Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.7Z: Partial Fraction Decomposition"

From LNTwww
 
(5 intermediate revisions by 2 users not shown)
Line 4: Line 4:
  
 
[[File:P_ID1789__LZI_Z_3_7.png|right|frame|Pole-zero diagrams]]
 
[[File:P_ID1789__LZI_Z_3_7.png|right|frame|Pole-zero diagrams]]
In the graph, four two-port networks are given by their pole–zero diagrams  HL(p) .
+
In the graph,  four two-port networks are given by their pole–zero diagrams  HL(p).
 
* They all have in common that the number  Z  of zeros is equal to the number  N  of poles.  
 
* They all have in common that the number  Z  of zeros is equal to the number  N  of poles.  
 
*The constant factor in each case is  K=1.
 
*The constant factor in each case is  K=1.
  
  
In the special case  Z=N  the residue theorem cannot be applied directly to compute the impulse response  h(t) .  
+
In the special case  Z=N  the residue theorem cannot be applied directly to compute the impulse response  h(t).  
  
Rather, a partial fraction decomposition corresponding to
+
Rather,  a  "partial fraction decomposition"  corresponding to
 
:$$H_{\rm L}(p)  =1- H_{\rm L}\hspace{0.05cm}'(p)
 
:$$H_{\rm L}(p)  =1- H_{\rm L}\hspace{0.05cm}'(p)
 
  \hspace{0.05cm}$$
 
  \hspace{0.05cm}$$
 
must be made beforehand. Then,  
 
must be made beforehand. Then,  
 
:$$h(t)  = \delta(t)- h\hspace{0.03cm}'(t)
 
:$$h(t)  = \delta(t)- h\hspace{0.03cm}'(t)
  \hspace{0.05cm}$$ holds for the impulse response.
+
  \hspace{0.05cm}$$  
&nbsp;h(t)&nbsp; is the inverse Laplace transform of &nbsp;HL(p)&nbsp;, where the condition &nbsp;Z<N&nbsp; is satisfied.
+
holds for the impulse response.
 +
&nbsp;h(t)&nbsp; is the inverse Laplace transform of &nbsp;HL(p),&nbsp; where the condition &nbsp;Z<N&nbsp; is satisfied.
  
Two of the four configurations given are so-called ''all-pass filters''.  
+
Two of the four configurations given are so-called&nbsp; "all-pass filters".  
*This refers to two-port networks for which the Fourier spectral function satisfies the condition &nbsp;|H(f)|=1 &nbsp; &#8658; &nbsp; a(f)=0&nbsp;.  
+
*This refers to two-port networks for which the Fourier spectrum satisfies the condition &nbsp;|H(f)|=1 &nbsp; &#8658; &nbsp; a(f)=0&nbsp;.  
 
*In [[Aufgaben:Exercise_3.4Z:_Various_All-Pass_Filters|Exercise 3.4Z]] it is given how the poles and zeros of such an all-pass filter must be positioned.
 
*In [[Aufgaben:Exercise_3.4Z:_Various_All-Pass_Filters|Exercise 3.4Z]] it is given how the poles and zeros of such an all-pass filter must be positioned.
  
  
Furthermore, in this exercise the &nbsp;p&ndash;transfer function
+
Furthermore,&nbsp; in this exercise the &nbsp;p&ndash;transfer function
 
:$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2}
 
:$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2}
 
  \hspace{0.05cm}$$
 
  \hspace{0.05cm}$$
&rArr; &nbsp; "configuration (5)" will be examined in more detail, which can be represented by one of the four pole&ndash;zero diagrams given in the graph if the parameter &nbsp;A&nbsp; is chosen correctly.
+
&rArr; &nbsp; "configuration (5)" will be examined in more detail,&nbsp; which can be represented by one of the four pole&ndash;zero diagrams given in the graph if the parameter &nbsp;A&nbsp; is chosen correctly.
  
  
Line 33: Line 34:
  
  
''Please note:''
+
Please note:  
 
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
 
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
 
*In particular, reference is made to the page&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Partial_fraction_decomposition|Partial fraction decomposition]].
 
