Difference between revisions of "Aufgaben:Exercise 4.2Z: Multiplication with a Sine Signal"

From LNTwww
 
(2 intermediate revisions by one other user not shown)
Line 4: Line 4:
  
 
[[File:P_ID697__Sig_Z_4_2_neu.png|right|frame|Spectral functions  $Q(f)$  and  $Z(f)$]]
 
[[File:P_ID697__Sig_Z_4_2_neu.png|right|frame|Spectral functions  $Q(f)$  and  $Z(f)$]]
A periodic message signal  $q(t)$is considered, whose spectral function  $Q(f)$  can be seen in the upper graph.
+
A periodic message signal  $q(t)$  is considered, whose spectral function  $Q(f)$  can be seen in the upper graph.
  
 
A multiplication with the dimensionless carrier  $z(t)$, whose spectrum  $Z(f)$  is also shown, leads to the signal  $s(t) = q(t) \cdot z(t).$
 
A multiplication with the dimensionless carrier  $z(t)$, whose spectrum  $Z(f)$  is also shown, leads to the signal  $s(t) = q(t) \cdot z(t).$
Line 17: Line 17:
  
 
''Hint:''  
 
''Hint:''  
*This exercise belongs to the task  [[Signal_Representation/Differences_and_Similarities_of_LP_and_BP_Signals|Differences and Similiarities of LP and BP Signals]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Differences_and_Similarities_of_Low-Pass_and_Band-Pass_Signals|Differences and Similarities of Low-Pass and Band-Pass Signals]].
 
   
 
   
  
Line 26: Line 26:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Give the source signal&nbsp; $q(t)$&nbsp; in analytical form. Which values result for&nbsp; $t = 0$&nbsp; und&nbsp; $t = 0.125\, \text{ms}$?
+
{Give the source signal&nbsp; $q(t)$&nbsp; in analytical form.&nbsp; Which values result for&nbsp; $t = 0$&nbsp; und&nbsp; $t = 0.125\, \text{ms}$?
 
|type="{}"}
 
|type="{}"}
 
$q(t = 0)\ = \ $  { 4 3% } &nbsp;$\text{V}$
 
$q(t = 0)\ = \ $  { 4 3% } &nbsp;$\text{V}$
Line 32: Line 32:
  
  
{What is the (dimensionless) carrier signal&nbsp; $z(t)$? What is its maximum value?
+
{What is the (dimensionless) carrier signal&nbsp; $z(t)$?&nbsp; What is its maximum value?
 
|type="{}"}
 
|type="{}"}
 
$z_{\rm max}\ = \ $ { 6 3% }
 
$z_{\rm max}\ = \ $ { 6 3% }
  
  
{Calculate the spectrum&nbsp; $S(f)$&nbsp; separately for real and imaginary parts. At which frequencies are there lines with a non-zero real part?
+
{Calculate the spectrum&nbsp; $S(f)$&nbsp; separately for real and imaginary parts.&nbsp; At which frequencies are there lines with a non-zero real part?
 
|type="[]"}
 
|type="[]"}
 
+ $3\ \text{kHz},$
 
+ $3\ \text{kHz},$
Line 61: Line 61:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  The message signal can be represented with the abbreviations&nbsp; $f_1 = 1\ \text{kHz}$&nbsp; and&nbsp; $T_1 = 1/f_1 = 1 \ \text{ms}$&nbsp; as follows&nbsp; $($&nbsp; $f_2 = 2f_1 applies)$:
+
'''(1)'''&nbsp;  The source signal can be represented with the abbreviations&nbsp; $f_1 = 1\ \text{kHz}$&nbsp; and&nbsp; $T_1 = 1/f_1 = 1 \ \text{ms}$&nbsp; as follows&nbsp; $($&nbsp; $f_2 = 2f_1 applies)$:
 
:$$q(t ) = 4\hspace{0.05cm}{\rm V}
 
:$$q(t ) = 4\hspace{0.05cm}{\rm V}
 
  \cdot  {\cos} ( 2 \pi f_1 t) - 2\hspace{0.05cm}{\rm V}
 
  \cdot  {\cos} ( 2 \pi f_1 t) - 2\hspace{0.05cm}{\rm V}
Line 82: Line 82:
  
  
[[File:EN_Sig_Z_4_2_c_neu.png|right|frame|Discrete BP spectrum]]
+
[[File:EN_Sig_Z_4_2_c_neu.png|right|frame|Discrete band-pass spectrum]]
 
