Difference between revisions of "Aufgaben:Exercise 3.10: Maximum Likelihood Tree Diagram"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Digitalsignalübertragung" to "Category:Digital Signal Transmission: Exercises")
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Optimale_Empfängerstrategien}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Optimal_Receiver_Strategies}}
  
[[File:P_ID1465__Dig_A_3_10_95.png|right|frame|Signale und Baumdiagramm]]
+
[[File:P_ID1465__Dig_A_3_10_95.png|right|frame|Signals and tree diagram]]
Wie in der  [[Aufgaben:Aufgabe_3.09:_Korrelationsempfänger_für_unipolare_Signalisierung|Aufgabe 3.9]]  betrachten wir die gemeinsame Entscheidung dreier Binärsymbole (Bits) mittels des Korrelationsempfängers.  
+
As in  [[Aufgaben:Exercise_3.09:_Correlation_Receiver_for_Unipolar_Signaling|"Exercise 3.9"]]  we consider the joint decision of three binary symbols  ("bits")  by means of the correlation receiver.
*Die möglichen Sendesignale  $s_0(t), \ \text{...} \ , \ s_7(t)$  seien bipolar.
+
*The possible transmitted signals  $s_0(t), \ \text{...} \ , \ s_7(t)$  are bipolar.
*In der Grafik sind die Funktionen  $s_0(t)$,  $s_1(t)$,  $s_2(t)$  und  $s_3(t)$  dargestellt.
 
*Die blauen Kurvenverläufe gelten dabei für rechteckförmige NRZ–Sendeimpulse.
 
  
 +
*In the graphic the functions  $s_0(t)$,  $s_1(t)$,  $s_2(t)$  and  $s_3(t)$  are shown.
  
Darunter gezeichnet ist das so genannte Baumdiagramm für diese Konstellation unter der Voraussetzung, dass das Signal  $s_3(t)$  gesendet wurde. Dargestellt sind hier im Bereich von  $0$  bis  $3T$  die Funktionen
+
*The blue curves are valid for rectangular NRZ transmission pulses.
 +
 
 +
 
 +
Below is drawn the so-called  "tree diagram"  for this constellation under the condition that the signal  $s_3(t)$  was sent.  Shown here in the range from  $0$  to  $3T$  are the functions
 
:$$i_i(t)  =  \int_{0}^{t} s_3(\tau) \cdot s_i(\tau) \,{\rm d}
 
:$$i_i(t)  =  \int_{0}^{t} s_3(\tau) \cdot s_i(\tau) \,{\rm d}
 
\tau \hspace{0.3cm}( i = 0, \ \text{...} \  , 7)\hspace{0.05cm}.$$
 
\tau \hspace{0.3cm}( i = 0, \ \text{...} \  , 7)\hspace{0.05cm}.$$
  
*Der Korrelationsempfänger vergleicht die Endwerte  $I_i = i_i(3T)$  miteinander und sucht den größtmöglichen Wert  $I_j$.  
+
*The correlation receiver compares the final values  $I_i = i_i(3T)$  with each other and searches for the largest possible value  $I_j$.
*Das zugehörige Signal  $s_j(t)$  ist dann dasjenige, das gemäß dem Maximum–Likelihood–Kriterium am wahrscheinlichsten gesendet wurde.
+
 
+
*The corresponding signal  $s_j(t)$  is then the one most likely to have been sent according to the maximum likelihood criterion.
 
 
Anzumerken ist, dass der Korrelationsempfänger im allgemeinen die Entscheidung anhand der korrigierten Größen  $W_i = I_i \ - E_i/2$  trifft. Da aber bei bipolaren Rechtecken alle Sendesignale  $(i = 0,  \ \text{...} \  , \ 7)$  die genau gleiche Energie
 
:$$E_i  =  \int_{0}^{3T} s_i^2(t) \,{\rm d} t$$
 
 
 
aufweisen, liefern die Integrale  $I_i$  genau die gleichen Maximum–Likelihood–Informationen wie die korrigierten Größen  $W_i$.
 
