Difference between revisions of "Information Theory/AWGN Channel Capacity for Continuous-Valued Input"

From LNTwww
 
(34 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Wertkontinuierliche Informationstheorie
+
|Untermenü=Information Theory for Continuous Random Variables
 
|Vorherige Seite=Differentielle Entropie
 
|Vorherige Seite=Differentielle Entropie
|Nächste Seite=AWGN–Kanalkapazität bei wertdiskretem Eingang
+
|Nächste Seite=AWGN Channel Capacity for Discrete Input
 
}}
 
}}
  
  
==Mutual information between continuous-value random variables ==
+
==Mutual information between continuous random variables ==
 
<br>
 
<br>
In the chapter &nbsp;[[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung#Informationstheoretisches_Modell_der_Digitalsignal.C3.BCbertragung|Information-theoretical model of digital signal transmission]]&nbsp; the&nbsp; ''mutual information'' between the two discrete-value random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; was given, among other things, in the following form:
+
In the chapter &nbsp;[[Information_Theory/Application_to_Digital_Signal_Transmission#Information-theoretical_model_of_digital_signal_transmission|"Information-theoretical model of digital signal transmission"]]&nbsp; the&nbsp; "mutual information"&nbsp; between the two discrete random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; was given, among other things,&nbsp; in the following form:
 
   
 
   
:$$I(X;Y) = \hspace{-0.4cm} \sum_{(x,\hspace{0.05cm} y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{XY}\hspace{-0.08cm})}  
+
:$$I(X;Y) = \hspace{0.5cm} \sum_{\hspace{-0.9cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{Y}\hspace{-0.08cm})} \hspace{-1.1cm}\sum_{\hspace{1.3cm} x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{X}\hspace{-0.08cm})}
  \hspace{-0.8cm} P_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \frac{ P_{XY}(x, y)}{P_{X}(x) \cdot P_{Y}(y)} \hspace{0.05cm}.$$
+
  \hspace{-0.9cm} P_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \frac{ P_{XY}(x, y)}{P_{X}(x) \cdot P_{Y}(y)} \hspace{0.05cm}.$$
  
This equation simultaneously corresponds to the &nbsp;[[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Informational_Divergence_-_Kullback-Leibler_Distance|Kullback&ndash;Leibler distance]]&nbsp; between the joint probability function&nbsp; $P_{XY}$&nbsp;  and the product of the two individual probability functions&nbsp; $P_X$&nbsp; and&nbsp; $P_Y$ :
+
This equation simultaneously corresponds to the &nbsp;[[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Informational_divergence_-_Kullback-Leibler_distance|"Kullback&ndash;Leibler distance"]]&nbsp; between the joint probability function&nbsp; $P_{XY}$&nbsp;  and the product of the two individual probability functions&nbsp; $P_X$&nbsp; and&nbsp; $P_Y$:
 
   
 
   
 
:$$I(X;Y) = D(P_{XY} \hspace{0.05cm} ||  \hspace{0.05cm}P_{X} \cdot P_{Y}) \hspace{0.05cm}.$$
 
:$$I(X;Y) = D(P_{XY} \hspace{0.05cm} ||  \hspace{0.05cm}P_{X} \cdot P_{Y}) \hspace{0.05cm}.$$
  
In order to derive the mutual information&nbsp; $I(X; Y)$&nbsp; between two continuous-value random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp;, one proceeds as follows, whereby inverted commas indicate a quantised variable:
+
In order to derive the mutual information&nbsp; $I(X; Y)$&nbsp; between two continuous random variables&nbsp; $X$&nbsp; and&nbsp; $Y$,&nbsp; one proceeds as follows,&nbsp; whereby inverted commas indicate a quantized variable:
*One quantises the random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; $($with the quantisation intervals&nbsp; ${\it Δ}x$&nbsp; and&nbsp; ${\it Δ}y)$&nbsp; and thus obtains the probability functions&nbsp; $P_{X\hspace{0.01cm}′}$&nbsp; and&nbsp; $P_{Y\hspace{0.01cm}′}$.
+
*One quantizes the random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; $($with the quantization intervals&nbsp; ${\it Δ}x$&nbsp; and&nbsp; ${\it Δ}y)$&nbsp; and thus obtains the probability functions&nbsp; $P_{X\hspace{0.01cm}′}$&nbsp; and&nbsp; $P_{Y\hspace{0.01cm}′}$.
*The „vectors”&nbsp; $P_{X\hspace{0.01cm}′}$&nbsp; and&nbsp; $P_{Y\hspace{0.01cm}′}$&nbsp; become infinitely long after the boundary transitions&nbsp; ${\it Δ}x → 0,&nbsp; {\it Δ}y → 0$&nbsp;, and the joint PMF&nbsp; $P_{X\hspace{0.01cm}′\hspace{0.08cm}Y\hspace{0.01cm}′}$&nbsp; is then also infinitely extended in area.
+
 
 +
*The "vectors"&nbsp; $P_{X\hspace{0.01cm}′}$&nbsp; and&nbsp; $P_{Y\hspace{0.01cm}′}$&nbsp; become infinitely long after the boundary transitions&nbsp; ${\it Δ}x → 0,\hspace{0.1cm} {\it Δ}y → 0$,&nbsp; and the joint PMF&nbsp; $P_{X\hspace{0.01cm}′\hspace{0.08cm}Y\hspace{0.01cm}′}$&nbsp; is also infinitely extended in area.
 +
 
 
*These boundary transitions give rise to the probability density functions of the continuous random variables according to the following equations:
 
*These boundary transitions give rise to the probability density functions of the continuous random variables according to the following equations:
 
   
 
   
Line 27: Line 29:
 
\hspace{0.3cm}f_{XY}(x_{\mu}\hspace{0.05cm}, y_{\mu}) = \frac{P_{X\hspace{0.01cm}'\hspace{0.03cm}Y\hspace{0.01cm}'}(x_{\mu}\hspace{0.05cm}, y_{\mu})} {{\it \Delta_x} \cdot {\it \Delta_y}} \hspace{0.05cm}.$$
 
\hspace{0.3cm}f_{XY}(x_{\mu}\hspace{0.05cm}, y_{\mu}) = \frac{P_{X\hspace{0.01cm}'\hspace{0.03cm}Y\hspace{0.01cm}'}(x_{\mu}\hspace{0.05cm}, y_{\mu})} {{\it \Delta_x} \cdot {\it \Delta_y}} \hspace{0.05cm}.$$
  
*The double sum in the above equation, after renaming&nbsp; $Δx → {\rm d}x$&nbsp; or&nbsp; $Δy → {\rm d}y$&nbsp;, becomes the equation valid for continuous value random variables:
+
*The double sum in the above equation, after renaming&nbsp; $Δx → {\rm d}x$&nbsp; and&nbsp; $Δy → {\rm d}y$,&nbsp; becomes the equation valid for continuous value random variables:
 
   
 
   
:$$I(X;Y) = \hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.4cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm} (\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})}  
+
:$$I(X;Y) = \hspace{0.5cm} \int\limits_{\hspace{-0.9cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{Y}\hspace{-0.08cm})} \hspace{-1.1cm}\int\limits_{\hspace{1.3cm} x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{X}\hspace{-0.08cm})}
  \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \frac{ f_{XY}(x, y) }  
+
  \hspace{-0.9cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \frac{ f_{XY}(x, y) }  
 
{f_{X}(x) \cdot f_{Y}(y)}
 
{f_{X}(x) \cdot f_{Y}(y)}
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y \hspace{0.05cm}.$$
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y \hspace{0.05cm}.$$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Conclusion:}$&nbsp; By splitting this double integral, it is also possible to write for the transinformation:
+
$\text{Conclusion:}$&nbsp; By splitting this double integral,&nbsp; it is also possible to write for the&nbsp; &raquo;'''mutual information'''&laquo;:
 
   
 
   
 
:$$I(X;Y) = h(X) + h(Y) - h(XY)\hspace{0.05cm}.$$
 
:$$I(X;Y) = h(X) + h(Y) - h(XY)\hspace{0.05cm}.$$
  
The ''joint differential entropy''
+
The&nbsp; &raquo;'''joint differential entropy'''&laquo;
 
   
 
   
:$$h(XY) = -\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.4cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm} (\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})}  
+
:$$h(XY)   = - \hspace{-0.3cm}\int\limits_{\hspace{-0.9cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{Y}\hspace{-0.08cm})} \hspace{-1.1cm}\int\limits_{\hspace{1.3cm} x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{X}\hspace{-0.08cm})}
  \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \big[f_{XY}(x, y) \big]
+
  \hspace{-0.9cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \hspace{0.1cm} \big[f_{XY}(x, y) \big]
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y$$
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y$$
  
and the two ''differential single entropies''
+
and the two&nbsp; &raquo;'''differential single entropies'''&laquo;
 
  
 
  
 
:$$h(X) = -\hspace{-0.7cm}  \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}\hspace{0.03cm} (\hspace{-0.03cm}f_X)} \hspace{-0.35cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \big[f_X(x)\big] \hspace{0.1cm}{\rm d}x
 
:$$h(X) = -\hspace{-0.7cm}  \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}\hspace{0.03cm} (\hspace{-0.03cm}f_X)} \hspace{-0.35cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \big[f_X(x)\big] \hspace{0.1cm}{\rm d}x
Line 54: Line 56:
 
==On equivocation and irrelevance==
 
==On equivocation and irrelevance==
 
<br>  
 
<br>  
We further assume the continuous value mutual information&nbsp;$I(X;Y) = h(X) + h(Y) - h(XY)$&nbsp; .&nbsp; This representation is also found in the following diagram (left graph).
+
We further assume the continuous mutual information&nbsp; $I(X;Y) = h(X) + h(Y) - h(XY)$. &nbsp; This representation is also found in the following diagram&nbsp; $($left graph$)$.
  
