to the left by $f_{\rm T} = 50 \ \text{kHz} , they are located at -\hspace{-0.08cm}10 \ \text{kHz}, 0 and +10 \ \text{kHz}$. |
*The equation for sTP(t) is with ω10=2π⋅10 kHz: | *The equation for sTP(t) is with ω10=2π⋅10 kHz: | ||
Line 94: | Line 91: | ||
{t}/{T_0}) .$$ | {t}/{T_0}) .$$ | ||
− | *This shows that sTP(t) is real for all times t | + | *This shows that sTP(t) is real for all times t. |
− | * | + | *We obtain for the numerical values we are looking for: |
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 | :$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 | ||
Line 130: | Line 127: | ||
Re}\left[s_{\rm TP}(t)\right]}$$ | Re}\left[s_{\rm TP}(t)\right]}$$ | ||
− | Due to the fact that here Im[sTP(t)]=0 for all times, one obtains | + | Due to the fact that here Im[sTP(t)]=0 for all times, one obtains: |
* If Re[sTP(t)]>0 holds, the phase ϕ(t)=0. | * If Re[sTP(t)]>0 holds, the phase ϕ(t)=0. | ||
* On the other hand, if the real part is negative: ϕ(t)=π. | * On the other hand, if the real part is negative: ϕ(t)=π. | ||
Line 136: | Line 133: | ||
We restrict ourselves here to the time range of one period: 0≤t≤T0. | We restrict ourselves here to the time range of one period: 0≤t≤T0. | ||
− | *In the range between t1 and t2 there is a phase of 180∘ otherwise $\text{Re}[s_{\rm | + | *In the range between t1 and t2 there is a phase of 180∘ otherwise $\text{Re}[s_{\rm TP}(t)] \geq 0$. |
*To calculate t1 , the result of subtask '''(2)''' can be used: | *To calculate t1 , the result of subtask '''(2)''' can be used: | ||
Line 142: | Line 139: | ||
:$$\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow | :$$\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow | ||
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot | \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot | ||
− | {7}/{12}\hspace{0.3cm}{\ | + | {7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ |
)$$ | )$$ | ||
Line 155: | Line 152: | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
− | [[Category: | + | [[Category:Signal Representation: Exercises|^4.3 Equivalent LP Signal and its Spectral Function^]] |
Latest revision as of 15:22, 18 January 2023
We consider a similar transmission scenario as in Exrcise 4.4 (but not the same):
- A sinusoidal source signal with amplitude AN=2 V and frequency fN=10 kHz,
- Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency fT=50 kHz.
Opposite you see the spectral function S+(f) of the analytical signal s+(t).
When solving, take into account that the equivalent low-pass signal is in the form
- sTP(t)=a(t)⋅ej⋅ϕ(t),a(t)≥0.
For ϕ(t), the range –π<ϕ(t)≤+π is permissible and the generally valid equation applies:
- ϕ(t)=arctanIm[sTP(t)]Re[sTP(t)].
Hints:
- This exercise belongs to the chapter Equivalent Low-Pass Signal and its Spectral Function.
- You can check your solution with the interactive applet Physical Signal & Equivalent Low-Pass Signal ⇒ "Locality Curve".
Questions
Solution
(1) If all Dirac delta lines are shifted to the left by fT=50 kHz , they are located at −10 kHz, 0 and +10 kHz.
- The equation for sTP(t) is with ω10=2π⋅10 kHz:
- sTP(t)=1V−j⋅1V⋅ejω10t+j⋅1V⋅e−jω10t
- ⇒sTP(t=0)=1V−j⋅1V+j⋅1V=1V.
- ⇒Re[sTP(t=0)]=+1V_,Im[sTP(t=0)]=0_.
(2) The above equation can be transformed according to Euler's theorem with T0=1/fN=100 µs as follows:
- sTP(t)1V=1−j⋅cos(ω10t)+sin(ω10t)+j⋅cos(ω10t)+sin(ω10t)=1+2⋅sin(2πt/T0).
- This shows that sTP(t) is real for all times t.
- We obtain for the numerical values we are looking for:
- sTP(t=10µs)=1V⋅[1+2⋅sin(36∘)]=+2.176V_,
- sTP(t=25µs)=1V⋅[1+2⋅sin(90∘)]=+3V_,
- sTP(t=75µs)=1V⋅[1+2⋅sin(270∘)]=−1V_,
- sTP(t=100µs)=sTP(t=0)=+1V_.
(3) By definition, a(t)=|sTP(t)|. This gives the following numerical values:
- a(t=25µs)=sTP(t=25µs)=+3V_,
- a(t=75µs)=|sTP(t=75µs)|=+1V_.
(4) In general, the phase function is:
- ϕ(t)=arc[sTP(t)]=arctanIm[sTP(t)]Re[sTP(t)]
Due to the fact that here Im[sTP(t)]=0 for all times, one obtains:
- If Re[sTP(t)]>0 holds, the phase ϕ(t)=0.
- On the other hand, if the real part is negative: ϕ(t)=π.
We restrict ourselves here to the time range of one period: 0≤t≤T0.
- In the range between t1 and t2 there is a phase of 180∘ otherwise Re[sTP(t)]≥0.
- To calculate t1 , the result of subtask (2) can be used:
- sin(2π⋅t1/T0)=−0.5⇒2π⋅t1/T0=2π⋅7/12(corresponds to210∘)
- From this one obtains t1=7/12·T0=58.33 µs.
- By similar reasoning one arrives at the result: t2=11/12·T0=91.63 µs.
The values we are looking for are therefore:
- ϕ(t=25 µs)=0_,
- ϕ(t=75 µs)=180∘_(=π).