Difference between revisions of "Aufgaben:Exercise 4.19: Orthogonal Multilevel FSK"

From LNTwww
m (Text replacement - "”" to """)
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit nichtkohärenter Demodulation}}  
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation}}  
  
[[File:P_ID2092__Dig_A_4_19.png|right|frame|Signalraumkonstellationen]]
+
[[File:P_ID2092__Dig_A_4_19.png|right|frame|Signal space constellations]]
Wir betrachten in dieser letzten Übungsaufgabe zu diesem Kapitel &nbsp;<i>Frequency Shift Keying</i>&nbsp; (FSK) mit&nbsp; $M$&nbsp; Signalformen und setzen voraus, dass diese paarweise zueinander orthogonal sind. In diesem Fall können die äquivalenten Tiefpass&ndash;Signale&nbsp; $s_i(t)$ mit $i = 1, \ \text{...} \ , M$&nbsp; in folgender Form dargestellt werden:
+
In this last exercise of this chapter we consider &nbsp;"Frequency Shift Keying"&nbsp; $\rm (FSK)$&nbsp; with&nbsp; $M$&nbsp; waveforms and assume that they are orthogonal to each other in pairs.&nbsp;
 +
 
 +
*In this case,&nbsp; the equivalent low&ndash;pass signals&nbsp; $s_i(t)$&nbsp; with&nbsp; $i = 1, \ \text{...} \ , M$&nbsp; can be represented in the following form:
 
:$$s_i(t)  = \sqrt{E_{\rm S}} \cdot \xi_i(t) \hspace{0.05cm}.$$
 
:$$s_i(t)  = \sqrt{E_{\rm S}} \cdot \xi_i(t) \hspace{0.05cm}.$$
  
$\xi_i(t)$&nbsp; sind komplexe Basisfunktionen, für die allgemein&nbsp; $i = 1, \ \text{...} \ , N$&nbsp; gilt. Bei orthogonaler Signalisierung ist allerdings stets&nbsp; $M = N$.  
+
*$\xi_i(t)$&nbsp; are complex basis functions for which in general&nbsp; $i = 1, \ \text{...} \ , N$.&nbsp; &nbsp;  
 +
 
 +
*However,&nbsp; for orthogonal signaling,&nbsp; $M = N$ is always true.
 +
 
 +
*The diagram shows three different signal space constellations.&nbsp; However,&nbsp; not all three describe an orthogonal FSK.&nbsp; This is referred to in the subtask&nbsp; '''(1)'''.
  
Die Grafik zeigt drei verschiedene Signalraumkonstellationen. Jedoch beschreiben nicht alle drei eine orthogonale FSK. Hierauf wird in der Teilaufgabe '''(1)''' Bezug genommen.
 
  
Im&nbsp; [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Theorieteil]]&nbsp; ist die exakte Formel für die Wahrscheinlichkeit einer korrekten Entscheidung bei AWGN&ndash;Störung angegeben:
+
In the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation| "theory part"]],&nbsp; the exact formula for the probability of a correct decision in the case of AWGN noise is given:
 
:$${\rm Pr}({\cal{C}}) =\sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0}
 
:$${\rm Pr}({\cal{C}}) =\sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Daraus lässt sich sehr einfach die Symbolfehlerwahrscheinlichkeit berechnen:
+
*From this it is very easy to calculate the symbol error probability:
 
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) =  1 - {\rm Pr}({\cal{C}}) = \sum_{i = 1}^{M-1} (-1)^{i+1} \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot  {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0}
 
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) =  1 - {\rm Pr}({\cal{C}}) = \sum_{i = 1}^{M-1} (-1)^{i+1} \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot  {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Eine obere Schranke&nbsp; $(p_{\rm S, \ max} &#8805; p_{\rm S})$&nbsp; ergibt sich aufgrund der alternierenden Vorzeichen, wenn man von dieser Summe nur den ersten Term&nbsp; $(i=1)$&nbsp; berücksichtigt:
+
*An upper bound&nbsp; $(p_{\rm S, \ max} &#8805; p_{\rm S})$&nbsp; is obtained due to the alternating signs if we consider only the first term&nbsp; $(i=1)$&nbsp; of this sum:
 
:$$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}
 
:$$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In der Teilaufgabe '''(4)''' soll diese Schranke bei gegebenem Verhältnis&nbsp; $E_{\rm B}/N_0$&nbsp; ausgewertet werden, wobei&nbsp; $E_{\rm B}$&nbsp; die mittlere Signalenergie pro Bit angibt:
+
In subtask&nbsp; '''(4)''',&nbsp; this bound is to be evaluated for a given ratio&nbsp; $E_{\rm B}/N_0$,&nbsp; where&nbsp; $E_{\rm B}$&nbsp; is the average signal energy per bit:
 
