Difference between revisions of "Aufgaben:Exercise 2.3Z: Asymmetrical Characteristic Operation"

From LNTwww
 
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Nonlinear_Distortion}}
 
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Nonlinear_Distortion}}
  
[[File:P_ID895__LZI_Z_2_3.png|right|frame|Influence of nonlinear distortions]]
+
[[File:P_ID895__LZI_Z_2_3.png|right|frame|System and signal examples]]
 
The cosine signal
 
The cosine signal
 
:$$x(t) =  A \cdot \cos(\omega_0 t)$$
 
:$$x(t) =  A \cdot \cos(\omega_0 t)$$
  
is applied to the input of a system  $S$  where  $A = 0.5$  shall always hold for the amplitude. The system  $S$  consists of  
+
is applied to the input of a system  $S$  where  $A = 0.5$  shall always hold for the amplitude.  The system  $S$  consists of  
 
*the addition of a direct (DC) component  $C$,  
 
*the addition of a direct (DC) component  $C$,  
 
*a nonlinearity with the characteristic curve
 
*a nonlinearity with the characteristic curve
 
:$$g(x) =  \sin(x) \hspace{0.05cm} \approx x -{x^3}\hspace{-0.1cm}/{6} = g_3(x),$$
 
:$$g(x) =  \sin(x) \hspace{0.05cm} \approx x -{x^3}\hspace{-0.1cm}/{6} = g_3(x),$$
*as well as an ideal high-pass filter that allows all frequencies to pass unaltered except for a direct (DC) signal  $(f = 0)$ .
+
*as well as an ideal high-pass filter that allows all frequencies to pass unaltered except for a direct (DC) signal  $(f = 0)$.
  
  
Line 19: Line 19:
 
The sinusoidal characteristic curve  $g(x)$  is to be approximated by the cubic approximation $g_3(x)$  throughout the whole problem according to the above equation.  
 
The sinusoidal characteristic curve  $g(x)$  is to be approximated by the cubic approximation $g_3(x)$  throughout the whole problem according to the above equation.  
  
This would result in exactly the same constellation as in  [[Aufgaben:2.3_Sinusförmige_Kennlinie|Exercise 2.3]] for  $C = 0$  in whose subtask  '''(2)'''  the distortion factor was calculated:  
+
This would result in exactly the same constellation as in  [[Aufgaben:Exercise_2.3:_Sinusoidal_Characteristic|Exercise 2.3]]  for  $C = 0$  in whose subtask  '''(2)'''  the distortion factor was calculated:  
 
*$K = K_{g3} \approx 1.08 \%$  für  $A = 0.5$,
 
*$K = K_{g3} \approx 1.08 \%$  für  $A = 0.5$,
 
*$K = K_{g3} \approx 4.76 \%$  für  $A = 1.0$.
 
*$K = K_{g3} \approx 4.76 \%$  für  $A = 1.0$.
Line 27: Line 27:
 
:$$x_{\rm C}(t) =  C + A \cdot \cos(\omega_0 t) = {1}/{2} + {1}/{2}\cdot \cos(\omega_0 t).$$
 
:$$x_{\rm C}(t) =  C + A \cdot \cos(\omega_0 t) = {1}/{2} + {1}/{2}\cdot \cos(\omega_0 t).$$
  
*So, the characteristic curve is operated asymmetrically with values between  $0$  and  $1$.  
+
*So,  the characteristic curve is operated asymmetrically with values between  $0$  and  $1$.  
*In the above graph, the signals  $x_{\rm C}(t)$  and  $y_{\rm C}(t)$  are plotted additionally directly before and after the characteristic curve  $g(x)$ .
+
*In the above graph,  the signals  $x_{\rm C}(t)$  and  $y_{\rm C}(t)$  are plotted additionally directly before and after the characteristic curve  $g(x)$ .
  
  
Line 39: Line 39:
  
 
''Please note:''  
 
''Please note:''  
*The task belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion|Nonlinear Distortion]].
+
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion|Nonlinear Distortions]].
 
