Difference between revisions of "Aufgaben:Exercise 2.1Z: Sum Signal"

From LNTwww
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID319__Sig_Z_2_1.png|right|frame|Square wave signal, triangular signal and sum signal]]
+
[[File:P_ID319__Sig_Z_2_1.png|right|frame|Rectangular signal, triangular signal, sum signal]]
The adjacent diagram shows the two periodic signals  ${x(t)}$  and  ${y(t)}$ , from which the sum   ${s(t)}$  – sketched in the lower picture – and the difference  ${d(t)}$  are formed.
+
The adjacent diagram shows the periodic signals  ${x(t)}$  and  ${y(t)}$,  from which the sum   ${s(t)}$  – sketched in the lower diagram – and the difference  ${d(t)}$  are formed.
  
Furthermore, in this task we consider the signa  ${w(t)}$, which results from the sum of the two periodic signals  ${u(t)}$  und  $v(t)$ . The base frequencies of the signals are
+
Furthermore, in this task we consider the signal  ${w(t)}$, which results from the sum of two periodic signals  ${u(t)}$  and  $v(t)$ .  The base frequencies of these signals are
  
 
:* $f_u = 998 \,\text{Hz},$
 
:* $f_u = 998 \,\text{Hz},$
Line 12: Line 12:
 
:* $f_v = 1002 \,\text{Hz}.$
 
:* $f_v = 1002 \,\text{Hz}.$
  
That is all we know about the signals  ${u(t)}$  and  $v(t)$ .
+
That is all we know about the signals  ${u(t)}$  and  $v(t)$.
  
  
Line 22: Line 22:
 
''Hints:''  
 
''Hints:''  
 
*The exercise belongs to the chapter  [[Signal_Representation/General_Description|General description of periodic signals]].
 
*The exercise belongs to the chapter  [[Signal_Representation/General_Description|General description of periodic signals]].
*With the interactive applet  [[Applets:Periodendauer_periodischer_Signale|Periodendauer periodischer Signale]]  the resulting period duration of two harmonic oscillations can be determined.  
+
*With the interactive applet  [[Applets:Period_Duration_of_Periodic_Signals|Period Duration of Periodic Signals]]  the resulting period duration of two harmonic oscillations can be determined.  
 
   
 
   
  
Line 29: Line 29:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What is the period duration&nbsp; $T_x$&nbsp; and the base frequency&nbsp; $f_x$&nbsp; of the signal&nbsp; ${x(t)}$?
+
{What is the period duration&nbsp; $T_x$&nbsp; and the basic frequency&nbsp; $f_x$&nbsp; of the signal&nbsp; ${x(t)}$?
 
|type="{}"}
 
|type="{}"}
 
$f_x\ = \ $  { 1 3% } &nbsp; $\text{kHz}$
 
$f_x\ = \ $  { 1 3% } &nbsp; $\text{kHz}$
  
  
{What is the period duration&nbsp; $T_y$&nbsp; and the base frequency&nbsp; $f_y$&nbsp; of the signal&nbsp; ${y(t)}$?
+
{What is the period duration&nbsp; $T_y$&nbsp; and the basic frequency&nbsp; $f_y$&nbsp; of the signal&nbsp; ${y(t)}$?
 
|type="{}"}
 
|type="{}"}
 
$f_y\ = \ $ { 0.4 3% } &nbsp; $\text{kHz}$
 
$f_y\ = \ $ { 0.4 3% } &nbsp; $\text{kHz}$
  
  
{Determine the base frequency&nbsp; $f_s$&nbsp; as well as the period duration&nbsp; $T_s$&nbsp; of the sum signal&nbsp; ${s(t)}$&nbsp; and verify your results with the help of the sketched signal.
+
{Determine the basic frequency&nbsp; $f_s$&nbsp; and the period duration&nbsp; $T_s$&nbsp; of the sum signal&nbsp; ${s(t)}$.&nbsp; <br>Verify your results with the help of the sketched signal.
 
|type="{}"}
 
|type="{}"}
 
$T_s\ = \ $ { 5 3% } &nbsp; $\text{ms}$
 
$T_s\ = \ $ { 5 3% } &nbsp; $\text{ms}$
Line 57: Line 57:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  The following applies to the square wave signal:&nbsp; $T_x = 1 \,\text{ms}$  &nbsp; &rArr; &nbsp; $f_x \hspace{0.15cm}\underline{= 1 \, \text{kHz}}$.
+
'''(1)'''&nbsp;  The following applies to the rectangular signal:&nbsp; $T_x = 1 \,\text{ms}$  &nbsp; &rArr; &nbsp;
 +
:$$f_x \hspace{0.15cm}\underline{= 1 \, \text{kHz}}.$$
  
 +
'''(2)'''&nbsp;  The following applies to the triangular signal:&nbsp; $T_y = 2.5 \,\text{ms}$&nbsp; und&nbsp;
 +
:$$f_y \hspace{0.15cm}\underline{= 0.4\,  \text{kHz}}.$$
  
 
+
'''(3)'''&nbsp;  The basic frequency&nbsp; $f_s$&nbsp; of the sum signal&nbsp; $s(t)$&nbsp; is the greatest common divisor&nbsp; $f_x = 1 \,\text{kHz}$&nbsp; and&nbsp; $f_y = 0.4 \,\text{kHz}$.
'''(2)'''&nbsp;  The following applies to the triangular signal:&nbsp; $T_y = 2.5 \,\text{ms}$&nbsp; und&nbsp; $f_y \hspace{0.15cm}\underline{= 0.4\,  \text{kHz}}$.
+
[[File:P_ID320__Sig_Z_2_1_d_neu.png|right|frame|Difference&nbsp; $d(t) = x(t) - y(t)$]]
 
+
   
 
+
*From this follows&nbsp; $f_s = 200 \,\text{Hz}$&nbsp; and the period duration&nbsp; $T_s\hspace{0.15cm}\underline{ = 5 \,\text{ms}}$.
 