  
Die roten Signalverläufe  $s_i(t)$  ergeben sich aus den blauen durch Faltung mit der Impulsantwort  $h_{\rm G}(t)$  eines Gaußtiefpasses mit der Grenzfrequenz  $f_{\rm G} \cdot T = 0.35$.
+
*Note that the correlation receiver generally makes the decision based on the corrected quantities  
*Jeder einzelne Rechteckimpuls wird verbreitert.
+
:$$W_i = I_i \ - E_i/2.$$
*Die roten Signalverläufe führen bei Schwellenwertentscheidung zu  Impulsinterferenzen.
+
*But since for bipolar rectangles all transmitted signals  $(i = 0,  \ \text{...} \  , \ 7)$  have exactly the same energy
 +
:$$E_i  =  \int_{0}^{3T} s_i^2(t) \,{\rm d} t,$$
  
 +
:the integrals  $I_i$  provide exactly the same maximum likelihood information as the corrected quantities  $W_i$.
  
 +
The red signal waveforms  $s_i(t)$  are obtained from the blue ones by convolution with the impulse response  $h_{\rm G}(t)$  of a Gaussian low-pass filter with cutoff frequency  $f_{\rm G} \cdot T = 0.35$.
 +
*Each individual rectangular pulse is broadened.
  
 +
*The red signal waveforms lead to  "intersymbol interference"  in case of threshold decision.
  
  
 
+
Note:  The exercise belongs to the chapter  [[Digital_Signal_Transmission/Optimal_Receiver_Strategies|"Optimal Receiver Strategies"]].
''Hinweis:''
 
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignal%C3%BCbertragung/Optimale_Empf%C3%A4ngerstrategien|Optimale Empfängerstrategien]].
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die folgenden normierten Endwerte &nbsp;$I_i/E_{\rm B}$&nbsp; für Rechtecksignale (ohne Rauschen) an.
+
{Give the following normalized final values &nbsp;$I_i/E_{\rm B}$&nbsp; for rectangular signals&nbsp; $($without noise$)$.
 
|type="{}"}
 
|type="{}"}
 
$I_0/E_{\rm B} \ = \ $  { -1.03--0.97 }
 
$I_0/E_{\rm B} \ = \ $  { -1.03--0.97 }
Line 46: Line 46:
 
$I_6/E_{\rm B} \ = \ $ { -1.03--0.97 }
 
$I_6/E_{\rm B} \ = \ $ { -1.03--0.97 }
  
{Welche Aussagen gelten bei Berücksichtigung eines Rauschenterms?
+
{Which statements are valid when considering a noise term?
 
|type="[]"}
 
|type="[]"}
- Das Baumdiagramm ist weiter durch Geradenstücke beschreibbar.
+
- The tree diagram can be further described by straight line segments.
+ Ist &nbsp;$I_3$&nbsp; der maximale $I_i$&ndash;Wert, so entscheidet der Empfänger richtig.
+
+ If &nbsp;$I_3$&nbsp; is the maximum&nbsp; $I_i$&nbsp; value,&nbsp; the receiver decides correctly.
- Es gilt unabhängig von der Stärke der Störungen &nbsp;$I_0 = I_6$.
+
- &nbsp;$I_0 = I_6$&nbsp; is valid independent of the strength of the noise.
  
{Welche Aussagen gelten für die roten Signalverläufe (mit Impulsinterferenzen)?
+
{Which statements are valid for the red signal waveforms&nbsp; $($with intersymbol interference$)$?
 
|type="[]"}
 
|type="[]"}
- Das Baumdiagramm ist weiter durch Geradenstücke beschreibbar.
+
- The tree diagram can be further described by straight line segments.
+ Die Signalenergien &nbsp;$E_i(i = 0, \ \text{...} \ ,  7$)&nbsp; sind unterschiedlich.
+
+ The signal energies &nbsp;$E_i(i = 0, \ \text{...} \ ,  7$)&nbsp; are different.
- Es sind sowohl die Entscheidungsgrößen &nbsp;$I_i$&nbsp; als auch &nbsp;$W_i$&nbsp; geeignet.
+
- Both the decision variables &nbsp;$I_i$&nbsp; and &nbsp;$W_i$&nbsp; are suitable.
  
