Processing math: 100%

Difference between revisions of "Aufgaben:Exercise 4.5: Locality Curve for DSB-AM"

From LNTwww
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function
+
{{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function
 
}}
 
}}
  
 
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spectrum of the analytical signal]]
 
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spectrum of the analytical signal]]
  
We consider a similar transmission scenario as in  [[Aufgaben:Aufgabe_4.4:_Zeigerdiagramm_bei_ZSB-AM|task 4.4]]  (but not the same):
+
We consider a similar transmission scenario as in  [[Aufgaben:Exercise_4.4:_Pointer_Diagram_for_DSB-AM|Exrcise 4.4]]  (but not the same):
* a sinusoidal message signal with amplitude  $A_{\rm M} = 2 \ \text{V}$   and the frequency  $f_{\rm M} = 10 \ \text{kHz}$,
+
* A sinusoidal source signal with amplitude  $A_{\rm N} = 2 \ \text{V}   and frequency f_{\rm N} = 10 \ \text{kHz}$,
*DSB-Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm C} = 50 \ \text{kHz}$.
+
*Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm T} = 50 \ \text{kHz}$.
  
  
 
Opposite you see the spectral function  S+(f)  of the analytical signal  s+(t).  
 
Opposite you see the spectral function  S+(f)  of the analytical signal  s+(t).  
  
When solving, take into account that the equivalent low pass signal is also in the form
+
When solving, take into account that the equivalent low-pass signal is in the form
 
   
 
   
:$$s_{\rm LP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$
+
:$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm}  a(t) ≥ 0.$$
  
where&nbsp; a(t)0&nbsp; shall hold. For&nbsp; ϕ(t)&nbsp;, the range of values&nbsp; π<ϕ(t)+π&nbsp; is permissible and the generally valid equation applies:
+
For&nbsp; ϕ(t),&nbsp; the range&nbsp; π<ϕ(t)+π&nbsp; is permissible and the generally valid equation applies:
 
   
 
   
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
LP}(t)\big]}{{\rm Re}\big[s_{\rm LP}(t)\big]}.$$
+
TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$
 
 
 
 
 
 
  
  
Line 29: Line 26:
  
 
''Hints:''  
 
''Hints:''  
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Equivalent Low Pass Signal and Its Spectral Function]].
+
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]].
 
   
 
   
*You can check your solution with the interactive applet&nbsp; [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]]&nbsp; &nbsp; &rArr; &nbsp; &bdquo;locus&rdquo;.
+
*You can check your solution with the interactive applet&nbsp; [[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical Signal & Equivalent Low-Pass Signal]]&nbsp; &nbsp; &rArr; &nbsp; "Locality Curve".
  
 
   
 
   
Line 37: Line 34:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the equivalent low pass signal&nbsp; $s_{\rm LP}(t)&nbsp; in the frequency and time domain. What is the value of&nbsp;s_{\rm LP}(t)&nbsp; at the start time&nbsp;t = 0$?
+
{Calculate the equivalent low-pass signal&nbsp; $s_{\rm TP}(t)$&nbsp; in the frequency and time domain.&nbsp; What is the value of&nbsp; $s_{\rm TP}(t)&nbsp; at the start time&nbsp;t = 0$?
 
|type="{}"}
 
|type="{}"}
 
Re[sTP(t=0)] =   { 1 3% }  &nbsp;V
 
Re[sTP(t=0)] =   { 1 3% }  &nbsp;V
 
Im[sTP(t=0)] =  { 0. } &nbsp;V
 
Im[sTP(t=0)] =  { 0. } &nbsp;V
  
{What are the values of&nbsp; sTP(t)&nbsp; at&nbsp; t = 10 \ {\rm &micro;} \text{s}= T_0/10, &nbsp; &nbsp; t = 25 \ {\rm &micro;} \text{s}= T_0/4, &nbsp; &nbsp; t = 75 \ {\rm &micro;} \text{s}= 3T_0/4&nbsp; and&nbsp; $T_0 = 100 \ {\rm &micro;}s$? <br>Show that all values are purely real.
+
{What are the values of&nbsp; sTP(t)&nbsp; at&nbsp; t = 10 \ {\rm &micro;} \text{s}= T_0/10, &nbsp; &nbsp; t = 25 \ {\rm &micro;} \text{s}= T_0/4, &nbsp; &nbsp; t = 75 \ {\rm &micro;} \text{s}= 3T_0/4&nbsp; and&nbsp; $T_0 = 100 \ {\rm &micro;s}$? <br>Show that all values are purely real.
 
|type="{}"}
 
|type="{}"}
$\text{Re}[s_{\text{LP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ { 2.176 3% } &nbsp;\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ { 2.176 3% } &nbsp;\text{V}$
$\text{Re}[s_{\text{LP}}(t=25 \ {\rm &micro;} \text{s})] \ = \ { 3 3% } &nbsp;\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=25 \ {\rm &micro;} \text{s})] \ = \ { 3 3% } &nbsp;\text{V}$
$\text{Re}[s_{\text{LP}}(t=75 \ {\rm &micro;} \text{s})]\ = \ { -1.03--0.97 } &nbsp;\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=75 \ {\rm &micro;} \text{s})]\ = \ { -1.03--0.97 } &nbsp;\text{V}$
$\text{Re}[s_{\text{LP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ { 1 3% } &nbsp;\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ { 1 3% } &nbsp;\text{V}$
  
