Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.6Z: Two Imaginary Poles"

From LNTwww
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1786__LZI_Z_3_6.png|right|frame|Two imaginary poles and one zero ]]
+
[[File:P_ID1786__LZI_Z_3_6.png|right|frame|Two imaginary poles <br>and one zero ]]
In this exercise, we consider a causal signal &nbsp;x(t)&nbsp; with the Laplace transform
+
In this exercise,&nbsp; we consider a causal signal &nbsp;x(t)&nbsp; with the Laplace transform
 
:$$X_{\rm L}(p) =
 
:$$X_{\rm L}(p) =
 
  \frac { p} { p^2 + 4 \pi^2}=
 
  \frac { p} { p^2 + 4 \pi^2}=
Line 11: Line 11:
 
corresponding to the graph&nbsp; (one red zero and two green poles).  
 
corresponding to the graph&nbsp; (one red zero and two green poles).  
  
In contrast, the signal &nbsp;y(t)&nbsp; has the Laplace spectral function
+
*In contrast,&nbsp; the signal &nbsp;y(t)&nbsp; has the Laplace spectral function
 
:$$Y_{\rm L}(p) =
 
:$$Y_{\rm L}(p) =
 
  \frac { 1} { p^2 + 4 \pi^2}
 
  \frac { 1} { p^2 + 4 \pi^2}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Thus, the red zero does not belong to &nbsp;YL(p).
+
:Thus,&nbsp; the red zero does not belong to &nbsp;YL(p).
  
Finally, the signal &nbsp;z(t)&nbsp; with the Laplace tansform
+
*Finally, the signal &nbsp;z(t)&nbsp; with the Laplace tansform
 
:$$Z_{\rm L}(p) =
 
:$$Z_{\rm L}(p) =
 
  \frac { p} { (p-{\rm j} \cdot \beta)(p+{\rm j} \cdot \beta)}
 
  \frac { p} { (p-{\rm j} \cdot \beta)(p+{\rm j} \cdot \beta)}
 
  \hspace{0.05cm}$$
 
  \hspace{0.05cm}$$
is considered, in particular the limiting case for &nbsp;\beta &#8594; 0.
+
:is considered, in particular the limiting case for &nbsp;\beta &#8594; 0.
  
  
Line 27: Line 27:
  
  
 
+
Please note:  
 
 
 
 
''Please note:''
 
 
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
 
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
*The frequency variable&nbsp; p&nbsp; is normalized such that time&nbsp; t&nbsp; is in microseconds after applying the residue theorem.  
+
*The frequency variable&nbsp; p &nbsp; is normalized such that time&nbsp; t&nbsp; is in microseconds after applying the residue theorem.  
 
*A result &nbsp;t=1&nbsp; is thus to be interpreted as &nbsp;t=T&nbsp; with &nbsp;T = 1 \ \rm &micro; s&nbsp;.  
 
*A result &nbsp;t=1&nbsp; is thus to be interpreted as &nbsp;t=T&nbsp; with &nbsp;T = 1 \ \rm &micro; s&nbsp;.  
 
*The &nbsp;[[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Formulation_of_the_residue_theorem|residue theorem]]&nbsp; is as follows using the example of the function &nbsp;XL(p)&nbsp; with two simple poles at &nbsp;±jβ:
 
*The &nbsp;[[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Formulation_of_the_residue_theorem|residue theorem]]&nbsp; is as follows using the example of the function &nbsp;XL(p)&nbsp; with two simple poles at &nbsp;±jβ:
Line 46: Line 43:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Compute the signal &nbsp;x(t). Which of the following statements are correct?
+
{Compute the signal &nbsp;x(t).&nbsp; Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
 
+ x(t)&nbsp; is a causal cosine signal.
 
+ x(t)&nbsp; is a causal cosine signal.
 
- x(t)&nbsp; is a causal sinusoidal signal.
 
- x(t)&nbsp; is a causal sinusoidal signal.
 
+ The amplitude of&nbsp; x(t)&nbsp; is&nbsp; 1.
 