[[File:P_ID2882__Inf_T_4_2_S2neu.png|right|frame|Representation of the mutual information for continuous value random variables]]
+
[[File:EN_Inf_T_4_2_S2.png|right|frame|Representation of the mutual information for continuous-valued random variables]]
  
 
From this you can see that the mutual information can also be represented as follows:
 
From this you can see that the mutual information can also be represented as follows:
Line 64: Line 66:
 
These fundamental information-theoretical relationships can also be read from the graph on the right.&nbsp;  
 
These fundamental information-theoretical relationships can also be read from the graph on the right.&nbsp;  
  
This directional representation is particularly suitable for message transmission systems.  
+
&rArr; &nbsp; This directional representation is particularly suitable for communication systems.&nbsp; The outflowing or inflowing differential entropy characterises
 
+
*the&nbsp; &raquo;'''equivocation'''&laquo;:
The outflowing or inflowing differential entropy characterises
 
*the&nbsp; '''equivocation''':
 
 
   
 
   
:$$h(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) =\hspace{0.2cm} -\int \hspace{-0.9cm} \int\limits_{\hspace{-0.4cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.03cm} (\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})}  
+
:$$h(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)   = - \hspace{-0.3cm}\int\limits_{\hspace{-0.9cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{Y}\hspace{-0.08cm})} \hspace{-1.1cm}\int\limits_{\hspace{1.3cm} x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{X}\hspace{-0.08cm})}
  \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \big [{f_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (x \hspace{-0.05cm}\mid \hspace{-0.05cm} y)} \big]
+
  \hspace{-0.9cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \hspace{0.1cm} \big [{f_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (x \hspace{-0.05cm}\mid \hspace{-0.05cm} y)} \big]
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm},$$
+
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y,$$
  
*the&nbsp; '''irrelevance''':
+
*the&nbsp; &raquo;'''irrelevance'''&laquo;:
 
   
 
   
:$$h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) =\hspace{0.2cm}- \int \hspace{-0.9cm} \int\limits_{\hspace{-0.4cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.03cm} (\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})}  
+
:$$h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X)   = - \hspace{-0.3cm}\int\limits_{\hspace{-0.9cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{Y}\hspace{-0.08cm})} \hspace{-1.1cm}\int\limits_{\hspace{1.3cm} x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{X}\hspace{-0.08cm})}
  \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \big [{f_{\hspace{0.03cm}Y \mid \hspace{0.03cm} X} (y \hspace{-0.05cm}\mid \hspace{-0.05cm} x)} \big]
+
  \hspace{-0.9cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \hspace{0.1cm} \big [{f_{\hspace{0.03cm}Y \mid \hspace{0.03cm} X} (y \hspace{-0.05cm}\mid \hspace{-0.05cm} x)} \big]
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
+
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y.$$  
  
The significance of these two information-theoretic quantities will be discussed in more detail in&nbsp; [[Aufgaben:4.5Z_Nochmals_Transinformation|task 4.5Z]]&nbsp;.  
+
The significance of these two information-theoretic quantities will be discussed in more detail in&nbsp; [[Aufgaben:Exercise_4.5Z:_Again_Mutual_Information|$\text{Exercise 4.5Z}$]]&nbsp;.  
  
 
If one compares the graphical representations of the mutual information for
 
If one compares the graphical representations of the mutual information for
*discrete value random variables in the section &nbsp;[[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung#Information-theoretical_model_of_digital_signal_transmission|Information-theoretical model of digital signal transmission]&nbsp; continuous value random variables according to the above diagram,
+
*discrete random variables in the section &nbsp;[[Information_Theory/Application_to_Digital_Signal_Transmission#Information-theoretical_model_of_digital_signal_transmission|"Information-theoretical model of digital signal transmission"]],&nbsp; and
  
 +
*continuous  random variables according to the above diagram,
  
the only distinguishing feature is that each „capital $H$&nbsp; (entropy; larger-equal zero)&nbsp; has been replaced by a „non-capital $h$&nbsp; (differential entropy can be positive, negative or zero)&nbsp;.  
+
 
*Otherwise, the mutual information is the same in both representations and&nbsp;$I(X; Y) ≥ 0$ always applies.
+
the only distinguishing feature is that each&nbsp; $($capital$)$&nbsp; $H$&nbsp; $($entropy;&nbsp; $\ge 0)$&nbsp; has been replaced by a&nbsp; $($non-capital$)$ $h$&nbsp; $($differential entropy;&nbsp; can be positive,&nbsp; negative or zero$)$.
*In the following, we mostly use the&nbsp; ''binary logarithm'' &nbsp; ⇒  &nbsp;  $\log_2$&nbsp; and thus obtain the mutual information in „bit”.
+
 +
*Otherwise,&nbsp; the mutual information is the same in both representations and&nbsp; $I(X; Y) ≥ 0$&nbsp; always applies.
 +
 
 +
*In the following,&nbsp; we mostly use the&nbsp; "binary logarithm" &nbsp; ⇒  &nbsp;  $\log_2$&nbsp; and thus obtain the mutual information with the pseudo-unit&nbsp; "bit".
  
  
Line 93: Line 97:
 
<br>
 
<br>
 
We now consider a very simple model of message transmission:
 
We now consider a very simple model of message transmission:
*The random variable&nbsp; $X$&nbsp; stands for the (zero mean) transmission signal and is characterised by the PDF&nbsp; $f_X(x)$&nbsp; and the variance&nbsp; $σ_X^2$&nbsp; .&nbsp; The transmission power is $P_X = σ_X^2$.
+
*The random variable&nbsp; $X$&nbsp; stands for the&nbsp; $($zero mean$)$&nbsp; transmitted signal and is characterized by PDF&nbsp; $f_X(x)$&nbsp; and variance&nbsp; $σ_X^2$.&nbsp; Transmission power:&nbsp; $P_X = σ_X^2$.
*The additive noise&nbsp; $N$&nbsp; is given by the PDF&nbsp; $f_N(n)$&nbsp; and the noise power&nbsp; $P_N = σ_N^2$&nbsp;.  
+
 
 +
*The additive noise&nbsp; $N$&nbsp; is given by the&nbsp; $($mean-free$)$&nbsp;  PDF&nbsp; $f_N(n)$&nbsp; and the noise power&nbsp; $P_N = σ_N^2$.
 +
 
 
*If&nbsp; $X$&nbsp; and&nbsp; $N$&nbsp; are assumed to be statistically independent &nbsp; &rArr; &nbsp;  signal-independent noise, then&nbsp; $\text{E}\big[X · N \big] = \text{E}\big[X \big] · \text{E}\big[N\big] = 0$ .
 