*In particular, reference is made to the page&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Partial_fraction_decomposition|Partial fraction decomposition]].
Line 51: Line 52:
  
  
{Which quadripole has the transfer function &nbsp;H(5)L(p)?
+
{Which two-port network has the transfer function &nbsp;H(5)L(p)?
 
|type="()"}
 
|type="()"}
 
- Configuration &nbsp;(1),
 
- Configuration &nbsp;(1),
Line 59: Line 60:
  
  
{Compute the function &nbsp;HL(p)&nbsp; after a partial fraction decomposition for configuration&nbsp; '''(1)'''. <br>Enter the function value for &nbsp;p=0&nbsp;.
+
{Compute the function &nbsp;HL(p)&nbsp; after a partial fraction decomposition for configuration&nbsp; '''(1)'''.&nbsp; Enter the function value for &nbsp;p=0.
 
|type="{}"}
 
|type="{}"}
 
HL(p=0) =   { 2 3% }
 
HL(p=0) =   { 2 3% }
  
  
{Compute &nbsp;HL(p)&nbsp; for the configuration &nbsp;(2).&nbsp; Which statements are true here?
+
{Compute &nbsp;HL(p)&nbsp; for configuration &nbsp;(2).&nbsp; Which statements are true here?
 
|type="[]"}
 
|type="[]"}
 
- HL(p)&nbsp; has the same zeros as &nbsp;HL(p).
 
- HL(p)&nbsp; has the same zeros as &nbsp;HL(p).
Line 71: Line 72:
  
  
{Compute &nbsp;HL(p)&nbsp; for the configuration &nbsp;(3).&nbsp; Which statements are true here?
+
{Compute &nbsp;HL(p)&nbsp; for configuration &nbsp;(3).&nbsp; Which statements are true here?
 
|type="[]"}
 
|type="[]"}
 
- HL(p)&nbsp; has the same zeros as &nbsp;HL(p).
 
- HL(p)&nbsp; has the same zeros as &nbsp;HL(p).
Line 78: Line 79:
  
  
{Compute &nbsp;HL(p)&nbsp; for the configuration &nbsp;(4).&nbsp; Which statements are true here?
+
{Compute &nbsp;HL(p)&nbsp; for configuration &nbsp;(4).&nbsp; Which statements are true here?
 
|type="[]"}
 
|type="[]"}
 
- HL(p)&nbsp; has the same zeros as &nbsp;HL(p).
 
- HL(p)&nbsp; has the same zeros as &nbsp;HL(p).
Line 90: Line 91:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The <u> suggested solutions 1 and 2</u> are correct:
+
'''(1)'''&nbsp; The&nbsp; <u> suggested solutions 1 and 2</u>&nbsp; are correct:
*According to the criteria given in exercise 3.4Z, there is always an all-pass filter at hand if there is a corresponding zero &nbsp;po=+A+jB&nbsp; in the right p&ndash;half-plane for each pole &nbsp;px=A+jB&nbsp; in the left half-plane.  
+
*According to the criteria given in exercise 3.4Z,&nbsp; there is always an all-pass filter at hand <br>if there is a corresponding zero &nbsp;po=+A+jB&nbsp; in the right p&ndash;half-plane for each pole &nbsp;px=A+jB&nbsp; in the left half-plane.  
 
*Considering&nbsp; K=1&nbsp; the attenuation function is then &nbsp;a(f)=0 Np &nbsp; &#8658; &nbsp; |H(f)|=1.  
 
*Considering&nbsp; K=1&nbsp; the attenuation function is then &nbsp;a(f)=0 Np &nbsp; &#8658; &nbsp; |H(f)|=1.  
 
*The following can be seen from the graph on the information page: &nbsp; The configurations &nbsp;(1) and &nbsp;(2) satisfy exactly these symmetry properties.
 
*The following can be seen from the graph on the information page: &nbsp; The configurations &nbsp;(1) and &nbsp;(2) satisfy exactly these symmetry properties.
Line 97: Line 98:
  
  
'''(2)'''&nbsp; The <u> suggested solution 4</u> is correct:
+
'''(2)'''&nbsp; The&nbsp; <u> suggested solution 4</u>&nbsp; is correct:
 
*The transfer function &nbsp;H(5)L(p)&nbsp; is also described by configuration &nbsp;(4)&nbsp; as the following calculation shows:
 
*The transfer function &nbsp;H(5)L(p)&nbsp; is also described by configuration &nbsp;(4)&nbsp; as the following calculation shows:
 
:$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} =  \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2}
 
:$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} =  \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2}
Line 104: Line 105:
 
  }= H_{\rm L}^{(4)}(p)
 
  }= H_{\rm L}^{(4)}(p)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*The double zero is at &nbsp;po=0 and the double pole at &nbsp;px=A=2.
+
*The double zero is at &nbsp;po=0&nbsp; and the double pole at &nbsp;px=A=2.
  