{Wie sollte der Intergrationsbereich &nbsp;$(t_1 \ \text{...} \ t_2)$&nbsp; gewählt werden?
+
{How should the intergration range &nbsp;$(t_1 \ \text{...} \ t_2)$&nbsp; be chosen?
 
|type="[]"}
 
|type="[]"}
+ Ohne Impulsinterferenzen (blau) sind &nbsp;$t_1 = 0$&nbsp; und &nbsp;$t_2 = 3T$&nbsp; bestmöglich.
+
+ Without intersymbol interference (blue), &nbsp;$t_1 = 0$&nbsp; and &nbsp;$t_2 = 3T$&nbsp; are best possible.
- Mit Impulsinterferenzen (rot) sind &nbsp;$t_1 = 0$&nbsp; und &nbsp;$t_2 = 3T$&nbsp; bestmöglich.
+
- With intersymbol interference (red), &nbsp;$t_1 = 0$&nbsp; and &nbsp;$t_2 = 3T$&nbsp; are best possible.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die linke Grafik zeigt das Baumdiagramm (ohne Rauschen) mit allen Endwerten. Grün hervorgehoben ist der Verlauf $i_0(t)/E_{\rm B}$ mit dem Endergebnis $I_0/E_{\rm B} = \ &ndash;1$, der zunächst linear bis $+1$ ansteigt &ndash; das jeweils erste Bit von $s_0(t)$ und $s_3(t)$ stimmen überein &ndash; und dann über zwei Bitdauern abfällt.
+
'''(1)'''&nbsp; The left graph shows the tree diagram&nbsp; (without noise)&nbsp; with all final values.&nbsp; Highlighted in green is the curve&nbsp; $i_0(t)/E_{\rm B}$&nbsp; with the final result&nbsp; $I_0/E_{\rm B} = \ -1$,&nbsp; which first rises linearly to&nbsp; $+1$&nbsp; $($the first bit of&nbsp; $s_0(t)$&nbsp; and&nbsp; $s_3(t)$&nbsp; in each case coincide$)$&nbsp; and then falls off over two bit durations.
[[File:P_ID1466__Dig_A_3_10.png|right|frame|Baumdiagramm des Korrelationsempfängers]]
+
[[File:EN_Dig_A_3_10_ML.png|right|frame|Tree diagram of the correlation receiver]]
Die richtigen Ergebnisse lauten somit:
+
 
 +
*The correct results are thus:
 
:$$I_0/E_{\rm B}\hspace{0.15cm}\underline { = -1},$$
 
:$$I_0/E_{\rm B}\hspace{0.15cm}\underline { = -1},$$
 
:$$I_2/E_{\rm B} \hspace{0.15cm}\underline {= +1}, $$
 
:$$I_2/E_{\rm B} \hspace{0.15cm}\underline {= +1}, $$
Line 74: Line 75:
 
:$$I_6/E_{\rm B}\hspace{0.15cm}\underline { = -1}
 
:$$I_6/E_{\rm B}\hspace{0.15cm}\underline { = -1}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
<br clear=all>
 
'''(2)'''&nbsp; Richtig ist nur der <u>zweite Lösungsvorschlag</u>:
 
*Bei Vorhandensein von (Rausch&ndash;) Störungen nehmen die Funktionen $i_i(t)$ nicht mehr linear zu bzw. ab, sondern haben einen Verlauf wie in der rechten Grafik dargestellt.
 
*Solange $I_3 > I_{\it i&ne;3}$ ist, entscheidet der Korrelationsempfänger richtig.
 
*Bei Vorhandensein von Störungen gilt stets $I_0 &ne; I_6$ im Gegensatz zum störungsfreien Baumdiagramm.
 
  
  
'''(3)'''&nbsp; Auch hier ist nur die <u>zweite Aussage</u> zutreffend:  
+
'''(2)'''&nbsp; Only the&nbsp; <u>second solution</u>&nbsp; is correct:
*Da nun die möglichen Sendesignale $s_i(t)$ nicht mehr aus isolierten horizontalen Abschnitten zusammengesetzt werden können, besteht auch das Baumdiagramm ohne Störungen nicht aus Geradenstücken.  
+
*In the presence of noises,&nbsp; the functions&nbsp; $i_i(t)$&nbsp; no longer increase or decrease linearly,&nbsp; but have a curve as shown in the right graph.
*Da die Energien $E_i$ unterschiedlich sind &ndash; dies erkennt man zum Beispiel durch den Vergleich der (roten) Signale $s_0(t)$ und $s_2(t)$ &ndash; müssen für die Entscheidung unbedingt die korrigierten Größen $W_i$ herangezogen werden.  
+
*As long as&nbsp; $I_3 > I_{\it i&ne;3}$,&nbsp; the correlation receiver decides correctly.
*Die Verwendung der reinen Korrelationswerte $I_i$ kann bereits ohne Rauschstörungen zu Fehlentscheidungen führen.
+
*In the presence of noise,&nbsp; $I_0 &ne; I_6$&nbsp; always holds,&nbsp; in contrast to the noise-free tree diagram.
 +
 