   
 
   
 
*The following trigonometric relations are assumed to be known:
 
*The following trigonometric relations are assumed to be known:
Line 51: Line 51:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Compute the output signal&nbsp; $y(t)$&nbsp; considering the high-pass filter. What is the direct (DC) signal component&nbsp; $A_0$?
+
{Compute the output signal&nbsp; $y(t)$&nbsp; considering the high-pass filter.&nbsp; What is the direct (DC) signal component&nbsp; $A_0$?
 
|type="{}"}
 
|type="{}"}
 
$A_0 \ = \ $ { 0. }
 
$A_0 \ = \ $ { 0. }
Line 90: Line 90:
 
  t) + A^3 \cdot \cos^3(\omega_0  t)\big].$$
 
  t) + A^3 \cdot \cos^3(\omega_0  t)\big].$$
  
*The signal&nbsp; $y_{\rm C}(t)$&nbsp; contains a direct (DC) component&nbsp; $C - C^3/6$ which is no longer included in the signal&nbsp; $y(t)$&nbsp; due to the high-pass filter:  
+
*The signal&nbsp; $y_{\rm C}(t)$&nbsp; contains a direct (DC) component&nbsp; $C - C^3/6$&nbsp; which is no longer included in the signal&nbsp; $y(t)$&nbsp; due to the high-pass filter:  
 
:$$\underline{ A_0 = 0}.$$
 
:$$\underline{ A_0 = 0}.$$
  
  
'''(2)'''&nbsp; Applying the given trigonometric relations the following coefficients with&nbsp; $A= C = 0.5$ are obtained:
+
'''(2)'''&nbsp; Applying the given trigonometric relations the following coefficients with&nbsp; $A= C = 0.5$&nbsp; are obtained:
 
:$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A  - {1}/{6} \cdot {3}/{4}\cdot
 
:$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A  - {1}/{6} \cdot {3}/{4}\cdot
 
  A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64}
 
  A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64}
Line 103: Line 103:
 
   A^3 = - {1}/{192}  \hspace{0.15cm}\underline{\approx -0.005}.$$
 
   A^3 = - {1}/{192}  \hspace{0.15cm}\underline{\approx -0.005}.$$
  
*Higher order terms do not occur. Thus, &nbsp; $\underline{A_4  = 0}$ holds.
+
*Higher order terms do not occur.&nbsp; Thus, &nbsp; $\underline{A_4  = 0}$&nbsp; holds.
  
  
  
'''(3)'''&nbsp; In this task, the higher order distortion factors are&nbsp; $K_2  = 2/27 \approx 7.41\%$&nbsp; und&nbsp; $K_3  = 1/81 \approx 1.23\%$.  
+
'''(3)'''&nbsp; In this task,&nbsp; the higher order distortion factors are&nbsp; $K_2  = 2/27 \approx 7.41\%$&nbsp; and&nbsp; $K_3  = 1/81 \approx 1.23\%$.  
 
*Thereby, the following is obtained for the overall distortion factor:
 
*Thereby, the following is obtained for the overall distortion factor:
 
:$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$
 
:$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$
Line 121: Line 121:
 
  -0.448}.$$
 
  -0.448}.$$
  
*The signal&nbsp; $y(t)$&nbsp; is shifted downward by $0.448$&nbsp; compared to the signal&nbsp; drawn in the sketch on the information page.  
+
*The signal&nbsp; $y(t)$&nbsp; is shifted downward by&nbsp; $0.448$&nbsp; compared to the signal&nbsp; drawn in the sketch on the information page.  
 
*This signal value is obtained from the following equation considering&nbsp; $A = C = 1/2$:
 
*This signal value is obtained from the following equation considering&nbsp; $A = C = 1/2$:
 
:$$C - \frac{C \cdot A^2}{4}- \frac{C^3}{6} =  {1}/{2} - {1}/{32}-  {1}/{48}  = 0.448.$$
 
:$$C - \frac{C \cdot A^2}{4}- \frac{C^3}{6} =  {1}/{2} - {1}/{32}-  {1}/{48}  = 0.448.$$
Line 128: Line 128:
  
  
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nichtlineare Verzerrungen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nonlinear Distortions^]]

Latest revision as of 14:50, 29 September 2021

System and signal examples

The cosine signal

$$x(t) = A \cdot \cos(\omega_0 t)$$

is applied to the input of a system  $S$  where  $A = 0.5$  shall always hold for the amplitude.  The system  $S$  consists of

  • the addition of a direct (DC) component  $C$,
  • a nonlinearity with the characteristic curve
$$g(x) = \sin(x) \hspace{0.05cm} \approx x -{x^3}\hspace{-0.1cm}/{6} = g_3(x),$$
  • as well as an ideal high-pass filter that allows all frequencies to pass unaltered except for a direct (DC) signal  $(f = 0)$.


The output signal of the overall system can generally be depicted as follows:

$$y(t) = A_0 + A_1 \cdot \cos(\omega_0 t) + A_2 \cdot \cos(2\omega_0 t) + A_3 \cdot \cos(3\omega_0 t) + \hspace{0.05cm}\text{...}$$

The sinusoidal characteristic curve  $g(x)$  is to be approximated by the cubic approximation $g_3(x)$  throughout the whole problem according to the above equation.

