Difference between revisions of "Aufgaben:Exercise 1.1Z: VHF II Broadcasting"

From LNTwww
m
 
(11 intermediate revisions by 2 users not shown)
Line 4: Line 4:
  
 
[[File:P_ID939__Mod_Z_1_1.png|right|frame|Model of an FM radio transmitter]]
 
[[File:P_ID939__Mod_Z_1_1.png|right|frame|Model of an FM radio transmitter]]
Electromagnetic waves in a frequency range from   $\rm 30$  to  $\text{300 MHz}$  – corresponding to wavelengths between one and ten metres – are referred to as ultra-short wave (USW).
+
Electromagnetic waves in a frequency range from  $\rm 30$  to  $\text{300 MHz}$  – corresponding to wavelengths between one and ten meters – are referred to as  "ultra-short waves".
  
In common parlance, USW is also understood to mean the VHF II  (''Very High Frequency'')  band, from  $\text{87.5}$  to  $\text{108 MHz}$ , which is still primarily used in Central Europe today for transmitting frequency-modulated radio programs using analog technology.
+
In common parlance, USW is also understood to mean the VHF II  ("Very High Frequency")  band, from  $\text{87.5}$  to  $\text{108 MHz}$,  which is still primarily used in Central Europe today for transmitting frequency-modulated radio programs using analog technology.
  
The entire frequency band is divided into several channels, each with a channel spacing of   $\text{300 kHz}$.
+
The entire frequency band is divided into several channels,  each with a channel spacing of   $\text{300 kHz}$.
  
 
The diagram displays the principle as a flow chart:  
 
The diagram displays the principle as a flow chart:  
*A total of  $K$  signals  $q_k(t)$  with different carrier frequencies  $f_1$,  $f_2$,  ... ,  $f_K$  are modulated and added together.
+
*A total of  $K$  signals  $q_k(t)$  with different carrier frequencies  $f_1$, $f_2$,  ... , $f_k$,  ... ,  $f_K$  are modulated and added together.
 
*The summed signal is then beamed from a transmitter after power amplification.   
 
*The summed signal is then beamed from a transmitter after power amplification.   
 
*This outgoing signal is referred to as the transmission signal  $s(t)$.
 
*This outgoing signal is referred to as the transmission signal  $s(t)$.
Line 23: Line 23:
  
 
''Hints:''  
 
''Hints:''  
*This exercise belongs to the chapter   [[Modulation_Methods/Zielsetzung_von_Modulation_und_Demodulation|Objectives of modulation and demodulation]].
+
*This exercise belongs to the chapter   [[Modulation_Methods/Objectives_of_Modulation_and_Demodulation|Objectives of modulation and demodulation]].
*Particular reference is made to  [[Modulation_Methods/Zielsetzung_von_Modulation_und_Demodulation#B.C3.BCndelung_von_Kan.C3.A4len_.E2.80.93_Frequenzmultiplex|Channel bundling – frequency division multiplexing]].
+
*Particular reference is made to the page  [[Modulation_Methods/Objectives_of_Modulation_and_Demodulation#Channel_bundling_.E2.80.93_Frequency_Division_Multiplexing|Channel bundling – Frequency Division Multiplexing]].
 
   
 
   
  
Line 34: Line 34:
 
{Which multiplexing method is used here?
 
{Which multiplexing method is used here?
 
|type="()"}
 
|type="()"}
+ Frequency division multiplexing.
+
+ Frequency Division Multiplexing.
- Time division multiplexing.
+
- Time Division Multiplexing.
  
 
{What is the maximum number of programs that could be transmitted in the VHF II band?
 
{What is the maximum number of programs that could be transmitted in the VHF II band?
Line 41: Line 41:
 
$K \ = \ $ { 68 1% }
 
$K \ = \ $ { 68 1% }
  
{Which of the follwoing statements are true?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
 
+ The VHF channels have higher bandwidth than those for long-wave, medium-wave and short-wave broadcasting.
 
+ The VHF channels have higher bandwidth than those for long-wave, medium-wave and short-wave broadcasting.
 