{What is the magnitude function&nbsp; a(t)&nbsp; im Zeitbereich? in the time domain? What are the values at times&nbsp; t = 25 \ {\rm &micro;} \text{s}&nbsp; and&nbsp; t = 75 \ {\rm &micro;} \text{s}?
+
{What is the magnitude function&nbsp; a(t)&nbsp; in the time domain?&nbsp; What are the values at times&nbsp; t = 25 \ {\rm &micro;} \text{s}&nbsp; and&nbsp; t = 75 \ {\rm &micro;} \text{s}?
 
|type="{}"}
 
|type="{}"}
 
a(t=25 \ {\rm &micro;} \text{s})\ = \ { 3 3% } &nbsp;V
 
a(t=25 \ {\rm &micro;} \text{s})\ = \ { 3 3% } &nbsp;V
 
a(t=75 \ {\rm &micro;} \text{s})\ = \ { 1 3% } &nbsp;V
 
a(t=75 \ {\rm &micro;} \text{s})\ = \ { 1 3% } &nbsp;V
  
{Give the phase function&nbsp; ϕ(t)&nbsp;  in the time domain in general. What values result at the times&nbsp; t = 25 \ {\rm &micro;} \text{s}&nbsp; and&nbsp; t = 75 \ {\rm &micro;} \text{s}?
+
{Give the phase function&nbsp; ϕ(t)&nbsp;  in the time domain.&nbsp; What values result at the times&nbsp; t = 25 \ {\rm &micro;} \text{s}&nbsp; and&nbsp; t = 75 \ {\rm &micro;} \text{s}?
 
|type="{}"}
 
|type="{}"}
 
\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ { 0. } &nbsp;Grad
 
\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ { 0. } &nbsp;Grad
Line 66: Line 63:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
[[File:EN_Sig_A_4_5_a.png|250px|right|frame|Locus curve at time&nbsp; t=0]]
+
[[File:EN_Sig_A_4_5_a.png|250px|right|frame|Locality curve at time&nbsp; t=0]]
'''(1)'''&nbsp; If all diraclines are shifted to the left by&nbsp; $f_{\rm C} = 50 \ \text{kHz}&nbsp;, they are located at&nbsp;-\hspace{-0.08cm}10 \ \text{kHz},&nbsp;0&nbsp; and&nbsp;+10 \ \text{kHz}$.  
+
'''(1)'''&nbsp; If all Dirac delta lines are shifted to the left by&nbsp; $f_{\rm T} = 50 \ \text{kHz}&nbsp;, they are located at&nbsp;-\hspace{-0.08cm}10 \ \text{kHz},&nbsp;0&nbsp; and&nbsp;+10 \ \text{kHz}$.  
 
*The equation for&nbsp; sTP(t)&nbsp; is with&nbsp; ω10=2π10 kHz:
 
*The equation for&nbsp; sTP(t)&nbsp; is with&nbsp; ω10=2π10 kHz:
 
    
 
    
Line 94: Line 91:
 
{t}/{T_0}) .$$
 
{t}/{T_0}) .$$
  
*This shows that&nbsp; sTP(t)&nbsp; is real for all times&nbsp; t&nbsp .  
+
*This shows that&nbsp; sTP(t)&nbsp; is real for all times&nbsp; t.  
*For the numerical values we are looking for, we obtain:
+
*We obtain for the numerical values we are looking for:
 
      
 
      
 
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
 
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
Line 130: Line 127:
 
Re}\left[s_{\rm TP}(t)\right]}$$
 
Re}\left[s_{\rm TP}(t)\right]}$$
  
Due to the fact that here&nbsp; Im[sTP(t)]=0&nbsp; for all times, one obtains the result from this:
+
Due to the fact that here&nbsp; Im[sTP(t)]=0&nbsp; for all times, one obtains:
 
* If&nbsp; Re[sTP(t)]>0&nbsp; holds, the phase&nbsp; ϕ(t)=0.
 
* If&nbsp; Re[sTP(t)]>0&nbsp; holds, the phase&nbsp; ϕ(t)=0.
 
* On the other hand, if the real part is negative: &nbsp; &nbsp; ϕ(t)=π.
 
* On the other hand, if the real part is negative: &nbsp; &nbsp; ϕ(t)=π.
Line 136: Line 133:
  
 
We restrict ourselves here to the time range of one period: &nbsp; 0tT0.  
 
We restrict ourselves here to the time range of one period: &nbsp; 0tT0.  
*In the range between&nbsp; t1&nbsp; and&nbsp; t2&nbsp; there is a phase of&nbsp; 180&nbsp; otherwise&nbsp; $\text{Re}[s_{\rm LP}(t)] \geq 0$.  
+
*In the range between&nbsp; t1&nbsp; and&nbsp; t2&nbsp; there is a phase of&nbsp; 180&nbsp; otherwise&nbsp; $\text{Re}[s_{\rm TP}(t)] \geq 0$.  
  