 +
 
 +
'''(3)'''&nbsp; Only the&nbsp; <u>second statement</u>&nbsp; is true:  
 +
*Since now the possible transmitted signals&nbsp; $s_i(t)$&nbsp; can no longer be composed of isolated  horizontal sections,&nbsp; also the tree diagram without noise does not consist of straight line segments.
 +
*Since the energies&nbsp; $E_i$&nbsp; are different &ndash; this can be seen e.g. by comparing the&nbsp; (red)&nbsp; signals&nbsp; $s_0(t)$&nbsp; and&nbsp; $s_2(t)$&nbsp; &ndash; it is essential to use the corrected quantities&nbsp; $W_i$&nbsp; for the decision.
 +
*The use of the uncorrected correlation values&nbsp; $I_i$&nbsp; can already lead to wrong decisions without noise disturbances.
  
  
'''(4)'''&nbsp; Richtig ist die <u>Antwort 1</u>:
+
'''(4)'''&nbsp; <u>Answer 1</u>&nbsp; is correct:
*Im Fall <u>ohne Impulsinterferenzen</u> (blaue Rechtecksignale) sind alle Signale auf den Bereich $0 \ ... \ 3T$ begrenzt.  
+
*In the case&nbsp; <u>without intersymbol interference</u>&nbsp; (blue rectangular signals),&nbsp; all signals are limited to the range&nbsp; $0 \ ... \ 3T$.  
*Außerhalb stellt das Empfangssignal $r(t)$ reines Rauschen dar.  
+
*Outside this range the received signal&nbsp; $r(t)$&nbsp; is pure noise.&nbsp; Therefore in this case also the integration over the range&nbsp; $0 \ \text{...} \ 3T$.  
*Deshalb genügt in diesem Fall auch die Integration über den Bereich $0 \ \text{...} \ 3T$.  
+
*In contrast,&nbsp; when intersymbol interference&nbsp; (red signals)&nbsp; is taken into account,&nbsp; the integrands&nbsp; $s_3(t) \cdot s_i(t)$&nbsp; also differ outside this range.
*Demgegenüber unterscheiden sich bei Berücksichtigung von Impulsinterferenzen (rote Signale) die Integranden $s_3(t) \cdot s_i(t)$ auch außerhalb dieses Bereichs.  
+
*Therefore,&nbsp; if&nbsp; $t_1 = \ -T$&nbsp; and&nbsp; $t_2 = +4T$&nbsp; are chosen,&nbsp; the error probability of the correlation receiver is further reduced compared to the integration range&nbsp; $0 \ \text{...} \ 3T$.
*Wählt man $t_1 = \ &ndash;T$ und $t_2 = +4T$, so wird deshalb die Fehlerwahrscheinlichkeit des Korrelationsempfängers gegenüber dem Integrationsbereich $0 \ \text{...} \ 3T$ weiter verringert.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
Line 98: Line 99:
  
  
[[Category:Digital Signal Transmission: Exercises|^3.7 Optimale Empfängerstrategien^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.7 Optimal Receiver Strategies^]]

Latest revision as of 17:24, 30 June 2022

Signals and tree diagram

As in  "Exercise 3.9"  we consider the joint decision of three binary symbols  ("bits")  by means of the correlation receiver.

  • The possible transmitted signals  $s_0(t), \ \text{...} \ , \ s_7(t)$  are bipolar.
  • In the graphic the functions  $s_0(t)$,  $s_1(t)$,  $s_2(t)$  and  $s_3(t)$  are shown.
  • The blue curves are valid for rectangular NRZ transmission pulses.


Below is drawn the so-called  "tree diagram"  for this constellation under the condition that the signal  $s_3(t)$  was sent.  Shown here in the range from  $0$  to  $3T$  are the functions

$$i_i(t) = \int_{0}^{t} s_3(\tau) \cdot s_i(\tau) \,{\rm d} \tau \hspace{0.3cm}( i = 0, \ \text{...} \ , 7)\hspace{0.05cm}.$$
  • The correlation receiver compares the final values  $I_i = i_i(3T)$  with each other and searches for the largest possible value  $I_j$.
  • The corresponding signal  $s_j(t)$  is then the one most likely to have been sent according to the maximum likelihood criterion.
  • Note that the correlation receiver generally makes the decision based on the corrected quantities  
$$W_i = I_i \ - E_i/2.$$
  • But since for bipolar rectangles all transmitted signals  $(i = 0, \ \text{...} \ , \ 7)$  have exactly the same energy
$$E_i = \int_{0}^{3T} s_i^2(t) \,{\rm d} t,$$
the integrals  $I_i$  provide exactly the same maximum likelihood information as the corrected quantities  $W_i$.