- The range of FM radio waves is greater than that of long-wave, medium-wave and short-wave broadcasting.
 
- The range of FM radio waves is greater than that of long-wave, medium-wave and short-wave broadcasting.
 
- The signal arriving at the receiver  $r(t)$  is almost indistinguishable from the transmission signal   $s(t)$.
 
- The signal arriving at the receiver  $r(t)$  is almost indistinguishable from the transmission signal   $s(t)$.
+ Die Funktionseinheit eines Radioempfängers zur Kanalseparierung („Einstellung der Sender”) ist der Tuner.
+
+ The functional unit of a radio receiver for channel separation  ("setting the radio station")  is the  "tuner".
 
<br><br>
 
<br><br>
  
Line 52: Line 52:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>.  
+
'''(1)'''&nbsp; <u>Answer 1</u> is correct.  
*Es handelt sich um&nbsp; '''FDM'''&nbsp; (''Frequency Division Multiplexing'').  
+
*'''FDM'''&nbsp; ("Frequency Division Multiplexing").  
*Das alternative Multiplexverfahren&nbsp; '''TDM'''&nbsp; (''Time Division Multiplexing'') ist nur bei einem digitalen Übertragungssystem einsetzbar.
+
*The alternative multiplexing method, &nbsp; '''TDM'''&nbsp; ("Time Division Multiplexing")&nbsp; can only be implemented with a digital communications system.
  
  
'''(2)'''&nbsp; Aus der Gesamtbandbreite&nbsp; $\text{20.5 MHz}$ und der Kanalbandbreite&nbsp; $\text{0.3 MHz}$&nbsp; erhält man $\underline{K = 68}$.
+
'''(2)'''&nbsp; From the total bandwidth&nbsp; $\text{20.5 MHz}$&nbsp; and the channel bandwidth&nbsp; $\text{0.3 MHz}$&nbsp; we get $\underline{K = 68}$.
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 4</u>:
+
'''(3)'''&nbsp; <u>Answers 1 and 4</u> are correct:
*Das Kanalraster und damit die für einen Kanal zur Verfügung stehende Bandbreite&nbsp; $\text{300 kHz}$&nbsp; ist im UKW–Bereich deutlich größer als bei Lang–, Mittel– und Kurzwelle. Die im UKW–Rundfunk eingesetzte Frequenzmodulation ist zwar durch eine bessere Qualität gekennzeichnet, benötigt aber auch mehr Bandbreite.  
+
*The channel spacing and thus the bandwidth&nbsp; $\text{300 kHz}$&nbsp; available for a channel is significantly larger in the VHF range than for long, medium and short wave broadcasting.&nbsp; Although the frequency modulation used in FM broadcasting is characterized by better quality,&nbsp; it also requires more bandwidth.  
*Zum Vergleich wird im Mittelwellenbereich stets Amplitudenmodulation und (in Europa) ein Kanalraster von &nbsp; $\text{9 kHz}$&nbsp; verwendet. Die NF&ndash;Bandbreite ist&nbsp; $\text{4.5 kHz}$.
+
*For comparison,&nbsp; in the medium wave range,&nbsp; amplitude modulation and a channel spacing of&nbsp; $\text{9 kHz}$&nbsp; is always used&nbsp; (in Europe) &nbsp; <br>&rArr; &nbsp; the source signal bandwidth is&nbsp; $B_{\rm LF} = \text{9 kHz/2 = 4.5 kHz}$.
*Die Reichweite ist bei UKW geringer als in den anderen Frequenzbereichen, da UKW–Radiowellen nicht an der Ionosphäre reflektiert werden.&nbsp; Daher besteht ein UKW–Sendernetz meist aus recht vielen Sendern, die in geringen Abständen meist auf Anhöhen – aufgebaut sind  &nbsp; &rArr; &nbsp; Antwort 2 ist falsch.
+
*The range of VHF is smaller than in the other frequency ranges because VHF radio waves are not reflected by the ionosphere.&nbsp;  Therefore,&nbsp; a VHF transmission network usually consists of quite a large number of transmitters,&nbsp; which are set up at small distances from each other and mostly at an elevation &nbsp; &rArr; &nbsp; answer 2 is incorrect.
*Das am Empfänger ankommende Signal hat auf Grund der Freiraumdämpfung, die zumindest quadratisch mit der Entfernung zunimmt, einen sehr viel kleineren Pegel als das Sendesignal&nbsp; $s(t)$ &nbsp; &rArr; &nbsp; Antwort 3 ist falsch.
+
*The signal arriving at the receiver has a much lower level than the transmission signal $s(t)$,&nbsp; due to atmospheric attenuation,&nbsp; which increases at least quadratically with distance&nbsp;  &rArr; &nbsp; answer 3 is incorrect.
*Im Rundfunkempfänger hat tatsächlich der Tuner die Aufgabe der Kanalseparierung  &nbsp; &rArr; &nbsp; Antwort 4 ist richtig.  
+
*In a radio receiver, the tuner indeed has the task of channel separation &nbsp; &rArr; &nbsp; answer 4 is correct.  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 17:18, 23 March 2022