:$$E_{\rm B} = \frac{ E_{\rm S} }  { {\rm log_2}\hspace{0.1cm}(M)}  
 
:$$E_{\rm B} = \frac{ E_{\rm S} }  { {\rm log_2}\hspace{0.1cm}(M)}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
Line 29: Line 34:
  
  
 +
Notes:
 +
* The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation| "Carrier Frequency Systems with Non-Coherent Demodulation"]].
  
 
+
* Reference is made in particular to the section&nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Non-coherent_demodulation_of_multi-level_FSK|"Non-coherent demodulation of multi-level FSK"]].
''Hinweise:''
 
* Die Aufgabe gehört zum Kapitel&nbsp;  [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit nichtkohärenter Demodulation]].
 
* Bezug genommen wird insbesondere auf die Seite&nbsp;  [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation#Nichtkoh.C3.A4rente_Demodulation_von_mehrstufiger_FSK|Nichtkohärente Demodulation von mehrstufiger FSK]].
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der obigen Signalraumkonstellationen gelten für orthogonale FSK?
+
{Which of the above signal space constellations are valid for orthogonal FSK?
 
|type="[]"}
 
|type="[]"}
+ Konstellation &nbsp;$\rm A$,
+
+ Constellation &nbsp;$\rm A$,
- Konstellation &nbsp;$\rm B$,
+
- Constellation &nbsp;$\rm B$,
+ Konstellation &nbsp;$\rm C$.
+
+ Constellation &nbsp;$\rm C$.
  
{Berechnen Sie für&nbsp; $E_{\rm S}/N_0 = 6$&nbsp; die Fehlerwahrscheinlichkeit der binären, ternären und quaternären FSK. $E_{\rm S}$&nbsp; bezeichnet die Symbolenergie.
+
{For&nbsp; $E_{\rm S}/N_0 = 6$,&nbsp; calculate the error probability of binary, ternary and quaternary FSK.&nbsp; $E_{\rm S}$&nbsp; denotes the average symbol energy.
 
|type="{}"}
 
|type="{}"}
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 2.49 3% } $\ \%$
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 2.49 3% } $\ \%$
Line 52: Line 56:
 
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 6.75 3% } $\ \%$
 
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 6.75 3% } $\ \%$
  
{Berechnen Sie für&nbsp; $E_{\rm S}/N_0 = 6$&nbsp; die angegebenen oberen Schranken&nbsp; $p_{\rm S, \ max}$ für die  Fehlerwahrscheinlichkeiten.
+
{For&nbsp; $E_{\rm S}/N_0 = 6$,&nbsp; calculate the given upper bounds&nbsp; $p_{\rm S, \ max}$ for the error probabilities.
 
|type="{}"}
 
|type="{}"}
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 2.49 3% } $\ \%$  
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 2.49 3% } $\ \%$  
Line 58: Line 62:
 
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 7.47 3% } $\ \%$
 
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 7.47 3% } $\ \%$
  
{Berechnen Sie für&nbsp; $E_{\rm B}/N_0 = 6$&nbsp; die Fehlerwahrscheinlichkeit der binären, ternären und quaternären FSK. $E_{\rm B}$&nbsp; bezeichnet die Bitenergie.
+
{For&nbsp; $E_{\rm B}/N_0 = 6$,&nbsp; calculate the error probability of the binary, ternary, and quaternary FSK. $E_{\rm B}$&nbsp; denotes the bit energy.
 
|type="{}"}
 
|type="{}"}
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 2.49 3% } $\ \%$
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 2.49 3% } $\ \%$
Line 65: Line 69:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:  
+
'''(1)'''&nbsp; <u>Solutions 1 and 3</u>&nbsp; are correct:  
*Bei der Konstellation &nbsp;$\rm B$&nbsp; ist die Orthogonalität nicht gegeben. Vielmehr gilt hier $M = 3$ und $N = 2$.
+
*In constellation &nbsp;$\rm B$&nbsp; the orthogonality is not given.&nbsp; Rather&nbsp; $M = 3$&nbsp; and&nbsp; $N = 2$&nbsp; are valid here.
  