+ The amplitude of&nbsp; x(t)&nbsp; is&nbsp; 1.
+ The period of x(t) is&nbsp; T = 1 \ \rm &micro; s.
+
+ The period of&nbsp; x(t)&nbsp; is&nbsp; T = 1 \ \rm &micro; s.
  
  
Line 74: Line 71:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The <u>suggested solutions 1, 3 and 4</u> are correct:
+
'''(1)'''&nbsp; The&nbsp; <u>suggested solutions 1, 3 and 4</u>&nbsp; are correct:
 
*The following is obtained for signal&nbsp; x(t)&nbsp; for positive times by applying the residue theorem:
 
*The following is obtained for signal&nbsp; x(t)&nbsp; for positive times by applying the residue theorem:
 
:$$x_1(t)\hspace{0.25cm} =  \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}
 
:$$x_1(t)\hspace{0.25cm} =  \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}
Line 97: Line 94:
  
  
'''(2)'''&nbsp; The <u>suggested solutions 2 and 4</u> are correct:
+
'''(2)'''&nbsp; The&nbsp; <u>suggested solutions 2 and 4</u>&nbsp; are correct:
*In principle, this subtask could be solved in the same way as subtask&nbsp; '''(1)'''.  
+
*In principle,&nbsp; this subtask could be solved in the same way as subtask&nbsp; '''(1)'''.  
*However, the integration theorem can also be used.  
+
*However,&nbsp; the integration theorem can also be used.  
 
*This says among other things that multiplication by&nbsp; 1/p&nbsp; in the spectral domain corresponds to integration in the time domain:
 
*This says among other things that multiplication by&nbsp; 1/p&nbsp; in the spectral domain corresponds to integration in the time domain:
 
:$$Y_{\rm L}(p) = {1}/{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} t \ge 0:\quad y(t) = \int_{-\infty}^t \cos(2\pi
 
:$$Y_{\rm L}(p) = {1}/{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} t \ge 0:\quad y(t) = \int_{-\infty}^t \cos(2\pi
Line 105: Line 102:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
''Please note:'' &nbsp; &nbsp; The causal cosine signal&nbsp; x(t)&nbsp; and the causal sine signal&nbsp; y(t)&nbsp; are shown on the information page of&nbsp; [[Aufgaben:Exercise_3.6:_Transient_Behavior|Exercise 3.6]]&nbsp; as&nbsp; cK(t)&nbsp; and&nbsp; sK(t),&nbsp; respectively.
+
Please note:&nbsp; The causal cosine signal&nbsp; x(t)&nbsp; and the causal sine signal&nbsp; y(t)&nbsp; are shown on the information page of&nbsp; [[Aufgaben:Exercise_3.6:_Transient_Behavior|Exercise 3.6]]&nbsp; as&nbsp; cK(t)&nbsp; and&nbsp; sK(t),&nbsp; respectively.
  
  
  
'''(3)'''&nbsp; The <u>suggested solutions 1 and 3</u> are correct:
+
'''(3)'''&nbsp; The&nbsp; <u>suggested solutions 1 and 3</u>&nbsp; are correct:
*A comparison with the computation of &nbsp;x(t)&nbsp; shows that &nbsp;z(t)=cos(βt)&nbsp; holds for &nbsp;t0&nbsp; and &nbsp;z(t)=0&nbsp; for &nbsp;t<0&nbsp;.  
+
*A comparison with the computation of &nbsp;x(t)&nbsp; shows that &nbsp;z(t)=cos(βt)&nbsp; holds for &nbsp;t0&nbsp; and &nbsp;z(t)=0&nbsp; for &nbsp;t<0.  
 
*The limit process for &nbsp;\beta &#8594; 0&nbsp; thus results in the step function &nbsp;γ(t).  
 
*The limit process for &nbsp;\beta &#8594; 0&nbsp; thus results in the step function &nbsp;γ(t).  
 