'''(3)'''&nbsp; The spectral function&nbsp; $S(f)$&nbsp; results from the convolution between&nbsp; $Q(f)$&nbsp; and&nbsp; $Z(f)$. One obtains:
 
'''(3)'''&nbsp; The spectral function&nbsp; $S(f)$&nbsp; results from the convolution between&nbsp; $Q(f)$&nbsp; and&nbsp; $Z(f)$. One obtains:
 
:$$S(f)  = - 3{\rm j} \cdot Q(f- f_{\rm T}) + 3{\rm j} \cdot Q(f+
 
:$$S(f)  = - 3{\rm j} \cdot Q(f- f_{\rm T}) + 3{\rm j} \cdot Q(f+
Line 99: Line 99:
  
  
'''(4)'''&nbsp;  Imaginary lines appear at&nbsp; $\underline{\pm 4 \ \text{kHz}}$&nbsp; <u>and</u>&nbsp; $\underline{\pm 6 \ \text{kHz}}$ auf.
+
'''(4)'''&nbsp;  Imaginary lines appear at&nbsp; $\underline{\pm 4 \ \text{kHz}}$&nbsp; <u>and</u>&nbsp; $\underline{\pm 6 \ \text{kHz}}$.
  
 
An alternative way to solve this problem is to use trigonometric equations.
 
An alternative way to solve this problem is to use trigonometric equations.
  
In the following, for example,&nbsp; $f_5 = 5 \text{ kHz}$. Then it applies:
+
In the following, for example,&nbsp; $f_5 = 5 \text{ kHz}$.&nbsp; Then it applies:
 
:$$4\hspace{0.05cm}{\rm V}
 
:$$4\hspace{0.05cm}{\rm V}
 
  \cdot  {\cos} ( 2 \pi f_1 \hspace{0.03cm}t) \cdot 3
 
  \cdot  {\cos} ( 2 \pi f_1 \hspace{0.03cm}t) \cdot 3
Line 121: Line 121:
 
:* at&nbsp; $+f_6$&nbsp; and&nbsp; $-f_6$&nbsp; with weights&nbsp; $–{\rm j} \cdot 3 \ {\rm V}$&nbsp; bzw.&nbsp; $+{\rm j} \cdot 3 \ {\rm V}$ respectively.
 
:* at&nbsp; $+f_6$&nbsp; and&nbsp; $-f_6$&nbsp; with weights&nbsp; $–{\rm j} \cdot 3 \ {\rm V}$&nbsp; bzw.&nbsp; $+{\rm j} \cdot 3 \ {\rm V}$ respectively.
  
*The second equation gives a total of four diraclines&nbsp; (all&nbsp; $6 \ {\rm V}$, real and negative) at&nbsp; $\pm f_3$&nbsp; and&nbsp; $\pm f_7$.  
+
*The second equation gives a total of four Dirac delta lines&nbsp; (all&nbsp; $6 \ {\rm V}$, real and negative) at&nbsp; $\pm f_3$&nbsp; and&nbsp; $\pm f_7$.  
  
  

Latest revision as of 14:21, 18 January 2023

Spectral functions  $Q(f)$  and  $Z(f)$

A periodic message signal  $q(t)$  is considered, whose spectral function  $Q(f)$  can be seen in the upper graph.

A multiplication with the dimensionless carrier  $z(t)$, whose spectrum  $Z(f)$  is also shown, leads to the signal  $s(t) = q(t) \cdot z(t).$

In this task, the spectral function  $S(f)$  of this signal is to be determined, whereby the solution can be either in the time or frequency domain.




Hint:



Questions

1

Give the source signal  $q(t)$  in analytical form.  Which values result for  $t = 0$  und  $t = 0.125\, \text{ms}$?

$q(t = 0)\ = \ $

 $\text{V}$
$q(t = 0.125 \,\text{ms})\ = \ $

$\text{V}$

2

What is the (dimensionless) carrier signal  $z(t)$?  What is its maximum value?

$z_{\rm max}\ = \ $

3

Calculate the spectrum  $S(f)$  separately for real and imaginary parts.  At which frequencies are there lines with a non-zero real part?

$3\ \text{kHz},$
$4\ \text{kHz},$
$5\ \text{kHz},$
$6\ \text{kHz},$
$7\ \text{kHz}.$

4

At which frequencies do purely imaginary spectral lines occur?

