Difference between revisions of "Aufgaben:Exercise 2.4: Distortion Factor and Distortion Power"

From LNTwww
 
(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID897__LZI_A_2_4.png|right|frame|On the meaning of the distortion factor]]
+
[[File:P_ID897__LZI_A_2_4.png|right|frame|Given input and output signals]]
 
A cosine signal
 
A cosine signal
 
:$$x_1(t) =  A_x  \cdot \cos(\omega_0 t)$$
 
:$$x_1(t) =  A_x  \cdot \cos(\omega_0 t)$$
  
with the amplitude  $A_x = 1 \ \rm V$  is applied to the input of a message transmission system to test it. Then, the following signal occurs at the system output:
+
with the amplitude  $A_x = 1 \ \rm V$  is applied to the input of a communication system to test it.  
 +
 
 +
Then, the following signal occurs at the system output:
 
:$$y_1(t) = {0.992 \,\rm V}  \cdot \cos(\omega_0 t) - {0.062 \,\rm
 
:$$y_1(t) = {0.992 \,\rm V}  \cdot \cos(\omega_0 t) - {0.062 \,\rm
 
V} \cdot \cos(2\omega_0 t)+ \hspace{0.05cm}\text{...}$$
 
V} \cdot \cos(2\omega_0 t)+ \hspace{0.05cm}\text{...}$$
  
In the upper graph the signals  $x_1(t)$  and  $y_1(t)$  are shown. Harmonics with amplitudes smaller than  $10 \ \rm mV$  are not considered here.
+
In the upper graph the signals  $x_1(t)$  and  $y_1(t)$  are shown. Harmonics with amplitudes  $\lt 10 \ \rm mV$  are not considered here.
  
  
Line 20: Line 22:
 
\hspace{0.05cm}\text{...}$$
 
\hspace{0.05cm}\text{...}$$
  
It is obvious that the indices "1" and "2" respectively denote the normalised amplitude of the input signal.
+
It is obvious that the indices  "1"  and  "2"  respectively denote the normalized amplitude of the input signal.
  
The system is supposed to be analysed based on the signal–to–distortion–power ratio
+
The system is supposed to be analyzed based on the signal–to–distortion–power ratio
 
:$$\rho_{\rm V} = { P_{x}}/{P_{\rm V}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} =
 
:$$\rho_{\rm V} = { P_{x}}/{P_{\rm V}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} =
 
  10 \cdot \lg \hspace{0.1cm}{ P_{x}}/{P_{\rm V}}\hspace{0.3cm}  \left( {\rm in \hspace{0.15cm} dB} \right)$$  
 
  10 \cdot \lg \hspace{0.1cm}{ P_{x}}/{P_{\rm V}}\hspace{0.3cm}  \left( {\rm in \hspace{0.15cm} dB} \right)$$  
 
defined in the section [[Linear_and_Time_Invariant_Systems/Classification_of_the_Distortions#Quantitative_measure_for_the_signal_distortions| Quantitative measure for the signal distortions]]  and the distortion factor  $K$ :
 
defined in the section [[Linear_and_Time_Invariant_Systems/Classification_of_the_Distortions#Quantitative_measure_for_the_signal_distortions| Quantitative measure for the signal distortions]]  and the distortion factor  $K$ :
 
* $P_x$  denotes the power of the input signal.
 
* $P_x$  denotes the power of the input signal.
* The distortion power  $P_{\rm V}$  respectively represents the power  (the root mean square)  of the difference signal  $\varepsilon(t) = y(t) - x(t)$ .
+
* The distortion power  (German:  "Verrzerrungsleistung"   ⇒   "V")  $P_{\rm V}$  represents the power  (the root mean square)  of the difference signal  $\varepsilon(t) = y(t) - x(t)$ .
 
+
*To determine the powers  $P_{x}$  and  $P_{\rm V}$  it is necessary to take the average of the squared signals in each case. However, it is easier to calculate the powers in the frequency domain in this task.
 
 
To determine the powers  $P_{x}$  and  $P_{\rm V}$  it is necessary to take the average of the squared signals in each case. However, it is easier to calculate the powers in the frequency domain in this task.
 
  
  
Line 40: Line 40:
  
 
''Please note:''  
 
''Please note:''  
*The task belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion|Nonlinear Distortion]].
+
*The task belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion|Nonlinear Distortions]].
 