*The same result is obtained by consideration in the spectral domain:
 
*The same result is obtained by consideration in the spectral domain:

Latest revision as of 18:33, 9 December 2021

Two imaginary poles
and one zero

In this exercise,  we consider a causal signal  x(t)  with the Laplace transform

XL(p)=pp2+4π2=p(pj2π)(p+j2π)

corresponding to the graph  (one red zero and two green poles).

  • In contrast,  the signal  y(t)  has the Laplace spectral function
YL(p)=1p2+4π2.
Thus,  the red zero does not belong to  YL(p).
  • Finally, the signal  z(t)  with the Laplace tansform
ZL(p)=p(pjβ)(p+jβ)
is considered, in particular the limiting case for  β0.



Please note:

  • The exercise belongs to the chapter  Inverse Laplace Transform.
  • The frequency variable  p   is normalized such that time  t  is in microseconds after applying the residue theorem.
  • A result  t=1  is thus to be interpreted as  t=T  with  T = 1 \ \rm µ s .
  • The  residue theorem  is as follows using the example of the function  X_{\rm L}(p)  with two simple poles at   \pm {\rm j} \cdot \beta:
x(t) = X_{\rm L}(p) \cdot (p - {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p\hspace{0.05cm} \cdot \hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it \beta}}+X_{\rm L}(p) \cdot (p + {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm} \cdot\hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{-\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it \beta}} \hspace{0.05cm}.


Questions

1

Compute the signal  x(t).  Which of the following statements are correct?

x(t)  is a causal cosine signal.
x(t)  is a causal sinusoidal signal.
The amplitude of  x(t)  is  1.
The period of  x(t)  is  T = 1 \ \rm µ s.

2

Compute the signal  y(t). Which of the following statements are correct?

y(t)  is a causal cosine signal.
y(t)  is a causal sinusoidal signal.
The amplitude of  y(t)  is  1.
The period of  y(t)  is  T = 1 \ \rm µ s.

3

Which statements are true for the signal  z(t) ?

For   \beta > 0,   z(t)  is cosine-shaped.
For   \beta > 0,   z(t)  is sinusoidal.
The limiting case  \beta → 0  results in the step function  \gamma(t).


Solution

(1)  The  suggested solutions 1, 3 and 4  are correct:

  • The following is obtained for signal  x(t)  for positive times by applying the residue theorem:
x_1(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t}\}= \frac {p} { p+{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\hspace{0.05cm} ,
x_2(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\}= \frac {p} { p-{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= -{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t} \hspace{0.05cm} .
\Rightarrow \hspace{0.3cm} x(t) = x_1(t) + x_2(t) = {1}/{2} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}+{\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\right ] = \cos(2\pi t) \hspace{0.05cm} .


(2)  The  suggested solutions 2 and 4  are correct:

  • In principle,  this subtask could be solved in the same way as subtask  (1).
  • However,  the integration theorem can also be used.
  • This says among other things that multiplication by  1/p  in the spectral domain corresponds to integration in the time domain:
Y_{\rm L}(p) = {1}/{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} t \ge 0:\quad y(t) = \int_{-\infty}^t \cos(2\pi \tau)\,\,{\rm d}\tau = {1}/({2\pi}) \cdot \sin(2\pi t) \hspace{0.05cm} .

Please note:  The causal cosine signal  x(t)  and the causal sine signal  y(t)  are shown on the information page of  Exercise 3.6  as  c_{\rm K}(t)  and  s_{\rm K}(t),  respectively.


(3)  The  suggested solutions 1 and 3  are correct:

  • A comparison with the computation of  x(t)  shows that  z(t) = \cos (\beta \cdot t)  holds for  t \ge 0  and  z(t) = 0  for  t < 0.
  • The limit process for  \beta → 0  thus results in the step function  \gamma(t).
  • The same result is obtained by consideration in the spectral domain:
Z_{\rm L}(p) = \lim_{\beta \hspace{0.05cm} \rightarrow \hspace{0.05cm} 0}\hspace{0.1cm}\frac{p}{p^2 + \beta^2} = {1}/{p} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z(t) = \gamma(t) \hspace{0.05cm} .