Model of an FM radio transmitter

Electromagnetic waves in a frequency range from  $\rm 30$  to  $\text{300 MHz}$  – corresponding to wavelengths between one and ten meters – are referred to as  "ultra-short waves".

In common parlance, USW is also understood to mean the VHF II  ("Very High Frequency")  band, from  $\text{87.5}$  to  $\text{108 MHz}$,  which is still primarily used in Central Europe today for transmitting frequency-modulated radio programs using analog technology.

The entire frequency band is divided into several channels,  each with a channel spacing of   $\text{300 kHz}$.

The diagram displays the principle as a flow chart:

  • A total of  $K$  signals  $q_k(t)$  with different carrier frequencies  $f_1$, $f_2$, ... , $f_k$, ... ,  $f_K$  are modulated and added together.
  • The summed signal is then beamed from a transmitter after power amplification. 
  • This outgoing signal is referred to as the transmission signal  $s(t)$.





Hints:



Questions

1

Which multiplexing method is used here?

Frequency Division Multiplexing.
Time Division Multiplexing.

2

What is the maximum number of programs that could be transmitted in the VHF II band?

$K \ = \ $

3

Which of the following statements are true?

The VHF channels have higher bandwidth than those for long-wave, medium-wave and short-wave broadcasting.
The range of FM radio waves is greater than that of long-wave, medium-wave and short-wave broadcasting.
The signal arriving at the receiver  $r(t)$  is almost indistinguishable from the transmission signal  $s(t)$.
The functional unit of a radio receiver for channel separation  ("setting the radio station")  is the  "tuner".


Solution

(1)  Answer 1 is correct.

  • FDM  ("Frequency Division Multiplexing").
  • The alternative multiplexing method,   TDM  ("Time Division Multiplexing")  can only be implemented with a digital communications system.


(2)  From the total bandwidth  $\text{20.5 MHz}$  and the channel bandwidth  $\text{0.3 MHz}$  we get $\underline{K = 68}$.


(3)  Answers 1 and 4 are correct:

  • The channel spacing and thus the bandwidth  $\text{300 kHz}$  available for a channel is significantly larger in the VHF range than for long, medium and short wave broadcasting.  Although the frequency modulation used in FM broadcasting is characterized by better quality,  it also requires more bandwidth.
  • For comparison,  in the medium wave range,  amplitude modulation and a channel spacing of  $\text{9 kHz}$  is always used  (in Europe)  
    ⇒   the source signal bandwidth is  $B_{\rm LF} = \text{9 kHz/2 = 4.5 kHz}$.
  • The range of VHF is smaller than in the other frequency ranges because VHF radio waves are not reflected by the ionosphere.  Therefore,  a VHF transmission network usually consists of quite a large number of transmitters,  which are set up at small distances from each other – and mostly at an elevation   ⇒   answer 2 is incorrect.
  • The signal arriving at the receiver has a much lower level than the transmission signal $s(t)$,  due to atmospheric attenuation,  which increases at least quadratically with distance  ⇒   answer 3 is incorrect.
  • In a radio receiver, the tuner indeed has the task of channel separation   ⇒   answer 4 is correct.