   
 
   
 
*All powers required here refer to the resistance $R = 1 \ \rm \Omega$  and thus have the unit ${\rm V}^2$.
 
*All powers required here refer to the resistance $R = 1 \ \rm \Omega$  and thus have the unit ${\rm V}^2$.
Line 111: Line 111:
 
'''(3)'''&nbsp; <u>The first two proposed solutions</u> are correct:
 
'''(3)'''&nbsp; <u>The first two proposed solutions</u> are correct:
 
*Here, the nonlinear distortions cause the lower half-wave to be more peaked than the upper half-wave.  
 
*Here, the nonlinear distortions cause the lower half-wave to be more peaked than the upper half-wave.  
*In addition, &nbsp; $y_{\rm max} = 1.75 \ \rm V$&nbsp; and&nbsp; $y_{\rm min} = -2.25 \ \rm V$ hold since&nbsp; $y(t)$&nbsp; does not contain any direct (DC) signals. Hence, there is no symmetry with respect to the zero line anymore.
+
*In addition, &nbsp; $y_{\rm max} = 1.75 \ \rm V$&nbsp; and&nbsp; $y_{\rm min} = -2.25 \ \rm V$ hold since&nbsp; $y(t)$&nbsp; does not contain any direct (DC) signals. <br>Hence, there is no symmetry with respect to the zero line anymore.
 
*For a nonlinear system, the distortion factor&nbsp; $K$&nbsp; is independent of the frequency of the cosine input signal but strongly dependent on its amplitude.  
 
*For a nonlinear system, the distortion factor&nbsp; $K$&nbsp; is independent of the frequency of the cosine input signal but strongly dependent on its amplitude.  
  
  
  
'''(4)'''&nbsp; The root mean square (rms) value of a cosine signal is known to be&nbsp; $\sqrt{0.5}$&ndash;times the amplitude. The square of this is the "power":
+
'''(4)'''&nbsp; The root mean square (rms) value of a cosine signal is known to be&nbsp; $\sqrt{0.5}$&ndash;times the amplitude.&nbsp; The square of this is the "power":
 
:$$P_x = \frac{A_x^2}{2} = \frac{(2 \,{\rm V})^2}{2}\hspace{0.15cm}\underline{ = 2\,{\rm V^2}}.$$
 
:$$P_x = \frac{A_x^2}{2} = \frac{(2 \,{\rm V})^2}{2}\hspace{0.15cm}\underline{ = 2\,{\rm V^2}}.$$
  
*Actually, the power also depends on the reference resistance&nbsp;$R$&nbsp; and has the unit "watt".  
+
*Actually, the power also depends on the reference resistance&nbsp;$R$&nbsp; and has the unit "Watt".  
 
*$P_x =  2 \ \rm W$ is obtained with&nbsp;$R = 1 \ \rm \Omega$&nbsp;, so exactly the same numerical value as in this simpler calculation.
 
*$P_x =  2 \ \rm W$ is obtained with&nbsp;$R = 1 \ \rm \Omega$&nbsp;, so exactly the same numerical value as in this simpler calculation.
  
Line 125: Line 125:
  
 
'''(5)'''&nbsp; Denoting  
 
'''(5)'''&nbsp; Denoting  
*the amplitude of the fundamental wave of&nbsp; $y_2(t)$ by&nbsp; $A_1$&nbsp; and  
+
*the amplitude of the basic wave of&nbsp; $y_2(t)$&nbsp; by&nbsp; $A_1$&nbsp; and  
*the so-called harmonics by&nbsp; $A_2$,&nbsp; $A_3$&nbsp; and&nbsp; $A_4$&nbsp;,
+
*the so-called harmonics by&nbsp; $A_2$,&nbsp; $A_3$&nbsp; and&nbsp; $A_4$,&nbsp;  
  
  
Line 135: Line 135:
 
\,{\rm V})^2 \big] \hspace{0.15cm}\underline{\approx 0.031 \,{\rm V}^2}.$$
 
\,{\rm V})^2 \big] \hspace{0.15cm}\underline{\approx 0.031 \,{\rm V}^2}.$$
  
Here,&nbsp; $A_x$&nbsp; denotes the amplitude of the input signal. The signs of the harmonics do not matter in this calculation.
+
Here,&nbsp; $A_x$&nbsp; denotes the amplitude of the input signal.&nbsp; The signs of the harmonics do not matter in this calculation.
  