This would result in exactly the same constellation as in  Exercise 2.3  for  $C = 0$  in whose subtask  (2)  the distortion factor was calculated:

  • $K = K_{g3} \approx 1.08 \%$  für  $A = 0.5$,
  • $K = K_{g3} \approx 4.76 \%$  für  $A = 1.0$.


Considering the constants  $A = C = 0.5$  the following holds for the input signal of the nonlinearity:

$$x_{\rm C}(t) = C + A \cdot \cos(\omega_0 t) = {1}/{2} + {1}/{2}\cdot \cos(\omega_0 t).$$
  • So,  the characteristic curve is operated asymmetrically with values between  $0$  and  $1$.
  • In the above graph,  the signals  $x_{\rm C}(t)$  and  $y_{\rm C}(t)$  are plotted additionally directly before and after the characteristic curve  $g(x)$ .





Please note:

  • The following trigonometric relations are assumed to be known:
$$\cos^2(\alpha) = {1}/{2} + {1}/{2} \cdot \cos(2\alpha)\hspace{0.05cm}, \hspace{0.3cm} \cos^3(\alpha) = {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha) \hspace{0.05cm}.$$


Questions

1

Compute the output signal  $y(t)$  considering the high-pass filter.  What is the direct (DC) signal component  $A_0$?

$A_0 \ = \ $

2

State the other Fourier coefficients of the signal  $y(t)$ .

$A_1 \ = \ $

$A_2 \ = \ $

$A_3 \ = \ $

$A_4 \ = \ $

3

Compute the distortion factor of the overall system.

$K \ = \ $

$\ \%$

4

Compute the maximum and the minimum value of the signal  $y(t)$.

$y_\text{max} \ = \ $

$y_\text{min} \ = \ $


Solution

(1)  Considering the cubic approximation $g_3(x)$  the following is obtained before the high-pass filter:

$$y_{\rm C}(t) = g_3\big[x_{\rm C}(t)\big] = \big[ C + A \cdot \cos(\omega_0 t)\big] - {1}/{6} \cdot \big[ C + A \cdot \cos(\omega_0 t)\big]^3 $$
$$\Rightarrow \; y_{\rm C}(t) = C + A \cdot \cos(\omega_0 t) - {1}/{6} \cdot \big[ C^3 + 3 \cdot C^2 \cdot A \cdot \cos(\omega_0 t) + \hspace{0.09cm}3 \cdot C \cdot A^2 \cdot \cos^2(\omega_0 t) + A^3 \cdot \cos^3(\omega_0 t)\big].$$
  • The signal  $y_{\rm C}(t)$  contains a direct (DC) component  $C - C^3/6$  which is no longer included in the signal  $y(t)$  due to the high-pass filter:
$$\underline{ A_0 = 0}.$$


(2)  Applying the given trigonometric relations the following coefficients with  $A= C = 0.5$  are obtained:

$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A - {1}/{6} \cdot {3}/{4}\cdot A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64} \hspace{0.15cm}\underline{ \approx 0.422},$$
$$A_2 = - {1}/{6}\cdot 3 \cdot {1}/{2}\cdot C \cdot A^2 = - \frac{1}{32} \hspace{0.15cm}\underline{\approx -0.031},$$
$$A_3 = - {1}/{6}\cdot \frac{1}{4}\cdot A^3 = - {1}/{192} \hspace{0.15cm}\underline{\approx -0.005}.$$
  • Higher order terms do not occur.  Thus,   $\underline{A_4 = 0}$  holds.


(3)  In this task,  the higher order distortion factors are  $K_2 = 2/27 \approx 7.41\%$  and  $K_3 = 1/81 \approx 1.23\%$.

  • Thereby, the following is obtained for the overall distortion factor:
$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$


(4)  The maximum value occurs at time  $t = 0$  and at multiples of  $T$ :

$$y_{\rm max}= y(t=0) = A_1 + A_2 + A_3 = 0.422 -0.031 -0.005 \hspace{0.15cm}\underline{= 0.386}.$$
  • The minimum values are located exactly in the middle between two maxima and it holds that:
$$y_{\rm min}= - A_1 + A_2 - A_3 = -0.422 -0.031 +0.005\hspace{0.15cm}\underline{ = -0.448}.$$
  • The signal  $y(t)$  is shifted downward by  $0.448$  compared to the signal  drawn in the sketch on the information page.
  • This signal value is obtained from the following equation considering  $A = C = 1/2$:
$$C - \frac{C \cdot A^2}{4}- \frac{C^3}{6} = {1}/{2} - {1}/{32}- {1}/{48} = 0.448.$$