$3\ \text{kHz},$
$4\ \text{kHz},$
$5\ \text{kHz},$
$6\ \text{kHz},$
$7\ \text{kHz}.$


Solution

(1)  The source signal can be represented with the abbreviations  $f_1 = 1\ \text{kHz}$  and  $T_1 = 1/f_1 = 1 \ \text{ms}$  as follows  $($  $f_2 = 2f_1 applies)$:

$$q(t ) = 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi f_1 t) - 2\hspace{0.05cm}{\rm V} \cdot {\sin} ( 4 \pi f_1 t)= 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi {t}/{T_1}) - 2\hspace{0.05cm}{\rm V} \cdot {\sin} ( 4 \pi {t}/{T_1}) .$$
  • At time  $t = 0$ , the second component disappears and  $q(t = 0)\; \underline{= 4 \ \text{V}}$.
  • On the other hand, for  $t = 0.125 \ \text{ms} = T_1/8$ is obtained:
$$q(t = 0.125{\rm ms}) = 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( {\pi}/{4}) - 2\hspace{0.05cm}{\rm V} \cdot {\sin} ( {\pi}/{2}) = \frac {4\hspace{0.05cm}{\rm V}}{\sqrt{2}} - 2\hspace{0.05cm}{\rm V} \hspace{0.15 cm}\underline{= 0.828 \hspace{0.05cm}{\rm V}}.$$


(2)  According to the purely imaginary spectrum  $Z(f)$  and the impulse weights  $\pm 3$  must hold:

$$z(t ) = 6 \cdot {\sin} ( 2 \pi \cdot 5\hspace{0.05cm}{\rm kHz})\hspace{0.5cm}\Rightarrow \hspace{0.5cm} z_{\rm max}\hspace{0.15 cm}\underline{ = 6} .$$


Discrete band-pass spectrum

(3)  The spectral function  $S(f)$  results from the convolution between  $Q(f)$  and  $Z(f)$. One obtains:

$$S(f) = - 3{\rm j} \cdot Q(f- f_{\rm T}) + 3{\rm j} \cdot Q(f+ f_{\rm T}).$$

This results in spectral lines at

  • $3\ \text{kHz}\ (–3\ {\rm V})$,
  • $4\ \text{kHz} (–{\rm j} \cdot 6\ {\rm V})$,
  • $6\ \text{kHz} (–{\rm j} \cdot 6\ {\rm V})$,
  • $7\ \text{kHz}\ (–3\ {\rm V})$.


Plus the conjugate-complex components at negative frequencies.

Lines with real weights at  $\underline{\pm 3 \ \text{kHz}}$  and  $\underline{\pm 7 \ \text{kHz}}$.


(4)  Imaginary lines appear at  $\underline{\pm 4 \ \text{kHz}}$  and  $\underline{\pm 6 \ \text{kHz}}$.

An alternative way to solve this problem is to use trigonometric equations.

In the following, for example,  $f_5 = 5 \text{ kHz}$.  Then it applies:

$$4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi f_1 \hspace{0.03cm}t) \cdot 3 \cdot {\sin} ( 2 \pi f_5 \hspace{0.03cm} t)= \frac{12\hspace{0.05cm}{\rm V}}{2}\cdot \big[{\sin} ( 2 \pi f_4 \hspace{0.03cm} t)+ {\sin} ( 2 \pi f_6 \hspace{0.03cm} t)\big],$$
$$-2\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi f_2 \hspace{0.03cm}t) \cdot 3 \cdot {\sin} ( 2 \pi f_5 \hspace{0.03cm} t)= \frac{-6\hspace{0.05cm}{\rm V}}{2}\cdot \big[{\cos} ( 2 \pi f_3 \hspace{0.03cm} t)+ {\cos} ( 2 \pi f_7 \hspace{0.03cm} t)\big].$$
  • From the first equation, the following spectral lines are obtained:
  • at  $+f_4$  and  $-f_4$  with weights  $–{\rm j} \cdot 3\ {\rm V}$  bzw.  $+{\rm j}\cdot 3 \ {\rm V}$ respectively,
  • at  $+f_6$  and  $-f_6$  with weights  $–{\rm j} \cdot 3 \ {\rm V}$  bzw.  $+{\rm j} \cdot 3 \ {\rm V}$ respectively.
  • The second equation gives a total of four Dirac delta lines  (all  $6 \ {\rm V}$, real and negative) at  $\pm f_3$  and  $\pm f_7$.


A comparison with the sketch above shows that both solutions lead to the same result.