  
Line 153: Line 153:
 
+ \text{...} }{A_x^2}.$$
 
+ \text{...} }{A_x^2}.$$
  
*When calculating the distortion power&nbsp; $P_{\rm V}$&nbsp; a falsification of the amplitude of the fundamental wave&nbsp; $($this is now&nbsp; $A_1$&nbsp; instead of&nbsp; $A_x)$&nbsp; is also taken into account. Moreover, the distortion power is not in terms of&nbsp; $A_1^2$ but in terms of&nbsp; $A_x^2$&nbsp;.  
+
*When calculating the distortion power&nbsp; $P_{\rm V}$&nbsp; a falsification of the amplitude of the basic wave&nbsp; $($this is now&nbsp; $A_1$&nbsp; instead of&nbsp; $A_x)$&nbsp; is also taken into account.&nbsp; Moreover, the distortion power is not in terms of&nbsp; $A_1^2$&nbsp; but in terms of&nbsp; $A_x^2$&nbsp;.  
  
 
*Generally, the following relationship holds between the signal&ndash;to&ndash;distortion&ndash;power ratio and the distortion factor:
 
*Generally, the following relationship holds between the signal&ndash;to&ndash;distortion&ndash;power ratio and the distortion factor:
Line 162: Line 162:
  
  
''Remarks:''
+
Remarks:
*A distortion factor of&nbsp; $1\%$&nbsp; in this case corresponds to the result&nbsp; $10 \cdot \lg \rho_{\rm V} = 40 \,{\rm dB}$.
+
*A distortion factor of&nbsp; $1\%$&nbsp; corresponds in this case to the result&nbsp; $10 \cdot \lg \rho_{\rm V} = 40 \,{\rm dB}$.
*Using the distortion factor&nbsp; $K = 0.125$&nbsp; from subtask&nbsp; '''(2)'''&nbsp; &nbsp; $10 \cdot \lg \rho_{\rm V} = 18.06 \,{\rm dB}$&nbsp; would have been obtained immediately with the approximation&nbsp; $A_1 \approx A_x$&nbsp;.  
+
*Using the distortion factor&nbsp; $K = 0.125$&nbsp; from subtask&nbsp; '''(2)''' &nbsp; &rArr; &nbsp; $10 \cdot \lg \rho_{\rm V} = 18.06 \,{\rm dB}$&nbsp; would have been obtained immediately with the approximation&nbsp; $A_1 \approx A_x$&nbsp;.  
 
*The actual value &nbsp; $(18.10 \ \rm dB)$&nbsp; calculated in subtask&nbsp; '''(7)'''&nbsp; differs from this only insignificantly.  
 
*The actual value &nbsp; $(18.10 \ \rm dB)$&nbsp; calculated in subtask&nbsp; '''(7)'''&nbsp; differs from this only insignificantly.  
  

Latest revision as of 13:56, 1 October 2021

Given input and output signals

A cosine signal

$$x_1(t) = A_x \cdot \cos(\omega_0 t)$$

with the amplitude  $A_x = 1 \ \rm V$  is applied to the input of a communication system to test it.

Then, the following signal occurs at the system output:

$$y_1(t) = {0.992 \,\rm V} \cdot \cos(\omega_0 t) - {0.062 \,\rm V} \cdot \cos(2\omega_0 t)+ \hspace{0.05cm}\text{...}$$

In the upper graph the signals  $x_1(t)$  and  $y_1(t)$  are shown. Harmonics with amplitudes  $\lt 10 \ \rm mV$  are not considered here.


The bottom image shows the input signal  $x_2(t)$  with the ampiltude  $A_x = 2 \ \rm V$  and the corresponding output signal, again without harmonics smaller than  $10 \ \rm mV$:

$$y_2(t) \hspace{-0.05cm}=\hspace{-0.05cm}{1.938 \,\rm V} \cdot \cos(\omega_0 t)\hspace{-0.05cm} -\hspace{-0.05cm} {0.234 \,\rm V} \cdot \cos(2\omega_0 t) \hspace{-0.05cm}+\hspace{-0.05cm} {0.058 \,\rm V} \cdot \cos(3\omega_0 t)\hspace{-0.05cm} -\hspace{-0.05cm}{0.018 \,\rm V} \cdot \cos(4\omega_0 t) \hspace{-0.05cm}+\hspace{-0.05cm} \hspace{0.05cm}\text{...}$$

It is obvious that the indices  "1"  and  "2"  respectively denote the normalized amplitude of the input signal.