 
*To calculate&nbsp; t1&nbsp;, the result of subtask&nbsp; '''(2)'''&nbsp; can be used:
 
*To calculate&nbsp; t1&nbsp;, the result of subtask&nbsp; '''(2)'''&nbsp; can be used:
Line 142: Line 139:
 
:$$\sin(2 \pi \cdot  {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
 
:$$\sin(2 \pi \cdot  {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
 
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot  
 
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot  
{7}/{12}\hspace{0.3cm}{\rm (corresponds to}\hspace{0.2cm}210^\circ
+
{7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ
 
)$$
 
)$$
  
Line 155: Line 152:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^4.3 Equivalent Low Pass Signal and Its Spectral Function^]]
+
[[Category:Signal Representation: Exercises|^4.3 Equivalent LP Signal and its Spectral Function^]]

Latest revision as of 15:22, 18 January 2023

Spectrum of the analytical signal

We consider a similar transmission scenario as in  Exrcise 4.4  (but not the same):

  • A sinusoidal source signal with amplitude  AN=2 V  and frequency  fN=10 kHz,
  • Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency  fT=50 kHz.


Opposite you see the spectral function  S+(f)  of the analytical signal  s+(t).

When solving, take into account that the equivalent low-pass signal is in the form

sTP(t)=a(t)ejϕ(t),a(t)0.

For  ϕ(t),  the range  π<ϕ(t)+π  is permissible and the generally valid equation applies:

ϕ(t)=arctanIm[sTP(t)]Re[sTP(t)].



Hints:


Questions

1

Calculate the equivalent low-pass signal  sTP(t)  in the frequency and time domain.  What is the value of  sTP(t)  at the start time  t=0?

Re[sTP(t=0)] = 

 V
Im[sTP(t=0)] = 

 V

2

What are the values of  sTP(t)  at  t=10 µs=T0/10,     t=25 µs=T0/4,     t=75 µs=3T0/4  and  T0=100 µs?
Show that all values are purely real.

Re[sTP(t=10 µs)] = 

 V
Re[sTP(t=25 µs)] = 

 V
Re[sTP(t=75 µs)] = 

 V
Re[sTP(t=100 µs)] = 

 V

3

What is the magnitude function  a(t)  in the time domain?  What are the values at times  t=25 µs  and  t=75 µs?

a(t=25 µs) = 

 V
a(t=75 µs) = 

 V

4

Give the phase function  ϕ(t)  in the time domain.  What values result at the times  t=25 µs  and  t=75 µs?

ϕ(t=25 µs) = 

 Grad
ϕ(t=75 µs) = 

 Grad


Solution

Locality curve at time  t=0

(1)  If all Dirac delta lines are shifted to the left by  fT=50 kHz , they are located at  10 kHz0  and  +10 kHz.

  • The equation for  sTP(t)  is with  ω10=2π10 kHz:
sTP(t)=1Vj1Vejω10t+j1Vejω10t
sTP(t=0)=1Vj1V+j1V=1V.
Re[sTP(t=0)]=+1V_,Im[sTP(t=0)]=0_.


(2)  The above equation can be transformed according to  Euler's theorem  with  T0=1/fN=100 µs  as follows:

sTP(t)1V=1jcos(ω10t)+sin(ω10t)+jcos(ω10t)+sin(ω10t)=1+2sin(2πt/T0).
  • This shows that  sTP(t)  is real for all times  t.
  • We obtain for the numerical values we are looking for:
sTP(t=10µs)=1V[1+2sin(36)]=+2.176V_,
sTP(t=25µs)=1V[1+2sin(90)]=+3V_,
sTP(t=75µs)=1V[1+2sin(270)]=1V_,
sTP(t=100µs)=sTP(t=0)=+1V_.


(3)  By definition,  a(t)=|sTP(t)|. This gives the following numerical values:

a(t=25µs)=sTP(t=25µs)=+3V_,
a(t=75µs)=|sTP(t=75µs)|=+1V_.


(4)  In general, the phase function is:

ϕ(t)=arc[sTP(t)]=arctanIm[sTP(t)]Re[sTP(t)]

Due to the fact that here  Im[sTP(t)]=0  for all times, one obtains:

  • If  Re[sTP(t)]>0  holds, the phase  ϕ(t)=0.
  • On the other hand, if the real part is negative:     ϕ(t)=π.


We restrict ourselves here to the time range of one period:   0tT0.

  • In the range between  t1  and  t2  there is a phase of  180  otherwise  Re[sTP(t)]0.
  • To calculate  t1 , the result of subtask  (2)  can be used:
sin(2πt1/T0)=0.52πt1/T0=2π7/12(corresponds to210)
  • From this one obtains  t1=7/12·T0=58.33 µs.
  • By similar reasoning one arrives at the result:  t2=11/12·T0=91.63 µs.


The values we are looking for are therefore: 

ϕ(t=25 µs)=0_,
ϕ(t=75 µs)=180_(=π).