  
  
'''(2)'''&nbsp; Für die binäre FSK $(M = 2)$ gilt mit der Abkürzung $x = E_{\rm S}/N_0 = 6$:
+
'''(2)'''&nbsp; For the binary FSK&nbsp; $(M = 2)$&nbsp; applies with the abbreviation&nbsp; $x = E_{\rm S}/N_0 = 6$:
 
:$$p_{\rm S} =  (-1)^{2} \cdot {1 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3}  \hspace{0.15cm}\underline{\approx 2.49 \%}  
 
:$$p_{\rm S} =  (-1)^{2} \cdot {1 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3}  \hspace{0.15cm}\underline{\approx 2.49 \%}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Entsprechend erhält man für die ternäre FSK $(M = 3)$:
+
*Accordingly,&nbsp; for the ternary FSK&nbsp; $(M = 3)$&nbsp; we obtain:
 
:$$p_{\rm S} = (-1)^{2} \cdot {2 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} +  
 
:$$p_{\rm S} = (-1)^{2} \cdot {2 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} +  
 
  (-1)^{3} \cdot {2 \choose 2 }  \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}=
 
  (-1)^{3} \cdot {2 \choose 2 }  \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}=
Line 82: Line 86:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Schließlich ergibt sich für die quaternäre FSK $(M = 4)$:
+
*Finally,&nbsp; for the quaternary FSK&nbsp; $(M = 4)$&nbsp; we obtain:
 
:$$p_{\rm S} = (-1)^{2} \cdot {3 \choose 1 }  \cdot \frac{{\rm e }^{-x/2}}{2}  +  
 
:$$p_{\rm S} = (-1)^{2} \cdot {3 \choose 1 }  \cdot \frac{{\rm e }^{-x/2}}{2}  +  
 
  (-1)^{3} \cdot {3 \choose 2 }  \cdot \frac{{\rm e }^{-2x/3}}{3}
 
  (-1)^{3} \cdot {3 \choose 2 }  \cdot \frac{{\rm e }^{-2x/3}}{3}
Line 91: Line 95:
  
  
'''(3)'''&nbsp; Bei gleichem $E_{\rm S}/N_0 = 6$ gilt stets $p_{\rm S, \ max} &#8805; p_{\rm S}$:
+
'''(3)'''&nbsp; For equal&nbsp; $E_{\rm S}/N_0 = 6$,&nbsp; $p_{\rm S, \ max} &#8805; p_{\rm S}$ always holds:
 
:$$M =2\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=2.49\%} = p_{\rm S} \hspace{0.05cm},$$
 
:$$M =2\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=2.49\%} = p_{\rm S} \hspace{0.05cm},$$
 
:$$M =3\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=4.98\%} > 4.37\% = p_{\rm S} \hspace{0.05cm},$$
 
:$$M =3\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=4.98\%} > 4.37\% = p_{\rm S} \hspace{0.05cm},$$
 
:$$M =4\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=7.47\%} > {6.75\%} = p_{\rm S} \hspace{0.05cm}.$$
 
:$$M =4\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=7.47\%} > {6.75\%} = p_{\rm S} \hspace{0.05cm}.$$
  
Analysiert man die Gleichung &nbsp;$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$&nbsp; genauer, so erkennt man, dass diese Schranke genau die [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit#Union_Bound_-_Obere_Schranke_f.C3.BCr_die_Fehlerwahrscheinlichkeit| Union&ndash;Bound]] angibt:
+
Analyzing the equation &nbsp; $p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ &nbsp; in more detail,&nbsp; we see that this bound exactly specifies the [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability#Union_Bound_-_Upper_bound_for_the_error_probability| "Union Bound"]]:
* Beim Binärsystem gibt $1/2 \cdot  {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ die Verfälschungswahrscheinlichkeit an, zum Beispiel von $\boldsymbol{s}_1$ nach $\boldsymbol{s}_2$ oder umgekehrt.
+
* For the binary system, &nbsp; $1/2 \cdot  {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ &nbsp; gives the falsification probability,&nbsp; for example from&nbsp; $\boldsymbol{s}_1$&nbsp; to&nbsp; $\boldsymbol{s}_2$&nbsp; or&nbsp; vice versa.
* Beim <i>M</i>&ndash;stufigen System ist der Abstand zwischen $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ genau so groß. Aber auch die Punkte $\boldsymbol{s}_1, \ \text{... ,} \, \boldsymbol{s}_M$ liegen im gleichen Abstand zu $\boldsymbol{s}_1$ bzw. zu $\boldsymbol{s}_2$.
+
 