The system is supposed to be analyzed based on the signal–to–distortion–power ratio

$$\rho_{\rm V} = { P_{x}}/{P_{\rm V}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} = 10 \cdot \lg \hspace{0.1cm}{ P_{x}}/{P_{\rm V}}\hspace{0.3cm} \left( {\rm in \hspace{0.15cm} dB} \right)$$

defined in the section  Quantitative measure for the signal distortions  and the distortion factor  $K$ :

  • $P_x$  denotes the power of the input signal.
  • The distortion power  (German:  "Verrzerrungsleistung"   ⇒   "V")  $P_{\rm V}$  represents the power  (the root mean square)  of the difference signal  $\varepsilon(t) = y(t) - x(t)$ .
  • To determine the powers  $P_{x}$  and  $P_{\rm V}$  it is necessary to take the average of the squared signals in each case. However, it is easier to calculate the powers in the frequency domain in this task.





Please note:

  • All powers required here refer to the resistance $R = 1 \ \rm \Omega$  and thus have the unit ${\rm V}^2$.


Questions

1

Compute the distortion factor  $K$  for the input amplitude  $\underline{ A_x = 1\ \rm V}$.

$K \ = \ $

$\%$

2

What is the distortion factor with the input amplitude  $\underline{ A_x = 2\ \rm V}$?

$K \ = \ $

$\%$

3

Which statements are true for the signals $x_2(t)$  and  $y_2(t)$ ?

The lower half-wave is more peaked than the upper half-wave.
The maximum– and minimum values of $y_2(t)$  are asymmetrically zero.
A different frequency would result in a different distortion factor.

4

What is the power $P_x$  of the input signal $x_2(t)$  in  ${\rm V}^2$, i.e. in terms of the reference resistance  $R = 1 \ \rm \Omega$?

$P_x \ = \ $

$\ {\rm V}^2$

5

What is the power $P_{\rm V}$  of the difference signal $\varepsilon_2(t)$   ⇒   "distortion power"?

$P_{\rm V} \ = \ $

$\ {\rm V}^2$

6

What is the signal–to–distortion–power ratio in  ${\rm dB}$?

$10 \cdot {\rm lg} \ \rho_{\rm V} \ = \ $

$\ {\rm dB}$

7

Which of the following statements are true for cosine-shaped input signals?

The distortion factor can be computed using the coefficients $A_1$,  $A_2$,  $A_3$,  ...  of the output variable alone.
The signal–to–distortion–power ratio  $10 \cdot {\rm lg} \ \rho_{\rm V}$  is computable using the coefficients $A_1$,  $A_2$,  $A_3$,  ...  alone.
For the special case  [$A_1 = A_x$   ⇒   no change of the fundamental wave],   $\rho_{\rm V}$  and  $K$  can be converted directly into each other.


Solution

(1)  Considering the input amplitude  $A_x = 1 \ \rm V$  corresponding to the upper sketch only the second order distortion factor provides a relevant contribution. Therefore, the following holds:

$$K \approx K_2 = \frac{0.062 \,\,{\rm V}}{0.992 \,\,{\rm V}} \hspace{0.15cm}\underline{\approx 6.25 \%}.$$


(2)  For the input amplitude  $A_x = 2 \ \rm V$  (bottom sketch) the various distortion factors are:

$$K_2 = \frac{0.234 \,\,{\rm V}}{1.938 \,\,{\rm V}} \approx 0.121, \hspace{0.5cm} K_3 = \frac{0.058 \,\,{\rm V}}{1.938 \,\,{\rm V}} \approx 0.030, \hspace{0.5cm}K_4 = \frac{0.018 \,\,{\rm V}}{1.938 \,\,{\rm V}} \approx 0.009.$$
  • Thus, the overall distortion factor is:
$$K = \sqrt{K_2^2 + K_3^2 + K_4^2 +\text{ ...} }\hspace{0.15cm}\underline{ \approx 12.5 \%}.$$