  
  
'''(3)'''&nbsp; The following holds for configuration &nbsp;(1)&nbsp;:
+
'''(3)'''&nbsp; The following holds for configuration &nbsp;(1):
 
:$$H_{\rm L}(p)  =\frac{p-2}{p+2}=\frac{p+2-4}{p+2}= 1 - \frac{4}{p+2}=1- H_{\rm L}\hspace{-0.05cm}'(p)
 
:$$H_{\rm L}(p)  =\frac{p-2}{p+2}=\frac{p+2-4}{p+2}= 1 - \frac{4}{p+2}=1- H_{\rm L}\hspace{-0.05cm}'(p)
 
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p)  = \frac{4}{p+2}
 
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p)  = \frac{4}{p+2}
Line 117: Line 118:
  
  
'''(4)'''&nbsp; In gleicher Weise ergibt sich für die Konfiguration &nbsp;(2):
+
'''(4)'''&nbsp; Similarly,&nbsp; the following is obtained for configuration &nbsp;(2):
 
:$$H_{\rm L}(p)  =\frac{(p-2 - {\rm j} \cdot 2)(p-2 + {\rm j} \cdot 2)}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}=
 
:$$H_{\rm L}(p)  =\frac{(p-2 - {\rm j} \cdot 2)(p-2 + {\rm j} \cdot 2)}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}=
 
   \frac{p^2 -4\cdot p  +8 }{p^2 +4\cdot p  +8}=
 
   \frac{p^2 -4\cdot p  +8 }{p^2 +4\cdot p  +8}=
Line 126: Line 127:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Richtig sind also die <u> Lösungsvorschläge 2 und 3</u> im Gegensatz zur Aussage 1:
+
Thus,&nbsp; the&nbsp; <u> suggested solutions 2 and 3</u>&nbsp; are correct in contrast to statement 1:
* Während &nbsp;HL(p)&nbsp; zwei konjugiert&ndash;komplexe Nullstellen aufweist,  
+
* While &nbsp;HL(p)&nbsp; has two conjugate complex zeros,  
*besitzt &nbsp;HL(p)&nbsp; nur eine einzige Nullstelle bei &nbsp;po=0.
+
* HL(p)&nbsp; only has a single zero at &nbsp;po=0.
  
  
  
  
'''(5)'''&nbsp; Für die Konfiguration &nbsp;(3)&nbsp; gilt:
+
'''(5)'''&nbsp; The following applies for configuration &nbsp;(3)&nbsp;:
 
:$$H_{\rm L}(p)  =
 
:$$H_{\rm L}(p)  =
 
   \frac{p^2 }{p^2 +4\cdot p  +8}=\frac{p^2 +4\cdot p  +8 -4\cdot p  -8 }{p^2 +4\cdot p  +8}
 
   \frac{p^2 }{p^2 +4\cdot p  +8}=\frac{p^2 +4\cdot p  +8 -4\cdot p  -8 }{p^2 +4\cdot p  +8}
Line 140: Line 141:
 
  \cdot \frac{p+2}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}
 
  \cdot \frac{p+2}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Die Nullstelle von &nbsp;HL(p)&nbsp; liegt nun bei &nbsp;po=2.
+
*The zero of &nbsp;HL(p)&nbsp; is now at &nbsp;po=2.
*Die Konstante ist &nbsp;K=4 &nbsp; &#8658; &nbsp; richtig ist hier nur der <u> Lösungsvorschlag 2</u>.
+
*The constant is &nbsp;K=4 &nbsp; &#8658; &nbsp; only &nbsp; <u> suggested solution 2</u> &nbsp; is correct here.
  
  
  
'''(6)'''&nbsp; Schließlich gilt für die Konfiguration &nbsp;(4):
+
'''(6)'''&nbsp; Finally,&nbsp; the following holds for configuration &nbsp;(4):
 
:$$H_{\rm L}(p)  =  \frac{p^2 }{(p+2)^2}=\frac{p^2 +4\cdot p  +4 -4\cdot p  -4 }{p^2 +4\cdot p  +4}
 
:$$H_{\rm L}(p)  =  \frac{p^2 }{(p+2)^2}=\frac{p^2 +4\cdot p  +4 -4\cdot p  -4 }{p^2 +4\cdot p  +4}
 
   = 1- \frac{4\cdot p  +4 }{p^2 +4\cdot p  +4}
 
   = 1- \frac{4\cdot p  +4 }{p^2 +4\cdot p  +4}
Line 151: Line 152:
 
  \cdot \frac{p+1}{(p+2)^2}
 
  \cdot \frac{p+1}{(p+2)^2}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Richtig ist auch hier <u>der Lösungsvorschlag 2</u>. Allgemein lässt sich sagen:  
+
<u>Suggested solution 2</u>&nbsp; is correct here.&nbsp; In general,&nbsp; it can be said that:  
*Durch die Partialbruchzerlegung wird die Anzahl und die Lage der Nullstellen verändert.  
+
*The partial fraction decomposition changes the number and position of the zeros.  
*Die Pole von HL(p) sind dagegen stets identisch mit denen von HL(p).
+
* On the contrary,&nbsp; the poles of&nbsp; HL(p)&nbsp; are always identical to those of&nbsp; HL(p).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 15:55, 25 January 2022

Pole-zero diagrams

In the graph,  four two-port networks are given by their pole–zero diagrams  HL(p).