*If&nbsp; $X$&nbsp; and&nbsp; $N$&nbsp; are assumed to be statistically independent &nbsp; &rArr; &nbsp;  signal-independent noise, then&nbsp; $\text{E}\big[X · N \big] = \text{E}\big[X \big] · \text{E}\big[N\big] = 0$ .
*The received signal is &nbsp;$Y = X + N$.&nbsp; The output PDF&nbsp; $f_Y(y)$&nbsp; can be calculated with the [[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_in_Time_Domain|convolution operation]]&nbsp; &nbsp; ⇒ &nbsp;  $f_Y(y) = f_X(x) ∗ f_N(n)$.
+
[[File:Inf_T_4_2_S3neu.png|right|frame|Transmission system with additive noise]]
  
[[File:Inf_T_4_2_S3neu.png|right|frame|Message transmission system with additive noise]]
+
*The received signal is &nbsp;$Y = X + N$.&nbsp; The output PDF&nbsp; $f_Y(y)$&nbsp; can be calculated with the [[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_in_the_time_domain|"convolution operation"]]&nbsp; &nbsp; ⇒ &nbsp;  $f_Y(y) = f_X(x) ∗ f_N(n)$.
* For the received power (variance) holds:
+
 
 +
* For the received power holds:
 
   
 
   
 
:$$P_Y = \sigma_Y^2 = {\rm E}\big[Y^2\big] = {\rm E}\big[(X+N)^2\big] =  {\rm E}\big[X^2\big] +  {\rm E}\big[N^2\big] = \sigma_X^2 + \sigma_N^2 $$
 
:$$P_Y = \sigma_Y^2 = {\rm E}\big[Y^2\big] = {\rm E}\big[(X+N)^2\big] =  {\rm E}\big[X^2\big] +  {\rm E}\big[N^2\big] = \sigma_X^2 + \sigma_N^2 $$
Line 105: Line 112:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
The sketched density functions sketched (rectangular or trapezoidal) are only intended to clarify the calculation process and have no practical relevance.
+
The sketched probability density functions&nbsp; $($rectangular or trapezoidal$)$&nbsp; are only intended to clarify the calculation process and have no practical relevance.
<br clear=all>
+
 
To calculate the mutual information between input&nbsp; $X$&nbsp; and output&nbsp; $Y$&nbsp; there are three possibilities according to the&nbsp; [[Information_Theory/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#On_equivocation_and_irrelevance|graphic on the previous subchapter]]&nbsp; drei Möglichkeiten:
+
To calculate the mutual information between input&nbsp; $X$&nbsp; and output&nbsp; $Y$&nbsp; there are three possibilities according to the&nbsp; [[Information_Theory/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#On_equivocation_and_irrelevance|"graphic in the previous subchapter"]]:
 
* Calculation according to &nbsp;$I(X, Y) = h(X) + h(Y) - h(XY)$:
 
* Calculation according to &nbsp;$I(X, Y) = h(X) + h(Y) - h(XY)$:
:The first two terms can be calculated in a simple way from &nbsp;$f_X(x)$&nbsp; and &nbsp;$f_Y(y)$&nbsp; respectively.&nbsp; The&nbsp; ''joint differentrial entropy'' &nbsp;$h(XY)$ is problematic.&nbsp; For this, one needs the 2D joint PDF &nbsp;$f_{XY}(x, y)$, which is usually not given directly.
+
::The first two terms can be calculated in a simple way from &nbsp;$f_X(x)$&nbsp; and &nbsp;$f_Y(y)$&nbsp; respectively.&nbsp; The&nbsp; "joint differential entropy" &nbsp;$h(XY)$ is problematic.&nbsp; For this,&nbsp; one needs the two-dimensional joint PDF &nbsp;$f_{XY}(x, y)$,&nbsp; which is usually not given directly.
  
 
* Calculation according to &nbsp;$I(X, Y) = h(Y) - h(Y|X)$:
 
* Calculation according to &nbsp;$I(X, Y) = h(Y) - h(Y|X)$:
:Here &nbsp;$h(Y|X)$&nbsp; denotes the&nbsp; ''differential scattering entropy''.&nbsp; It holds that &nbsp;$h(Y|X) = h(X + N|X) = h(N)$, so that &nbsp;$I(X; Y)$&nbsp; is very easy to calculate via the equation &nbsp;$f_Y(y) = f_X(x) ∗ f_N(n)$&nbsp; if $f_X(x)$&nbsp; and $f_N(n)$&nbsp; are known.
+
::Here &nbsp;$h(Y|X)$&nbsp; denotes the&nbsp; "differential irrelevance".&nbsp; It holds &nbsp;$h(Y|X) = h(X + N|X) = h(N)$,&nbsp; so that &nbsp;$I(X; Y)$&nbsp; is very easy to calculate via the equation &nbsp;$f_Y(y) = f_X(x) ∗ f_N(n)$&nbsp; if $f_X(x)$&nbsp; and $f_N(n)$&nbsp; are known.
 +
 
 
* Calculation according to &nbsp;$I(X, Y) = h(X) - h(X|Y)$:
 
* Calculation according to &nbsp;$I(X, Y) = h(X) - h(X|Y)$:
:According to this equation, however, one needs the differential inference entropy&nbsp;$h(X|Y)$, which is more difficult to state than&nbsp;$h(Y|X)$.
+
::According to this equation,&nbsp; however,&nbsp; one needs the &nbsp; "differential equivocation" &nbsp; $h(X|Y)$,&nbsp; which is more difficult to state than&nbsp; $h(Y|X)$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Conclusion:}$&nbsp; In the following we use the middle equation and write for the mutual information between the input&nbsp; $X$&nbsp; and the output&nbsp; $Y$&nbsp; of a&nbsp; ''message transmission system in the presence of additive and uncorrelated noise''&nbsp; $N$:
+
$\text{Conclusion:}$&nbsp; In the following we use the middle equation and write for the&nbsp; &raquo;'''mutual information'''&laquo;&nbsp; between the input&nbsp; $X$&nbsp; and the output&nbsp; $Y$&nbsp; of a&nbsp; transmission system in the presence of additive and uncorrelated noise&nbsp; $N$:
 
 
 
 
 
:$$I(X;Y) \hspace{-0.05cm} = \hspace{-0.01cm} h(Y) \hspace{-0.01cm}- \hspace{-0.01cm}h(N) \hspace{-0.01cm}=\hspace{-0.05cm}
 
:$$I(X;Y) \hspace{-0.05cm} = \hspace{-0.01cm} h(Y) \hspace{-0.01cm}- \hspace{-0.01cm}h(N) \hspace{-0.01cm}=\hspace{-0.05cm}
Line 124: Line 132:
  
 
   
 
   
==Kanalkapazität des AWGN–Kanals==   
+
==Channel capacity of the AWGN channel==   
 
<br>
 
<br>
Spezifiziert man im bisherigen&nbsp;  [[Information_Theory/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Transinformationsberechnung_bei_additiver_St.C3.B6rung|allgemeinen Systemmodell]]&nbsp; die Wahrscheinlichkeitsdichtefunktion der Störung (bzw. des Rauschens) als gaußisch entsprechend
+
If one specifies the probability density function of the noise in the previous&nbsp;  [[Information_Theory/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Calculation_of_mutual_information_with_additive_noise|"general system model"]]&nbsp; as Gaussian corresponding to
[[File:P_ID2884__Inf_T_4_2_S4_neu.png|right|frame|Zur Herleitung der AWGN–Kanalkapazität]]  
+
[[File:P_ID2884__Inf_T_4_2_S4_neu.png|right|frame|Derivation of the AWGN channel capacity]]  
 +
 
 
:$$f_N(n) = \frac{1}{\sqrt{2\pi  \sigma_N^2}} \cdot {\rm e}^{  
 
:$$f_N(n) = \frac{1}{\sqrt{2\pi  \sigma_N^2}} \cdot {\rm e}^{  
 
- \hspace{0.05cm}{n^2}/(2 \sigma_N^2) } \hspace{0.05cm}, $$
 
- \hspace{0.05cm}{n^2}/(2 \sigma_N^2) } \hspace{0.05cm}, $$
  
so erhalten wir das rechts skizzierte Modell zur Berechnung der Kanalkapazität des so genannten&nbsp; [[Modulation_Methods/Qualitätskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell|AWGN–Kanals]]&nbsp; (''Additive White Gaussian Noise'').&nbsp; Meist ersetzen wir im Folgenden&nbsp; $\sigma_N^2$&nbsp; durch&nbsp; $P_N$.
+
we obtain the model sketched on the right for calculating the channel capacity of the so-called&nbsp; [[Modulation_Methods/Quality_Criteria#Some_remarks_on_the_AWGN_channel_model|"AWGN channel"]] &nbsp; &rArr; &nbsp;  "Additive White Gaussian Noise").&nbsp; In the following,&nbsp; we usually replace the variance&nbsp; $\sigma_N^2$&nbsp; by the power&nbsp; $P_N$.
<br clear=all>
+
 
Aus vorherigen Abschnitten wissen wir:
+
We know from previous sections:
*Die&nbsp; [[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|Kanalkapazität]]&nbsp; $C_{\rm AWGN}$&nbsp; gibt die maximale Transinformation&nbsp; $I(X; Y)$&nbsp; zwischen der Eingangsgröße&nbsp;  $X$&nbsp;  und der Ausgangsgröße&nbsp;  $Y$&nbsp;  des AWGN–Kanals an.&nbsp;  Die Maximierung bezieht sich dabei auf die bestmögliche Eingangs–WDF.&nbsp;  Somit gilt unter der Nebenbedingung der&nbsp;  [[Information_Theory/Differentielle_Entropie#Differentielle_Entropie_einiger_leistungsbegrenzter_Zufallsgr.C3.B6.C3.9Fen|Leistungsbegrenzung]]:
+
*The&nbsp; [[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung#Definition_and_meaning_of_channel_capacity|"channel capacity"]]&nbsp; $C_{\rm AWGN}$&nbsp; specifies the maximum mutual information&nbsp; $I(X; Y)$&nbsp; between the input quantity&nbsp;  $X$&nbsp;  and the output quantity&nbsp;  $Y$&nbsp;  of the AWGN channel.&nbsp;   
 +
 