The red signal waveforms  $s_i(t)$  are obtained from the blue ones by convolution with the impulse response  $h_{\rm G}(t)$  of a Gaussian low-pass filter with cutoff frequency  $f_{\rm G} \cdot T = 0.35$.

  • Each individual rectangular pulse is broadened.
  • The red signal waveforms lead to  "intersymbol interference"  in case of threshold decision.


Note:  The exercise belongs to the chapter  "Optimal Receiver Strategies".



Questions

1

Give the following normalized final values  $I_i/E_{\rm B}$  for rectangular signals  $($without noise$)$.

$I_0/E_{\rm B} \ = \ $

$I_2/E_{\rm B} \ = \ $

$I_4/E_{\rm B} \ = \ $

$I_6/E_{\rm B} \ = \ $

2

Which statements are valid when considering a noise term?

The tree diagram can be further described by straight line segments.
If  $I_3$  is the maximum  $I_i$  value,  the receiver decides correctly.
 $I_0 = I_6$  is valid independent of the strength of the noise.

3

Which statements are valid for the red signal waveforms  $($with intersymbol interference$)$?

The tree diagram can be further described by straight line segments.
The signal energies  $E_i(i = 0, \ \text{...} \ , 7$)  are different.
Both the decision variables  $I_i$  and  $W_i$  are suitable.

4

How should the intergration range  $(t_1 \ \text{...} \ t_2)$  be chosen?

Without intersymbol interference (blue),  $t_1 = 0$  and  $t_2 = 3T$  are best possible.
With intersymbol interference (red),  $t_1 = 0$  and  $t_2 = 3T$  are best possible.


Solution

(1)  The left graph shows the tree diagram  (without noise)  with all final values.  Highlighted in green is the curve  $i_0(t)/E_{\rm B}$  with the final result  $I_0/E_{\rm B} = \ -1$,  which first rises linearly to  $+1$  $($the first bit of  $s_0(t)$  and  $s_3(t)$  in each case coincide$)$  and then falls off over two bit durations.

Tree diagram of the correlation receiver
  • The correct results are thus:
$$I_0/E_{\rm B}\hspace{0.15cm}\underline { = -1},$$
$$I_2/E_{\rm B} \hspace{0.15cm}\underline {= +1}, $$
$$I_4/E_{\rm B} \hspace{0.15cm}\underline {= -3}, $$
$$I_6/E_{\rm B}\hspace{0.15cm}\underline { = -1} \hspace{0.05cm}.$$


(2)  Only the  second solution  is correct:

  • In the presence of noises,  the functions  $i_i(t)$  no longer increase or decrease linearly,  but have a curve as shown in the right graph.
  • As long as  $I_3 > I_{\it i≠3}$,  the correlation receiver decides correctly.
  • In the presence of noise,  $I_0 ≠ I_6$  always holds,  in contrast to the noise-free tree diagram.


(3)  Only the  second statement  is true:

  • Since now the possible transmitted signals  $s_i(t)$  can no longer be composed of isolated horizontal sections,  also the tree diagram without noise does not consist of straight line segments.
  • Since the energies  $E_i$  are different – this can be seen e.g. by comparing the  (red)  signals  $s_0(t)$  and  $s_2(t)$  – it is essential to use the corrected quantities  $W_i$  for the decision.
  • The use of the uncorrected correlation values  $I_i$  can already lead to wrong decisions without noise disturbances.


(4)  Answer 1  is correct:

  • In the case  without intersymbol interference  (blue rectangular signals),  all signals are limited to the range  $0 \ ... \ 3T$.
  • Outside this range the received signal  $r(t)$  is pure noise.  Therefore in this case also the integration over the range  $0 \ \text{...} \ 3T$.
  • In contrast,  when intersymbol interference  (red signals)  is taken into account,  the integrands  $s_3(t) \cdot s_i(t)$  also differ outside this range.
  • Therefore,  if  $t_1 = \ -T$  and  $t_2 = +4T$  are chosen,  the error probability of the correlation receiver is further reduced compared to the integration range  $0 \ \text{...} \ 3T$.