* Die &bdquo;Union&ndash;Bound" berücksichtigt die Verfälschungsmöglichkeiten eines Punktes zu jedem der allgemein $M&ndash;1$ anderen Punkte durch den Faktor $M -1$.
+
* For the $M$&ndash;level system,&nbsp; the distance between&nbsp; $\boldsymbol{s}_1$&nbsp; and&nbsp; $\boldsymbol{s}_2$&nbsp; is exactly the same.&nbsp; But also the points&nbsp; $\boldsymbol{s}_3, \ \text{... ,} \, \boldsymbol{s}_M$&nbsp; are at the same distance from&nbsp; $\boldsymbol{s}_1$&nbsp; or&nbsp; from $\boldsymbol{s}_2$.
 +
 
 +
* The&nbsp; "Union Bound"&nbsp; considers the distortion possibilities of a point to each of the generally&nbsp; $M&ndash;1$&nbsp; other points by the factor&nbsp; $M -1$.
 +
 
  
  
'''(4)'''&nbsp; Mit &nbsp;$E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$&nbsp; erhält man$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-\log_2 \ (M) E_{\rm B}/(2N_{\rm 0})}$.
+
'''(4)'''&nbsp; With &nbsp;$E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$&nbsp; one obtains $p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-\log_2 \ (M) E_{\rm B}/(2N_{\rm 0})}$.
  
*Die Fehlerwahrscheinlichkeit wird mit zunehmender Stufenzahl kleiner, da bei konstantem $E_{\rm B}$ die Energie $E_{\rm S}$ pro Symbol um den Faktor ${\rm log}_2 \, (M)$ zunimmt.  
+
*The error probability becomes smaller as the level number increases,&nbsp; because at constant&nbsp; $E_{\rm B}$&nbsp; the energy&nbsp; $E_{\rm S}$&nbsp; per symbol increases by the factor&nbsp; ${\rm log}_2 \, (M)$.
*Der Faktor $M-1$ (berücksichtigt die Verfälschungsmöglichkeiten eines Signalraumpunktes) hat weniger Einfluss als die Vergrößerung des negativen Exponenten:
+
 +
*The factor&nbsp; $M-1$&nbsp; (considers the falsification possibilities of a signal space point)&nbsp; has less influence than the increase of the negative exponent:
 
:$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 2.49\%} \hspace{0.05cm},$$
 
:$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 2.49\%} \hspace{0.05cm},$$
 
:$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm e }^{-4.755} \hspace{0.5cm}  \underline{= 0.86\%} \hspace{0.05cm},$$
 
:$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm e }^{-4.755} \hspace{0.5cm}  \underline{= 0.86\%} \hspace{0.05cm},$$
Line 114: Line 122:
  
  
[[Category:Digital Signal Transmission: Exercises|^4.5 Inkohärente Demodulation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.5 Non-Coherent Demodulation^]]

Latest revision as of 04:49, 11 September 2022

Signal space constellations

In this last exercise of this chapter we consider  "Frequency Shift Keying"  $\rm (FSK)$  with  $M$  waveforms and assume that they are orthogonal to each other in pairs. 

  • In this case,  the equivalent low–pass signals  $s_i(t)$  with  $i = 1, \ \text{...} \ , M$  can be represented in the following form:
$$s_i(t) = \sqrt{E_{\rm S}} \cdot \xi_i(t) \hspace{0.05cm}.$$
  • $\xi_i(t)$  are complex basis functions for which in general  $i = 1, \ \text{...} \ , N$.   
  • However,  for orthogonal signaling,  $M = N$ is always true.
  • The diagram shows three different signal space constellations.  However,  not all three describe an orthogonal FSK.  This is referred to in the subtask  (1).


In the  "theory part",  the exact formula for the probability of a correct decision in the case of AWGN noise is given:

$${\rm Pr}({\cal{C}}) =\sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0} \hspace{0.05cm}.$$
  • From this it is very easy to calculate the symbol error probability:
$$p_{\rm S} = {\rm Pr}({\cal{E}}) = 1 - {\rm Pr}({\cal{C}}) = \sum_{i = 1}^{M-1} (-1)^{i+1} \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0} \hspace{0.05cm}.$$
  • An upper bound  $(p_{\rm S, \ max} ≥ p_{\rm S})$  is obtained due to the alternating signs if we consider only the first term  $(i=1)$  of this sum:
$$p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})} \hspace{0.05cm}.$$

In subtask  (4),  this bound is to be evaluated for a given ratio  $E_{\rm B}/N_0$,  where  $E_{\rm B}$  is the average signal energy per bit:

$$E_{\rm B} = \frac{ E_{\rm S} } { {\rm log_2}\hspace{0.1cm}(M)} \hspace{0.05cm}.$$



Notes:



Questions

1

Which of the above signal space constellations are valid for orthogonal FSK?