 +
*The maximization refers to the best possible input PDF.&nbsp;  Thus,&nbsp; under the&nbsp;  [[Information_Theory/Differentielle_Entropie#Differential_entropy_of_some_power-constrained_random_variables|"power constraint"]]&nbsp; the following applies:
 
   
 
   
 
:$$C_{\rm AWGN} = \max_{f_X:\hspace{0.1cm} {\rm E}[X^2 ] \le P_X} \hspace{-0.35cm}  I(X;Y)   
 
:$$C_{\rm AWGN} = \max_{f_X:\hspace{0.1cm} {\rm E}[X^2 ] \le P_X} \hspace{-0.35cm}  I(X;Y)   
 
= -h(N) + \max_{f_X:\hspace{0.1cm} {\rm E}[X^2] \le P_X} \hspace{-0.35cm}  h(Y)  
 
= -h(N) + \max_{f_X:\hspace{0.1cm} {\rm E}[X^2] \le P_X} \hspace{-0.35cm}  h(Y)  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 +
*It is already taken into account that the maximization relates solely to the differential entropy &nbsp;$h(Y)$ &nbsp; ⇒ &nbsp; probability density function &nbsp;$f_Y(y)$.&nbsp;  Indeed, for a given noise power&nbsp;  $P_N$ &nbsp; &rArr;  &nbsp; $h(N) = 1/2 · \log_2 (2π{\rm e} · P_N)$&nbsp; is a constant.
  
:Es ist bereits berücksichtigt, dass sich die Maximierung allein auf die differentielle Entropie &nbsp;$h(Y)$ &nbsp; ⇒ &nbsp; WDF &nbsp;$f_Y(y)$&nbsp; bezieht.&nbsp;  Bei gegebener Störleistung&nbsp;  $P_N$&nbsp;  ist nämlich &nbsp;$h(N) = 1/2 · \log_2 (2π{\rm e} · P_N)$&nbsp; eine Konstante.
+
*The maximum for &nbsp;$h(Y)$&nbsp;  is obtained for a Gaussian PDF &nbsp;$f_Y(y)$&nbsp; with &nbsp;$P_Y = P_X + P_N$,&nbsp; see section&nbsp; [[Information_Theory/Differentielle_Entropie#Proof:_Maximum_differential_entropy_with_power_constraint|"Maximum differential entropy under power constraint"]]:
*Das Maximum für &nbsp;$h(Y)$&nbsp; erhält man für eine Gaußsche WDF &nbsp;$f_Y(y)$&nbsp; mit &nbsp;$P_Y = P_X + P_N$&nbsp;t, siehe Seite&nbsp; [[Information_Theory/Differentielle_Entropie#Beweis:_Maximale_differentielle_Entropie_bei_Leistungsbegrenzung|Maximale differentielle Entropie bei Leistungsbegrenzung]]:
 
 
:$${\rm max}\big[h(Y)\big] = 1/2 · \log_2 \big[2πe · (P_X + P_N)\big].$$
 
:$${\rm max}\big[h(Y)\big] = 1/2 · \log_2 \big[2πe · (P_X + P_N)\big].$$
*Die Ausgangs–WDF &nbsp;$f_Y(y) = f_X(x) ∗ f_N(n)$&nbsp; ist aber nur dann gaußförmig, wenn sowohl&nbsp;  $f_X(x)$&nbsp;  als auch&nbsp;  $f_N(n)$&nbsp;  Gaußfunktionen sind.&nbsp; Ein plakativer Merkspruch zur Faltungsoperation lautet nämlich:&nbsp; '''Gauß bleibt Gauß, und Nicht–Gauß wird nie (exakt) Gauß'''.
+
*However,&nbsp; the output PDF &nbsp;$f_Y(y) = f_X(x) ∗ f_N(n)$&nbsp; is Gaussian only if both&nbsp;  $f_X(x)$&nbsp;  and&nbsp;  $f_N(n)$&nbsp;  are Gaussian functions. &nbsp; A striking saying about the convolution operation is:&nbsp; '''Gaussian remains Gaussian, and non-Gaussian never becomes (exactly) Gaussian'''.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp; Beim AWGN–Kanal &nbsp; ⇒ &nbsp; Gaußsche Rausch-WDF &nbsp;$f_N(n)$&nbsp; ergibt sich die&nbsp; ''Kanalkapazität''&nbsp; genau dann, wenn die Eingangs–WDF &nbsp;$f_X(x)$&nbsp; ''ebenfalls gaußförmig'' ist:
+
[[File:P_ID2885__Inf_T_4_2_S4b_neu.png|right|frame|Numerical results for the AWGN channel capacity as a function of&nbsp; ${P_X}/{P_N}$]] 
 +
$\text{Conclusion:}$&nbsp; For the AWGN channel &nbsp; ⇒ &nbsp;Gaussian noise PDF &nbsp;$f_N(n)$&nbsp; the&nbsp; channel capacity&nbsp; results exactly when the input PDF &nbsp;$f_X(x)$&nbsp; is also Gaussian:
  
[[File:P_ID2885__Inf_T_4_2_S4b_neu.png|right|frame|Numerische Ergebnisse für die AWGN–Kanalkapazität als Funktion von&nbsp; ${P_X}/{P_N}$]]
 
 
:$$C_{\rm AWGN} = h_{\rm max}(Y) - h(N) = 1/2 \cdot  {\rm log}_2 \hspace{0.1cm} {P_Y}/{P_N}$$
 
:$$C_{\rm AWGN} = h_{\rm max}(Y) - h(N) = 1/2 \cdot  {\rm log}_2 \hspace{0.1cm} {P_Y}/{P_N}$$
 
:$$\Rightarrow \hspace{0.3cm} C_{\rm AWGN}=  1/2 \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + P_X/P_N) \hspace{0.05cm}.$$}}
 
:$$\Rightarrow \hspace{0.3cm} C_{\rm AWGN}=  1/2 \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + P_X/P_N) \hspace{0.05cm}.$$}}
Line 155: Line 166:
 
 
 
   
 
   
==Parallele Gaußsche Kanäle ==  
+
==Parallel Gaussian channels ==  
 
<br>
 
<br>
[[File:P_ID2891__Inf_T_4_2_S4c_neu.png|frame|Parallele AWGN–Kanäle]]
+
[[File:EN_Inf_T_4_2_S4c.png|frame|Parallel AWGN channels]]
 +
We now consider  according to the graph&nbsp; $K$&nbsp; parallel Gaussian channels&nbsp; $X_1 → Y_1$,&nbsp; ... ,&nbsp;  $X_k → Y_k$,&nbsp; ... , $X_K → Y_K$.
  
Wir betrachten nun entsprechend der  Grafik&nbsp; $K$&nbsp; parallele Gaußkanäle  von&nbsp; $X_1 → Y_1$,&nbsp; ... ,&nbsp;  $X_k → Y_k$,&nbsp; ... , $X_K → Y_K$.
+
*We call the transmission powers in the&nbsp; $K$&nbsp; channels
*Die Sendeleistungen in den&nbsp; $K$&nbsp; Kanälen nennen wir
 
 
:$$P_1 = \text{E}[X_1^2], \hspace{0.15cm}\text{...}\hspace{0.15cm} ,\ P_k = \text{E}[X_k^2], \hspace{0.15cm}\text{...}\hspace{0.15cm}  ,\ P_K = \text{E}[X_K^2].$$
 
:$$P_1 = \text{E}[X_1^2], \hspace{0.15cm}\text{...}\hspace{0.15cm} ,\ P_k = \text{E}[X_k^2], \hspace{0.15cm}\text{...}\hspace{0.15cm}  ,\ P_K = \text{E}[X_K^2].$$
*Die&nbsp; $K$&nbsp; Störleistungen können ebenfalls unterschiedlich sein:
+
*The&nbsp; $K$&nbsp; noise powers can also be different:
 
:$$σ_1^2, \hspace{0.15cm}\text{...}\hspace{0.15cm} ,\ σ_k^2, \hspace{0.15cm}\text{...}\hspace{0.15cm} ,\ σ_K^2.$$  
 
:$$σ_1^2, \hspace{0.15cm}\text{...}\hspace{0.15cm} ,\ σ_k^2, \hspace{0.15cm}\text{...}\hspace{0.15cm} ,\ σ_K^2.$$  
  
 +
We are now looking for the maximum mutual information  &nbsp;$I(X_1, \hspace{0.15cm}\text{...}\hspace{0.15cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \hspace{0.15cm}\text{...}\hspace{0.15cm}, Y_K) $&nbsp; between
 +
*the&nbsp; $K$&nbsp; input variables&nbsp; $X_1$,&nbsp; ... , $X_K$&nbsp; and
  
Gesucht ist nun die maximale Transinformation &nbsp;$I(X_1, \hspace{0.15cm}\text{...}\hspace{0.15cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \hspace{0.15cm}\text{...}\hspace{0.15cm}, Y_K) $&nbsp; zwischen
+
*the&nbsp; $K$ output variables&nbsp; $Y_1$&nbsp;, ... , $Y_K$,
*den&nbsp; $K$&nbsp; Eingangsgrößen&nbsp; $X_1$,&nbsp; ... , $X_K$&nbsp; sowie
 
*den&nbsp; $K$ Ausgangsgrößen&nbsp; $Y_1$&nbsp;, ... , $Y_K$,
 
  
  
die wir als die&nbsp; ''Gesamt–Kanalkapazität''&nbsp; dieser AWGN–Konfiguration bezeichnen.  
+
which we call the&nbsp; &raquo;'''total channel capacity'''&laquo;&nbsp; of this AWGN configuration.
 