(3)  The first two proposed solutions are correct:

  • Here, the nonlinear distortions cause the lower half-wave to be more peaked than the upper half-wave.
  • In addition,   $y_{\rm max} = 1.75 \ \rm V$  and  $y_{\rm min} = -2.25 \ \rm V$ hold since  $y(t)$  does not contain any direct (DC) signals.
    Hence, there is no symmetry with respect to the zero line anymore.
  • For a nonlinear system, the distortion factor  $K$  is independent of the frequency of the cosine input signal but strongly dependent on its amplitude.


(4)  The root mean square (rms) value of a cosine signal is known to be  $\sqrt{0.5}$–times the amplitude.  The square of this is the "power":

$$P_x = \frac{A_x^2}{2} = \frac{(2 \,{\rm V})^2}{2}\hspace{0.15cm}\underline{ = 2\,{\rm V^2}}.$$
  • Actually, the power also depends on the reference resistance $R$  and has the unit "Watt".
  • $P_x = 2 \ \rm W$ is obtained with $R = 1 \ \rm \Omega$ , so exactly the same numerical value as in this simpler calculation.


(5)  Denoting

  • the amplitude of the basic wave of  $y_2(t)$  by  $A_1$  and
  • the so-called harmonics by  $A_2$,  $A_3$  and  $A_4$, 


the distortion power is thus by computing it in the frequency domain:

$$P_{\rm V} = \frac{1}{2} \cdot \big[ (A_1 - A_x)^2 + A_2^2+ A_3^2+ A_4^2\big] = \frac{1}{2} \cdot \big[ (-2 \,{\rm V} \hspace{-0.05cm}+ \hspace{-0.05cm}1.938 \,{\rm V} )^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (0.234 \,{\rm V})^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (0.058 \,{\rm V})^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (0.018 \,{\rm V})^2 \big] \hspace{0.15cm}\underline{\approx 0.031 \,{\rm V}^2}.$$

Here,  $A_x$  denotes the amplitude of the input signal.  The signs of the harmonics do not matter in this calculation.


(6)  Using the results of subtasks  (4)  and  (5)  the following is obtained:

$$10 \cdot \lg \rho_{V} = 10 \cdot \lg \frac{P_x}{P_{\rm V}}= 10 \cdot \lg \frac{2.000\,{\rm V^2}}{0.031 \,{\rm V}^2} \hspace{0.15cm}\underline{\approx 18.10 \,{\rm dB}}.$$


(7)  Proposed solutions 1 and 3 are correct:

  • The first statement is correct because it holds that
$$K^2 = \frac{A_2^2 + A_3^2 + A_4^2 + ... }{A_1^2}.$$
  • In contrast, the following holds for the reciprocal of the signal–to–distortion–power ratio:
$${1}/{\rho_{\rm V}} = \frac{(A_1 - A_x)^2+A_2^2 + A_3^2 + A_4^2 + \text{...} }{A_x^2}.$$
  • When calculating the distortion power  $P_{\rm V}$  a falsification of the amplitude of the basic wave  $($this is now  $A_1$  instead of  $A_x)$  is also taken into account.  Moreover, the distortion power is not in terms of  $A_1^2$  but in terms of  $A_x^2$ .
  • Generally, the following relationship holds between the signal–to–distortion–power ratio and the distortion factor:
$${\rho_{\rm V}} = \frac{A_x^2}{(A_1 - A_x)^2 + K^2 \cdot A_1^2}.$$
  • With  $A_1 = A_x$  this equation is simplified as follows:
$${\rho_{\rm V}} = {1}/{ K^2 }.$$


Remarks:

  • A distortion factor of  $1\%$  corresponds in this case to the result  $10 \cdot \lg \rho_{\rm V} = 40 \,{\rm dB}$.
  • Using the distortion factor  $K = 0.125$  from subtask  (2)   ⇒   $10 \cdot \lg \rho_{\rm V} = 18.06 \,{\rm dB}$  would have been obtained immediately with the approximation  $A_1 \approx A_x$ .
  • The actual value   $(18.10 \ \rm dB)$  calculated in subtask  (7)  differs from this only insignificantly.