Constellation  $\rm A$,
Constellation  $\rm B$,
Constellation  $\rm C$.

2

For  $E_{\rm S}/N_0 = 6$,  calculate the error probability of binary, ternary and quaternary FSK.  $E_{\rm S}$  denotes the average symbol energy.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

3

For  $E_{\rm S}/N_0 = 6$,  calculate the given upper bounds  $p_{\rm S, \ max}$ for the error probabilities.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$

4

For  $E_{\rm B}/N_0 = 6$,  calculate the error probability of the binary, ternary, and quaternary FSK. $E_{\rm B}$  denotes the bit energy.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$


Solution

(1)  Solutions 1 and 3  are correct:

  • In constellation  $\rm B$  the orthogonality is not given.  Rather  $M = 3$  and  $N = 2$  are valid here.


(2)  For the binary FSK  $(M = 2)$  applies with the abbreviation  $x = E_{\rm S}/N_0 = 6$:

$$p_{\rm S} = (-1)^{2} \cdot {1 \choose 1 } \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3} \hspace{0.15cm}\underline{\approx 2.49 \%} \hspace{0.05cm}.$$
  • Accordingly,  for the ternary FSK  $(M = 3)$  we obtain:
$$p_{\rm S} = (-1)^{2} \cdot {2 \choose 1 } \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} + (-1)^{3} \cdot {2 \choose 2 } \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}= {\rm e }^{-3} - {1}/{3} \cdot {\rm e }^{-4} \approx 0.0498 - 0.0061 \hspace{0.15cm}\underline{ =4.37\%} \hspace{0.05cm}.$$
  • Finally,  for the quaternary FSK  $(M = 4)$  we obtain:
$$p_{\rm S} = (-1)^{2} \cdot {3 \choose 1 } \cdot \frac{{\rm e }^{-x/2}}{2} + (-1)^{3} \cdot {3 \choose 2 } \cdot \frac{{\rm e }^{-2x/3}}{3} + (-1)^{4} \cdot {4 \choose 3 } \cdot \frac{{\rm e }^{-3x/4 }}{4} = {3}/ {2} \cdot{\rm e }^{-3} - {\rm e }^{-4} + {\rm e }^{-4.5} \hspace{0.15cm}\underline{\approx 6.75\%} \hspace{0.05cm}.$$


(3)  For equal  $E_{\rm S}/N_0 = 6$,  $p_{\rm S, \ max} ≥ p_{\rm S}$ always holds:

$$M =2\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=2.49\%} = p_{\rm S} \hspace{0.05cm},$$
$$M =3\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=4.98\%} > 4.37\% = p_{\rm S} \hspace{0.05cm},$$
$$M =4\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=7.47\%} > {6.75\%} = p_{\rm S} \hspace{0.05cm}.$$

Analyzing the equation   $p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$   in more detail,  we see that this bound exactly specifies the "Union Bound":

  • For the binary system,   $1/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$   gives the falsification probability,  for example from  $\boldsymbol{s}_1$  to  $\boldsymbol{s}_2$  or  vice versa.
  • For the $M$–level system,  the distance between  $\boldsymbol{s}_1$  and  $\boldsymbol{s}_2$  is exactly the same.  But also the points  $\boldsymbol{s}_3, \ \text{... ,} \, \boldsymbol{s}_M$  are at the same distance from  $\boldsymbol{s}_1$  or  from $\boldsymbol{s}_2$.
  • The  "Union Bound"  considers the distortion possibilities of a point to each of the generally  $M–1$  other points by the factor  $M -1$.


(4)  With  $E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$  one obtains $p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-\log_2 \ (M) E_{\rm B}/(2N_{\rm 0})}$.

  • The error probability becomes smaller as the level number increases,  because at constant  $E_{\rm B}$  the energy  $E_{\rm S}$  per symbol increases by the factor  ${\rm log}_2 \, (M)$.
  • The factor  $M-1$  (considers the falsification possibilities of a signal space point)  has less influence than the increase of the negative exponent:
$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 2.49\%} \hspace{0.05cm},$$
$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{-4.755} \hspace{0.5cm} \underline{= 0.86\%} \hspace{0.05cm},$$
$$M =4\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {3}/{ 2} \cdot {\rm e }^{-6} \hspace{0.15cm} \underline{=0.37\%} \hspace{0.05cm}.$$