+
<br clear=all>
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Vereinbarung:}$&nbsp;  
+
$\text{Agreement:}$&nbsp;
Ausgegangen wird von Leistungsbegrenzung des Gesamtsystems.&nbsp; Das heißt: &nbsp; <br>&nbsp; &nbsp; Die Summe aller Leistungen&nbsp; $P_k$&nbsp; in den&nbsp; $K$&nbsp; Einzelkanälen darf den vorgegebenen Wert&nbsp; $P_X$&nbsp; nicht überschreiten:
+
 +
Assume power constraint of the total AWGN system.&nbsp; That is: &nbsp; The sum of all powers&nbsp; $P_k$&nbsp; in the&nbsp; $K$&nbsp; individual channels must not exceed the specified value&nbsp; $P_X$&nbsp;:
 
   
 
   
 
:$$P_1 + \hspace{0.05cm}\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K  
 
:$$P_1 + \hspace{0.05cm}\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K  
Line 181: Line 193:
  
  
Unter der nur wenig einschränkenden Annahme unabhängiger Störquellen&nbsp; $N_1$,&nbsp; ... ,&nbsp; $N_K$&nbsp; kann für die Transinformation nach einigen Zwischenschritten geschrieben werden:
+
Under the only slightly restrictive assumption of independent noise sources&nbsp; $N_1$,&nbsp; ... ,&nbsp; $N_K$&nbsp; it can be written for the mutual information after some intermediate steps:
 
   
 
   
 
:$$I(X_1, \hspace{0.05cm}\text{...}\hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1,\hspace{0.05cm}\text{...}\hspace{0.05cm}, Y_K) = h(Y_1, ... \hspace{0.05cm}, Y_K ) - \hspace{0.1cm} \sum_{k= 1}^K  
 
:$$I(X_1, \hspace{0.05cm}\text{...}\hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1,\hspace{0.05cm}\text{...}\hspace{0.05cm}, Y_K) = h(Y_1, ... \hspace{0.05cm}, Y_K ) - \hspace{0.1cm} \sum_{k= 1}^K  
 
  \hspace{0.1cm} h(N_k)\hspace{0.05cm}.$$
 
  \hspace{0.1cm} h(N_k)\hspace{0.05cm}.$$
  
Dafür istn folgende obere Schranke angebbar:
+
*The following upper bound can be specified for this:
 
   
 
   
 
:$$I(X_1,\hspace{0.05cm}\text{...}\hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, Y_K)  
 
:$$I(X_1,\hspace{0.05cm}\text{...}\hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, Y_K)  
\hspace{0.2cm} \le \hspace{0.1cm} \hspace{0.1cm} \sum_{k= 1}^K  \hspace{0.1cm} \big[h(Y_k - h(N_k)\big]
+
\hspace{0.2cm} \le \hspace{0.1cm} \hspace{0.1cm} \sum_{k= 1}^K  \hspace{0.1cm} \big[h(Y_k) - h(N_k)\big]
 
\hspace{0.2cm} \le \hspace{0.1cm} 1/2 \cdot \sum_{k= 1}^K  \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + {P_k}/{\sigma_k^2})
 
\hspace{0.2cm} \le \hspace{0.1cm} 1/2 \cdot \sum_{k= 1}^K  \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + {P_k}/{\sigma_k^2})
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Das Gleichheitszeichen (Identität) gilt bei mittelwertfreien Gaußschen Eingangsgrößen&nbsp; $X_k$&nbsp; sowie bei statistisch voneinander unabhängigen Störungen&nbsp; $N_k$.
+
#The equal sign&nbsp; (identity)&nbsp; is valid for mean-free Gaussian input variables&nbsp; $X_k$&nbsp; as well as for statistically independent disturbances&nbsp; $N_k$.
*Man kommt von dieser Gleichung zur&nbsp; ''maximalen Transinformation'' &nbsp;  ⇒ &nbsp;  ''Kanalkapazität'', wenn man die gesamte Sendeleistung&nbsp; $P_X$&nbsp; unter Berücksichtigung der unterschiedlichen Störungen in den einzelnen Kanälen &nbsp;$(σ_k^2)$&nbsp; bestmöglich aufteilt.
+
#One arrives from this equation at the&nbsp; "maximum mutual information" &nbsp;  ⇒ &nbsp;  "channel capacity",&nbsp;  if the total transmission power&nbsp; $P_X$&nbsp; is divided as best as possible,&nbsp; taking into account the different noise powers in the individual channels &nbsp;$(σ_k^2)$.
*Dieses Optimierungsproblem lässt sich wieder mit dem Verfahren der&nbsp; [https://de.wikipedia.org/wiki/Lagrange-Multiplikator Lagrange–Multiplikatoren]&nbsp; elegant lösen.&nbsp; Das folgende Beispiel erläutert nur das Ergebnis.
+
#This optimization problem can again be elegantly solved with the method of&nbsp; [https://en.wikipedia.org/wiki/Lagrange_multiplier "Lagrange multipliers"].&nbsp; The following example only explains the result.
  
  
[[File:P_ID2894__Inf_T_4_2_S4d.png|right|frame|Bestmögliche Leistungsaufteilung für&nbsp; $K = 4$&nbsp; („Water–Filling”)]]
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 1:}$&nbsp; Wir betrachten&nbsp; $K = 4$&nbsp; parallele Gaußkanäle mit vier unterschiedlichen Störleistungen&nbsp; $σ_1^2$,&nbsp; ... ,&nbsp; $σ_4^2$&nbsp; gemäß der nebenstehenden Abbildung (schwach&ndash;grüne Hinterlegung).  
+
[[File:EN_Inf_T_4_2_S4d_v2.png|right|frame|Best possible power allocation for&nbsp; $K = 4$&nbsp; $($"Water–Filling"$)$]]
*Gesucht ist die bestmögliche Aufteilung der Sendeleistung auf die vier Kanäle.
+
$\text{Example 1:}$&nbsp; We consider&nbsp; $K = 4$&nbsp; parallel Gaussian channels with four different noise powers&nbsp; $σ_1^2$,&nbsp; ... ,&nbsp; $σ_4^2$&nbsp; according to the adjacent figure (faint green background).  
*Würde man dieses Profil langsam mit Wasser auffüllen, so würde das Wasser zunächst nur in den&nbsp; $\text{Kanal 2}$&nbsp; fließen.  
+
*The best possible allocation of the transmission power among the four channels is sought.
*Gießt man weiter, so sammelt sich auch im&nbsp; $\text{Kanal 1}$&nbsp; etwas Wasser an und später auch im&nbsp; $\text{Kanal 4}$.
+
 
 +
*If one were to slowly fill this profile with water,&nbsp; the water would initially flow only into&nbsp; $\text{channel 2}$.
 +
 +
*If you continue to pour,&nbsp; some water will also accumulate in&nbsp; $\text{channel 1}$&nbsp; and later also in&nbsp; $\text{channel 4}$.
 +
 
  
 +
The drawn&nbsp; "water level"&nbsp; $H$&nbsp; describes exactly the point in time when the sum &nbsp;$P_1 + P_2 + P_4$&nbsp; corresponds to the total available transmssion power&nbsp; $P_X$&nbsp; :
 +
*The optimal power allocation for this example results in &nbsp;$P_2 > P_1 > P_4$&nbsp; as well as &nbsp;$P_3 = 0$.
  