  • They all have in common that the number  Z  of zeros is equal to the number  N  of poles.
  • The constant factor in each case is  K=1.


In the special case  Z=N  the residue theorem cannot be applied directly to compute the impulse response  h(t).

Rather,  a  "partial fraction decomposition"  corresponding to

HL(p)=1HL(p)

must be made beforehand. Then,

h(t)=δ(t)h(t)

holds for the impulse response.  h(t)  is the inverse Laplace transform of  HL(p),  where the condition  Z<N  is satisfied.

Two of the four configurations given are so-called  "all-pass filters".

  • This refers to two-port networks for which the Fourier spectrum satisfies the condition  |H(f)|=1   ⇒   a(f)=0 .
  • In Exercise 3.4Z it is given how the poles and zeros of such an all-pass filter must be positioned.


Furthermore,  in this exercise the  p–transfer function

H(5)L(p)=p/A(p/A+A/p)2

⇒   "configuration (5)" will be examined in more detail,  which can be represented by one of the four pole–zero diagrams given in the graph if the parameter  A  is chosen correctly.



Please note:



Questions

1

Which of the sketched two-port networks are all-pass filters?

Configuration  (1),
configuration  (2),
configuration  (3),
configuration  (4).

2

Which two-port network has the transfer function  H(5)L(p)?

Configuration  (1),
configuration  (2),
configuration  (3),
configuration  (4).

3

Compute the function  HL(p)  after a partial fraction decomposition for configuration  (1).  Enter the function value for  p=0.

HL(p=0) = 

4

Compute  HL(p)  for configuration  (2).  Which statements are true here?

HL(p)  has the same zeros as  HL(p).
HL(p)  has the same poles as  HL(p).
The constant factor of  HL(p)  is  K=8.

5

Compute  HL(p)  for configuration  (3).  Which statements are true here?

HL(p)  has the same zeros as  HL(p).
HL(p)  has the same poles as  HL(p).
The constant factor of  HL(p)  is  K=8.

6

Compute  HL(p)  for configuration  (4).  Which statements are true here?

HL(p)  has the same zeros as  HL(p).
HL(p)  has the same poles as  HL(p).
The constant factor of  HL(p)  is  K=8.


Solution

(1)  The  suggested solutions 1 and 2  are correct:

  • According to the criteria given in exercise 3.4Z,  there is always an all-pass filter at hand
    if there is a corresponding zero  po=+A+jB  in the right p–half-plane for each pole  px=A+jB  in the left half-plane.
  • Considering  K=1  the attenuation function is then  a(f)=0 Np   ⇒   |H(f)|=1.
  • The following can be seen from the graph on the information page:   The configurations  (1) and  (2) satisfy exactly these symmetry properties.


(2)  The  suggested solution 4  is correct:

  • The transfer function  H(5)L(p)  is also described by configuration  (4)  as the following calculation shows:
H(5)L(p)=p/A(p/A+A/p)2=p/Ap/A+2+A/p=p2p2+2Ap+A2=p2(p+A)2=H(4)L(p).
  • The double zero is at  po=0  and the double pole at  px=A=2.


(3)  The following holds for configuration  (1):

HL(p)=p2p+2=p+24p+2=14p+2=1HL(p)HL(p)=4p+2HL(p=0)=2_.


(4)  Similarly,  the following is obtained for configuration  (2):

HL(p)=(p2j2)(p2+j2)(p+2j2)(p+2+j2)=p24p+8p2+4p+8=p2+4p+88pp2+4p+8=18pp2+4p+8=1HL(p)
HL(p)=8p(p+2j2)(p+2+j2).

Thus,  the  suggested solutions 2 and 3  are correct in contrast to statement 1:

  • While  HL(p)  has two conjugate complex zeros,
  • HL(p)  only has a single zero at  po=0.



(5)  The following applies for configuration  (3) :

HL(p)=p2p2+4p+8=p2+4p+84p8p2+4p+8=1HL(p)
HL(p)=4p+2(p+2j2)(p+2+j2).
  • The zero of  HL(p)  is now at  po=2.
  • The constant is  K=4   ⇒   only   suggested solution 2   is correct here.


(6)  Finally,  the following holds for configuration  (4):

HL(p)=p2(p+2)2=p2+4p+44p4p2+4p+4=14p+4p2+4p+4HL(p)=4p+1(p+2)2.

Suggested solution 2  is correct here.  In general,  it can be said that:

  • The partial fraction decomposition changes the number and position of the zeros.
  • On the contrary,  the poles of  HL(p)  are always identical to those of  HL(p).