+
* This is also evident from the graphic on the information page.
'''(3)'''&nbsp;  The base frequency&nbsp; $f_s$&nbsp; of the sum signal&nbsp; $s(t)$&nbsp; is the greatest common divisor&nbsp; $f_x = 1 \,\text{kHz}$&nbsp; and&nbsp; $f_y = 0.4 \,\text{kHz}$.  
 
*Daraus folgt&nbsp; $f_s = 200 \,\text{Hz}$&nbsp; und die Periodendauer&nbsp; $T_s\hspace{0.15cm}\underline{ = 5 \,\text{ms}}$, wie auch aus der grafischen Darstellung des Signals&nbsp; ${s(t)}$&nbsp; auf der Angabenseite hervorgeht.
 
 
 
 
 
 
 
[[File:P_ID320__Sig_Z_2_1_d_neu.png|right|frame|Difference $d(t) = x(t) - y(t)$]]
 
'''(4)'''&nbsp; The period duration&nbsp; $T_d$&nbsp; does not change compared to the period duration&nbsp; $T_s$&nbsp;, if the signal&nbsp; ${y(t)}$&nbsp; is not added but subtracted: &nbsp; &nbsp; $T_d = T_s \hspace{0.15cm}\underline{= 5\, \text{ms}}$.
 
  
  
 +
'''(4)'''&nbsp;  The period duration&nbsp; $T_d$&nbsp; does not change compared to the period duration&nbsp; $T_s$,&nbsp; if the signal&nbsp; ${y(t)}$&nbsp; is not added but subtracted: &nbsp; &nbsp;
 +
:$$T_d = T_s \hspace{0.15cm}\underline{= 5\, \text{ms}}.$$
  
'''(5)'''&nbsp;  The greatest common divisor of&nbsp; $f_u = 998 \,\text{Hz}$&nbsp; and&nbsp; $f_{v} = 1002 \,\text{Hz}$&nbsp; is&nbsp; $f_w = 2 \,\text{Hz}$.  
+
'''(5)'''&nbsp;  The greatest common divisor of&nbsp; $f_u = 998 \,\text{Hz}$&nbsp; and&nbsp; $f_{v} = 1002 \,\text{Hz}$&nbsp; is&nbsp; $f_w = 2 \,\text{Hz}$.&nbsp; The inverse of this gives the period duration&nbsp; $T_w \hspace{0.15cm}\underline{= 500 \,\text{ms}}$.
*The inverse of this gives the period duration  $T_w \hspace{0.15cm}\underline{= 500 \,\text{ms}}$.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 13:33, 12 April 2021

Rectangular signal, triangular signal, sum signal

The adjacent diagram shows the periodic signals  ${x(t)}$  and  ${y(t)}$,  from which the sum   ${s(t)}$  – sketched in the lower diagram – and the difference  ${d(t)}$  are formed.

Furthermore, in this task we consider the signal  ${w(t)}$, which results from the sum of two periodic signals  ${u(t)}$  and  $v(t)$ .  The base frequencies of these signals are

  • $f_u = 998 \,\text{Hz},$
  • $f_v = 1002 \,\text{Hz}.$

That is all we know about the signals  ${u(t)}$  and  $v(t)$.




Hints:


Questions

1

What is the period duration  $T_x$  and the basic frequency  $f_x$  of the signal  ${x(t)}$?

$f_x\ = \ $

  $\text{kHz}$

2

What is the period duration  $T_y$  and the basic frequency  $f_y$  of the signal  ${y(t)}$?

$f_y\ = \ $

  $\text{kHz}$

3

Determine the basic frequency  $f_s$  and the period duration  $T_s$  of the sum signal  ${s(t)}$. 
Verify your results with the help of the sketched signal.

$T_s\ = \ $

  $\text{ms}$

4

What is the period duration  $T_d$  of the difference signal  ${d(t)}$ ?

$T_d\ = \ $

  $\text{ms}$

5

What is the period duration  $T_w$  of the signal  ${w(t)} = {u(t)} + v(t)$?

$T_w\ = \ $

  $\text{ms}$


Solution

(1)  The following applies to the rectangular signal:  $T_x = 1 \,\text{ms}$   ⇒  

$$f_x \hspace{0.15cm}\underline{= 1 \, \text{kHz}}.$$

(2)  The following applies to the triangular signal:  $T_y = 2.5 \,\text{ms}$  und 

$$f_y \hspace{0.15cm}\underline{= 0.4\, \text{kHz}}.$$

(3)  The basic frequency  $f_s$  of the sum signal  $s(t)$  is the greatest common divisor  $f_x = 1 \,\text{kHz}$  and  $f_y = 0.4 \,\text{kHz}$.

Difference  $d(t) = x(t) - y(t)$
  • From this follows  $f_s = 200 \,\text{Hz}$  and the period duration  $T_s\hspace{0.15cm}\underline{ = 5 \,\text{ms}}$.
  • This is also evident from the graphic on the information page.


(4)  The period duration  $T_d$  does not change compared to the period duration  $T_s$,  if the signal  ${y(t)}$  is not added but subtracted:    

$$T_d = T_s \hspace{0.15cm}\underline{= 5\, \text{ms}}.$$

(5)  The greatest common divisor of  $f_u = 998 \,\text{Hz}$  and  $f_{v} = 1002 \,\text{Hz}$  is  $f_w = 2 \,\text{Hz}$.  The inverse of this gives the period duration  $T_w \hspace{0.15cm}\underline{= 500 \,\text{ms}}$.