Die eingezeichnete „Wasserhöhe”&nbsp; $H$&nbsp; beschreibt genau den Zeitpunkt, zu dem die Summe &nbsp;$P_1 + P_2 + P_4$&nbsp; der insgesamt zur Verfügung stehenden Sendeleistung&nbsp; $P_X$&nbsp; entspricht:
+
*Only with a larger transmission power&nbsp; $P_X$,&nbsp; a small power&nbsp; $P_3$&nbsp; would also be allocated to the third channel.
*Die optimale Leistungsaufteilung für dieses Beispiel ergibt &nbsp;$P_2 > P_1 > P_4$&nbsp; sowie &nbsp;$P_3 = 0$.
 
*Erst bei größerer Sendeleistung&nbsp; $P_X$&nbsp; würde auch dem dritten Kanal eine kleine Leistung&nbsp; $P_3$&nbsp; zugewiesen.
 
  
  
Man bezeichnet dieses Allokationsverfahren als '''Water–Filling–Algorithmus'''.}}
+
This allocation procedure is called a&nbsp; &raquo;'''Water–Filling algorithm'''&laquo;.}}
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 2:}$&nbsp;  
+
$\text{Example 2:}$&nbsp;  
Werden alle&nbsp; $K$&nbsp; Gaußkanäle in gleicher Weise gestört &nbsp; ⇒ &nbsp; $σ_1^2 = \hspace{0.15cm}\text{...}\hspace{0.15cm} = σ_K^2 = P_N$, so sollte man natürlich die gesamte zur Verfügung stehende Sendeleistung&nbsp; $P_X$&nbsp; gleichmäßig auf alle Kanäle verteilen: &nbsp; $P_k = P_X/K$.&nbsp; Für die Gesamtkapazität erhält man dann:  
+
If all&nbsp; $K$&nbsp; Gaussian channels are equally disturbed &nbsp; ⇒ &nbsp; $σ_1^2 = \hspace{0.15cm}\text{...}\hspace{0.15cm} = σ_K^2 = P_N$,&nbsp; one should naturally allocate the total available transmission power&nbsp; $P_X$&nbsp; equally to all channels: &nbsp; $P_k = P_X/K$.&nbsp; For the total capacity we then obtain:
[[File:P_ID2939__Inf_T_4_2_S5_neu.png|right|frame|Kapazität für&nbsp; $K$&nbsp; parallele Kanäle]]
+
[[File:EN_Inf_Z_4_1.png|right|frame|Capacity for&nbsp; $K$&nbsp; parallel channels]]
:$$C_{\rm Gesamt}  
+
:$$C_{\rm total}  
 
= \frac{ K}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_X}{K \cdot P_N})  
 
= \frac{ K}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_X}{K \cdot P_N})  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Die Grafik zeigt die Gesamtkapazität als Funktion von&nbsp; $P_X/P_N$&nbsp; für&nbsp; $K = 1$,&nbsp; $K = 2$&nbsp; und&nbsp; $K = 3$:
+
The graph shows the total capacity as a function of&nbsp; $P_X/P_N$&nbsp; for&nbsp; $K = 1$,&nbsp; $K = 2$&nbsp; and&nbsp; $K = 3$:
*Bei &nbsp;$P_X/P_N = 10  \ ⇒ \  10 · \text{lg} (P_X/P_N) = 10 \ \text{dB}$&nbsp; wird die Gesamtkapazität um ca.&nbsp; $50\%$&nbsp; größer, wenn man die Gesamtleistung&nbsp; $P_X$&nbsp; auf zwei Kanäle gleichmäßig aufteilt: &nbsp; $P_1 = P_2 = P_X/2$.
+
*With &nbsp;$P_X/P_N = 10  \ ⇒ \  10 · \text{lg} (P_X/P_N) = 10 \ \text{dB}$&nbsp; and &nbsp; $K = 2$,&nbsp; the total capacitance becomes approximately&nbsp; $50\%$&nbsp; larger if the total power&nbsp; $P_X$&nbsp; is divided equally between two channels: &nbsp; $P_1 = P_2 = P_X/2$.
*Im Grenzfall &nbsp;$P_X/P_N → ∞$&nbsp; nimmt die Gesamtkapazität um den Faktor&nbsp; $K$&nbsp; zu &nbsp; ⇒  &nbsp; Verdoppelung bei $K = 2$.
+
 
 +
*In the borderline case &nbsp;$P_X/P_N → ∞$,&nbsp; the total capacity increases by a factor&nbsp; $K$ &nbsp; &nbsp; doubling at&nbsp; $K = 2$.
  
  
Die beiden identischen und voneinander unabhängigen Kanäle kann man auf unterschiedliche Weise realisieren, zum Beispiel durch Multiplexverfahren in Zeit, Frequenz oder Raum.
+
The two identical and independent channels can be realized in different ways,&nbsp; for example by multiplexing in time,&nbsp; frequency or space.
  
Der Fall&nbsp; $K = 2$&nbsp; lässt sich aber auch durch die Verwendung orthogonaler Basisfunktionen wie „Cosinus” und „Sinus” verwirklichen wie zum Beispiel bei
+
However,&nbsp; the case&nbsp; $K = 2$&nbsp; can also be realized by using orthogonal basis functions such as&nbsp; "cosine"&nbsp; and&nbsp; "sine"&nbsp; as for example with
*der&nbsp; [[Modulation_Methods/Quadratur–Amplitudenmodulation|Quadratur–Amplitudenmodulation]]&nbsp; (QAM) oder
+
 
*einer&nbsp; [[Modulation_Methods/Quadratur–Amplitudenmodulation#Weitere_Signalraumkonstellationen|mehrstufigen Phasenmodulation]]&nbsp; wie QPSK oder 8–PSK.}}
+
*&nbsp; [[Modulation_Methods/Quadratur–Amplitudenmodulation|"quadrature amplitude modulation"]]&nbsp; $\rm (QAM)$&nbsp; or
 +
 +
*&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation#Other_signal_space_constellations|"multi-level phase modulation"]]&nbsp; such as&nbsp; $\rm QPSK$&nbsp; or&nbsp; $\rm  8–PSK$.}}
  
==Aufgaben zum Kapitel ==
+
==Exercises for the chapter ==
 
<br>  
 
<br>  
[[Aufgaben:4.5 Transinformation aus 2D-WDF|Aufgabe 4.5: Transinformation aus 2D-WDF]]
+
[[Aufgaben:Exercise_4.5:_Mutual_Information_from_2D-PDF|Exercise 4.5: Mutual Information from 2D-PDF]]
  
[[Aufgaben:4.5Z Nochmals Transinformation|Aufgabe 4.5Z: Nochmals Transinformation]]
+
[[Aufgaben:Exercise_4.5Z:_Again_Mutual_Information|Exercise 4.5Z: Again Mutual Information]]
  
[[Aufgaben:4.6 AWGN–Kanalkapazität|Aufgabe 4.6: AWGN–Kanalkapazität]]
+
[[Aufgaben:Exercise_4.6:_AWGN_Channel_Capacity|Exercise 4.6: AWGN Channel Capacity]]
  
[[Aufgaben:4.7 Mehrere parallele Gaußkanäle|Aufgabe 4.7: Mehrere parallele Gaußkanäle]]
+
[[Aufgaben:Exercise_4.7:_Several_Parallel_Gaussian_Channels|Exercise 4.7: Several Parallel Gaussian Channels]]
  
[[Aufgaben:4.7Z Zum Water–Filling–Algorithmus|Aufgabe 4.7Z: Zum Water–Filling–Algorithmus]]
+
[[Aufgaben:Exercise_4.7Z:_About_the_Water_Filling_Algorithm|Exercise 4.7Z: About the Water Filling Algorithm]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:22, 28 February 2023


Mutual information between continuous random variables


In the chapter  "Information-theoretical model of digital signal transmission"  the  "mutual information"  between the two discrete random variables  $X$  and  $Y$  was given, among other things,  in the following form:

$$I(X;Y) = \hspace{0.5cm} \sum_{\hspace{-0.9cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{Y}\hspace{-0.08cm})} \hspace{-1.1cm}\sum_{\hspace{1.3cm} x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{X}\hspace{-0.08cm})} \hspace{-0.9cm} P_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \frac{ P_{XY}(x, y)}{P_{X}(x) \cdot P_{Y}(y)} \hspace{0.05cm}.$$

This equation simultaneously corresponds to the  "Kullback–Leibler distance"  between the joint probability function  $P_{XY}$  and the product of the two individual probability functions  $P_X$  and  $P_Y$:

$$I(X;Y) = D(P_{XY} \hspace{0.05cm} || \hspace{0.05cm}P_{X} \cdot P_{Y}) \hspace{0.05cm}.$$

In order to derive the mutual information  $I(X; Y)$  between two continuous random variables  $X$  and  $Y$,  one proceeds as follows,  whereby inverted commas indicate a quantized variable:

  • One quantizes the random variables  $X$  and  $Y$  $($with the quantization intervals  ${\it Δ}x$  and  ${\it Δ}y)$  and thus obtains the probability functions  $P_{X\hspace{0.01cm}′}$  and  $P_{Y\hspace{0.01cm}′}$.
  • The "vectors"  $P_{X\hspace{0.01cm}′}$  and  $P_{Y\hspace{0.01cm}′}$  become infinitely long after the boundary transitions  ${\it Δ}x → 0,\hspace{0.1cm} {\it Δ}y → 0$,  and the joint PMF  $P_{X\hspace{0.01cm}′\hspace{0.08cm}Y\hspace{0.01cm}′}$  is also infinitely extended in area.
  • These boundary transitions give rise to the probability density functions of the continuous random variables according to the following equations:
$$f_X(x_{\mu}) = \frac{P_{X\hspace{0.01cm}'}(x_{\mu})}{\it \Delta_x} \hspace{0.05cm}, \hspace{0.3cm}f_Y(y_{\mu}) = \frac{P_{Y\hspace{0.01cm}'}(y_{\mu})}{\it \Delta_y} \hspace{0.05cm}, \hspace{0.3cm}f_{XY}(x_{\mu}\hspace{0.05cm}, y_{\mu}) = \frac{P_{X\hspace{0.01cm}'\hspace{0.03cm}Y\hspace{0.01cm}'}(x_{\mu}\hspace{0.05cm}, y_{\mu})} {{\it \Delta_x} \cdot {\it \Delta_y}} \hspace{0.05cm}.$$
  • The double sum in the above equation, after renaming  $Δx → {\rm d}x$  and  $Δy → {\rm d}y$,  becomes the equation valid for continuous value random variables:
$$I(X;Y) = \hspace{0.5cm} \int\limits_{\hspace{-0.9cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{Y}\hspace{-0.08cm})} \hspace{-1.1cm}\int\limits_{\hspace{1.3cm} x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{X}\hspace{-0.08cm})} \hspace{-0.9cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \frac{ f_{XY}(x, y) } {f_{X}(x) \cdot f_{Y}(y)} \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y \hspace{0.05cm}.$$

$\text{Conclusion:}$  By splitting this double integral,  it is also possible to write for the  »mutual information«:

$$I(X;Y) = h(X) + h(Y) - h(XY)\hspace{0.05cm}.$$

The  »joint differential entropy«

$$h(XY) = - \hspace{-0.3cm}\int\limits_{\hspace{-0.9cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{Y}\hspace{-0.08cm})} \hspace{-1.1cm}\int\limits_{\hspace{1.3cm} x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{X}\hspace{-0.08cm})} \hspace{-0.9cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \hspace{0.1cm} \big[f_{XY}(x, y) \big] \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y$$

and the two  »differential single entropies«

$$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}\hspace{0.03cm} (\hspace{-0.03cm}f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \big[f_X(x)\big] \hspace{0.1cm}{\rm d}x \hspace{0.05cm},\hspace{0.5cm} h(Y) = -\hspace{-0.7cm} \int\limits_{y \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}\hspace{0.03cm} (\hspace{-0.03cm}f_Y)} \hspace{-0.35cm} f_Y(y) \cdot {\rm log} \hspace{0.1cm} \big[f_Y(y)\big] \hspace{0.1cm}{\rm d}y \hspace{0.05cm}.$$

On equivocation and irrelevance


We further assume the continuous mutual information  $I(X;Y) = h(X) + h(Y) - h(XY)$.   This representation is also found in the following diagram  $($left graph$)$.

Representation of the mutual information for continuous-valued random variables

From this you can see that the mutual information can also be represented as follows:

$$I(X;Y) = h(Y) - h(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) =h(X) - h(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y)\hspace{0.05cm}.$$

These fundamental information-theoretical relationships can also be read from the graph on the right. 

⇒   This directional representation is particularly suitable for communication systems.  The outflowing or inflowing differential entropy characterises

  • the  »equivocation«:
$$h(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = - \hspace{-0.3cm}\int\limits_{\hspace{-0.9cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{Y}\hspace{-0.08cm})} \hspace{-1.1cm}\int\limits_{\hspace{1.3cm} x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{X}\hspace{-0.08cm})} \hspace{-0.9cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \hspace{0.1cm} \big [{f_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (x \hspace{-0.05cm}\mid \hspace{-0.05cm} y)} \big] \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y,$$
  • the  »irrelevance«:
$$h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = - \hspace{-0.3cm}\int\limits_{\hspace{-0.9cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{Y}\hspace{-0.08cm})} \hspace{-1.1cm}\int\limits_{\hspace{1.3cm} x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp}\hspace{0.05cm} (P_{X}\hspace{-0.08cm})} \hspace{-0.9cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \hspace{0.1cm} \big [{f_{\hspace{0.03cm}Y \mid \hspace{0.03cm} X} (y \hspace{-0.05cm}\mid \hspace{-0.05cm} x)} \big] \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y.$$

The significance of these two information-theoretic quantities will be discussed in more detail in  $\text{Exercise 4.5Z}$ .

If one compares the graphical representations of the mutual information for

  • continuous random variables according to the above diagram,


the only distinguishing feature is that each  $($capital$)$  $H$  $($entropy;  $\ge 0)$  has been replaced by a  $($non-capital$)$ $h$  $($differential entropy;  can be positive,  negative or zero$)$.

  • Otherwise,  the mutual information is the same in both representations and  $I(X; Y) ≥ 0$  always applies.
  • In the following,  we mostly use the  "binary logarithm"   ⇒   $\log_2$  and thus obtain the mutual information with the pseudo-unit  "bit".


Calculation of mutual information with additive noise


We now consider a very simple model of message transmission:

  • The random variable  $X$  stands for the  $($zero mean$)$  transmitted signal and is characterized by PDF  $f_X(x)$  and variance  $σ_X^2$.  Transmission power:  $P_X = σ_X^2$.
  • The additive noise  $N$  is given by the  $($mean-free$)$  PDF  $f_N(n)$  and the noise power  $P_N = σ_N^2$.
  • If  $X$  and  $N$  are assumed to be statistically independent   ⇒   signal-independent noise, then  $\text{E}\big[X · N \big] = \text{E}\big[X \big] · \text{E}\big[N\big] = 0$ .
Transmission system with additive noise
  • The received signal is  $Y = X + N$.  The output PDF  $f_Y(y)$  can be calculated with the "convolution operation"    ⇒   $f_Y(y) = f_X(x) ∗ f_N(n)$.
  • For the received power holds:
$$P_Y = \sigma_Y^2 = {\rm E}\big[Y^2\big] = {\rm E}\big[(X+N)^2\big] = {\rm E}\big[X^2\big] + {\rm E}\big[N^2\big] = \sigma_X^2 + \sigma_N^2 $$
$$\Rightarrow \hspace{0.3cm} P_Y = P_X + P_N \hspace{0.05cm}.$$

The sketched probability density functions  $($rectangular or trapezoidal$)$  are only intended to clarify the calculation process and have no practical relevance.

To calculate the mutual information between input  $X$  and output  $Y$  there are three possibilities according to the  "graphic in the previous subchapter":

  • Calculation according to  $I(X, Y) = h(X) + h(Y) - h(XY)$:
The first two terms can be calculated in a simple way from  $f_X(x)$  and  $f_Y(y)$  respectively.  The  "joint differential entropy"  $h(XY)$ is problematic.  For this,  one needs the two-dimensional joint PDF  $f_{XY}(x, y)$,  which is usually not given directly.
  • Calculation according to  $I(X, Y) = h(Y) - h(Y|X)$:
Here  $h(Y|X)$  denotes the  "differential irrelevance".  It holds  $h(Y|X) = h(X + N|X) = h(N)$,  so that  $I(X; Y)$  is very easy to calculate via the equation  $f_Y(y) = f_X(x) ∗ f_N(n)$  if $f_X(x)$  and $f_N(n)$  are known.
  • Calculation according to  $I(X, Y) = h(X) - h(X|Y)$:
According to this equation,  however,  one needs the   "differential equivocation"   $h(X|Y)$,  which is more difficult to state than  $h(Y|X)$.

$\text{Conclusion:}$  In the following we use the middle equation and write for the  »mutual information«  between the input  $X$  and the output  $Y$  of a  transmission system in the presence of additive and uncorrelated noise  $N$:

$$I(X;Y) \hspace{-0.05cm} = \hspace{-0.01cm} h(Y) \hspace{-0.01cm}- \hspace{-0.01cm}h(N) \hspace{-0.01cm}=\hspace{-0.05cm} -\hspace{-0.7cm} \int\limits_{y \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_Y)} \hspace{-0.65cm} f_Y(y) \cdot {\rm log} \hspace{0.1cm} \big[f_Y(y)\big] \hspace{0.1cm}{\rm d}y +\hspace{-0.7cm} \int\limits_{n \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_N)} \hspace{-0.65cm} f_N(n) \cdot {\rm log} \hspace{0.1cm} \big[f_N(n)\big] \hspace{0.1cm}{\rm d}n\hspace{0.05cm}.$$


Channel capacity of the AWGN channel


If one specifies the probability density function of the noise in the previous  "general system model"  as Gaussian corresponding to

Derivation of the AWGN channel capacity
$$f_N(n) = \frac{1}{\sqrt{2\pi \sigma_N^2}} \cdot {\rm e}^{ - \hspace{0.05cm}{n^2}/(2 \sigma_N^2) } \hspace{0.05cm}, $$

we obtain the model sketched on the right for calculating the channel capacity of the so-called  "AWGN channel"   ⇒   "Additive White Gaussian Noise").  In the following,  we usually replace the variance  $\sigma_N^2$  by the power  $P_N$.

We know from previous sections:

  • The  "channel capacity"  $C_{\rm AWGN}$  specifies the maximum mutual information  $I(X; Y)$  between the input quantity  $X$  and the output quantity  $Y$  of the AWGN channel. 
  • The maximization refers to the best possible input PDF.  Thus,  under the  "power constraint"  the following applies:
$$C_{\rm AWGN} = \max_{f_X:\hspace{0.1cm} {\rm E}[X^2 ] \le P_X} \hspace{-0.35cm} I(X;Y) = -h(N) + \max_{f_X:\hspace{0.1cm} {\rm E}[X^2] \le P_X} \hspace{-0.35cm} h(Y) \hspace{0.05cm}.$$
  • It is already taken into account that the maximization relates solely to the differential entropy  $h(Y)$   ⇒   probability density function  $f_Y(y)$.  Indeed, for a given noise power  $P_N$   ⇒   $h(N) = 1/2 · \log_2 (2π{\rm e} · P_N)$  is a constant.
$${\rm max}\big[h(Y)\big] = 1/2 · \log_2 \big[2πe · (P_X + P_N)\big].$$
  • However,  the output PDF  $f_Y(y) = f_X(x) ∗ f_N(n)$  is Gaussian only if both  $f_X(x)$  and  $f_N(n)$  are Gaussian functions.   A striking saying about the convolution operation is:  Gaussian remains Gaussian, and non-Gaussian never becomes (exactly) Gaussian.


Numerical results for the AWGN channel capacity as a function of  ${P_X}/{P_N}$

$\text{Conclusion:}$  For the AWGN channel   ⇒  Gaussian noise PDF  $f_N(n)$  the  channel capacity  results exactly when the input PDF  $f_X(x)$  is also Gaussian:

$$C_{\rm AWGN} = h_{\rm max}(Y) - h(N) = 1/2 \cdot {\rm log}_2 \hspace{0.1cm} {P_Y}/{P_N}$$
$$\Rightarrow \hspace{0.3cm} C_{\rm AWGN}= 1/2 \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + P_X/P_N) \hspace{0.05cm}.$$


Parallel Gaussian channels


Parallel AWGN channels

We now consider according to the graph  $K$  parallel Gaussian channels  $X_1 → Y_1$,  ... ,  $X_k → Y_k$,  ... , $X_K → Y_K$.

  • We call the transmission powers in the  $K$  channels
$$P_1 = \text{E}[X_1^2], \hspace{0.15cm}\text{...}\hspace{0.15cm} ,\ P_k = \text{E}[X_k^2], \hspace{0.15cm}\text{...}\hspace{0.15cm} ,\ P_K = \text{E}[X_K^2].$$
  • The  $K$  noise powers can also be different:
$$σ_1^2, \hspace{0.15cm}\text{...}\hspace{0.15cm} ,\ σ_k^2, \hspace{0.15cm}\text{...}\hspace{0.15cm} ,\ σ_K^2.$$

We are now looking for the maximum mutual information  $I(X_1, \hspace{0.15cm}\text{...}\hspace{0.15cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \hspace{0.15cm}\text{...}\hspace{0.15cm}, Y_K) $  between

  • the  $K$  input variables  $X_1$,  ... , $X_K$  and
  • the  $K$ output variables  $Y_1$ , ... , $Y_K$,


which we call the  »total channel capacity«  of this AWGN configuration.

$\text{Agreement:}$ 

Assume power constraint of the total AWGN system.  That is:   The sum of all powers  $P_k$  in the  $K$  individual channels must not exceed the specified value  $P_X$ :

$$P_1 + \hspace{0.05cm}\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K \hspace{0.1cm}{\rm E} \left [ X_k^2\right ] \le P_{X} \hspace{0.05cm}.$$


Under the only slightly restrictive assumption of independent noise sources  $N_1$,  ... ,  $N_K$  it can be written for the mutual information after some intermediate steps:

$$I(X_1, \hspace{0.05cm}\text{...}\hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1,\hspace{0.05cm}\text{...}\hspace{0.05cm}, Y_K) = h(Y_1, ... \hspace{0.05cm}, Y_K ) - \hspace{0.1cm} \sum_{k= 1}^K \hspace{0.1cm} h(N_k)\hspace{0.05cm}.$$
  • The following upper bound can be specified for this:
$$I(X_1,\hspace{0.05cm}\text{...}\hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, Y_K) \hspace{0.2cm} \le \hspace{0.1cm} \hspace{0.1cm} \sum_{k= 1}^K \hspace{0.1cm} \big[h(Y_k) - h(N_k)\big] \hspace{0.2cm} \le \hspace{0.1cm} 1/2 \cdot \sum_{k= 1}^K \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + {P_k}/{\sigma_k^2}) \hspace{0.05cm}.$$
  1. The equal sign  (identity)  is valid for mean-free Gaussian input variables  $X_k$  as well as for statistically independent disturbances  $N_k$.
  2. One arrives from this equation at the  "maximum mutual information"   ⇒   "channel capacity",  if the total transmission power  $P_X$  is divided as best as possible,  taking into account the different noise powers in the individual channels  $(σ_k^2)$.
  3. This optimization problem can again be elegantly solved with the method of  "Lagrange multipliers".  The following example only explains the result.


Best possible power allocation for  $K = 4$  $($"Water–Filling"$)$

$\text{Example 1:}$  We consider  $K = 4$  parallel Gaussian channels with four different noise powers  $σ_1^2$,  ... ,  $σ_4^2$  according to the adjacent figure (faint green background).

  • The best possible allocation of the transmission power among the four channels is sought.
  • If one were to slowly fill this profile with water,  the water would initially flow only into  $\text{channel 2}$.
  • If you continue to pour,  some water will also accumulate in  $\text{channel 1}$  and later also in  $\text{channel 4}$.


The drawn  "water level"  $H$  describes exactly the point in time when the sum  $P_1 + P_2 + P_4$  corresponds to the total available transmssion power  $P_X$  :

  • The optimal power allocation for this example results in  $P_2 > P_1 > P_4$  as well as  $P_3 = 0$.
  • Only with a larger transmission power  $P_X$,  a small power  $P_3$  would also be allocated to the third channel.


This allocation procedure is called a  »Water–Filling algorithm«.


$\text{Example 2:}$  If all  $K$  Gaussian channels are equally disturbed   ⇒   $σ_1^2 = \hspace{0.15cm}\text{...}\hspace{0.15cm} = σ_K^2 = P_N$,  one should naturally allocate the total available transmission power  $P_X$  equally to all channels:   $P_k = P_X/K$.  For the total capacity we then obtain:

Capacity for  $K$  parallel channels
$$C_{\rm total} = \frac{ K}{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_X}{K \cdot P_N}) \hspace{0.05cm}.$$

The graph shows the total capacity as a function of  $P_X/P_N$  for  $K = 1$,  $K = 2$  and  $K = 3$:

  • With  $P_X/P_N = 10 \ ⇒ \ 10 · \text{lg} (P_X/P_N) = 10 \ \text{dB}$  and   $K = 2$,  the total capacitance becomes approximately  $50\%$  larger if the total power  $P_X$  is divided equally between two channels:   $P_1 = P_2 = P_X/2$.
  • In the borderline case  $P_X/P_N → ∞$,  the total capacity increases by a factor  $K$   ⇒   doubling at  $K = 2$.


The two identical and independent channels can be realized in different ways,  for example by multiplexing in time,  frequency or space.

However,  the case  $K = 2$  can also be realized by using orthogonal basis functions such as  "cosine"  and  "sine"  as for example with

Exercises for the chapter


Exercise 4.5: Mutual Information from 2D-PDF

Exercise 4.5Z: Again Mutual Information

Exercise 4.6: AWGN Channel Capacity

Exercise 4.7: Several Parallel Gaussian Channels

Exercise 4.7Z: About the Water Filling Algorithm