Difference between revisions of "Aufgaben:Exercise 2.2Z: Power Consideration"

From LNTwww
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Zweiseitenband-Amplitudenmodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Double-Sideband_Amplitude_Modulation
 
}}
 
}}
  
[[File:P_ID991__Mod_Z_2_2.png|right|frame|Analytical signal - line spectrum]]
+
[[File:P_ID991__Mod_Z_2_2.png|right|frame|Analytical signal - Line spectrum]]
 
Let us consider two harmonic oscillations
 
Let us consider two harmonic oscillations
 
:$$ s_1(t)  = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$  
 
:$$ s_1(t)  = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$  
Line 9: Line 9:
 
where   $f_2 ≥ f_1$  should hold for the frequencies.  
 
where   $f_2 ≥ f_1$  should hold for the frequencies.  
  
The graph shows the spectrum of the analytical signal  $s_+(t)$, which is additively composed of the two components  $s_{1+}(t)$  and  $s_ {2+}(t)$ .
+
*The graph on the right  shows the spectrum of the analytical signal  $s_+(t)$, which is additively composed of the two components  $s_{1+}(t)$  and  $s_ {2+}(t)$ .
  
Here, the transmission power  $P_{\rm S}$  should be understood as the root mean square value of the signal  $s(t)$, averaged over the largest measurement period possible:
+
*Here,  the transmission power  $P_{\rm S}$  should be understood as the second order moment of the signal  $s(t)$,  averaged over the largest measurement period possible:
 
:$$P_{\rm S} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {s^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
 
:$$P_{\rm S} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {s^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
According to this definition, if  $s(t)$ describes a voltage waveform,  $P_{\rm S}$  has unit   $\rm V^2$  and refers to resistance  $R = 1 \ \rm Ω$.  Dividing by $R$  gives the physical power in   $\rm W$.
+
*According to this definition:  If  $s(t)$ describes a voltage waveform,  $P_{\rm S}$  has unit   $\rm V^2$  and refers to resistance  $R = 1 \ \rm Ω$.   
 +
*Dividing by $R$  gives the physical power in   $\rm W$.
  
  
Line 19: Line 20:
  
  
 
+
Hints:  
 
 
''Hints:''
 
 
*This exercise belongs to the chapter  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]].
 
*This exercise belongs to the chapter  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]].
 
*Reference is also made to the chapter   [[Modulation_Methods/Quality_Criteria|Quality Criteria]].
 
*Reference is also made to the chapter   [[Modulation_Methods/Quality_Criteria|Quality Criteria]].
*Use the numerical values  $A_1 = 2\ \rm  V$,  $A_2 = 1 \ \rm V$  and  $R = 50 \ \rm Ω$.
+
*Use the numerical values  $A_1 = 2\ \rm  V$,  $A_2 = 1 \ \rm V$,  and  $R = 50 \ \rm Ω$.
 
   
 
   
  
Line 36: Line 35:
 
$P_1 \ = \ $ { 2 3% } $\ \rm V^{ 2 }$
 
$P_1 \ = \ $ { 2 3% } $\ \rm V^{ 2 }$
  
{Let $R = 50 \ \rm Ω$.  What is the physical power of the signal  $s_1(t)$?  
+
{Let  $R = 50 \ \rm Ω$.  What is the physical power of the signal  $s_1(t)$?  
 
|type="{}"}
 
|type="{}"}
 
$P_1 \ = \ $ { 40 3% } $\ \text{mW}$
 
$P_1 \ = \ $ { 40 3% } $\ \text{mW}$
Line 57: Line 56:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  According to the equations specified on the page:
+
'''(1)'''  According to the equations specified on the exercise page:
 
:$$P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {A_1^2 \cdot \cos^2(\omega_{\rm 1} t + \phi_1) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
 
:$$P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {A_1^2 \cdot \cos^2(\omega_{\rm 1} t + \phi_1) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
*For more general calculation, we consider the phase  $ϕ_1$ , which is actually zero here.  Using the equation $\cos^{2}(α) = 0.5 · (1 + \cos(2α))$ , we get:
+
*For more general calculation,  we consider the phase  $ϕ_1$,  which is actually zero here.  Using the equation  $\cos^{2}(α) = 0.5 · (1 + \cos(2α))$,  we get:
 
:$$ P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}}\hspace{0.1cm}{\rm d}t + \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}\cdot \cos(2\omega_{\rm 1} t + 2\phi_1)}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}.$$  
 
:$$ P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}}\hspace{0.1cm}{\rm d}t + \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}\cdot \cos(2\omega_{\rm 1} t + 2\phi_1)}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}.$$  
*Regardless of the phase  $ϕ_1$ , the second term does not contribute to the division by  $T_{\rm M}$  and subsequent boundary transition due to integration over the cosine function. Thus, we get:
+
*Regardless of the phase  $ϕ_1$,  the second term does not contribute to the division by  $T_{\rm M}$  and subsequent boundary transition due to integration over the cosine function.  Thus,  we get:
 
:$$P_{\rm 1} = \frac{A_1^2}{2} = \frac{(2\,{\rm V})^2}{2} \hspace{0.15cm}\underline {= 2\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$P_{\rm 1} = \frac{A_1^2}{2} = \frac{(2\,{\rm V})^2}{2} \hspace{0.15cm}\underline {= 2\,{\rm V}^2}\hspace{0.05cm}.$$
  
  
'''(2)'''  With  $R = 50\ \rm  Ω$  we get the "unnormalized" power:
+
'''(2)'''  With  $R = 50\ \rm  Ω$,  we get the  "unnormalized"  power:
 
:$$P_{\rm 1} = \frac{2\,{\rm V}^2}{50\,{\rm \Omega}} \hspace{0.15cm}\underline {= 40\,{\rm mW}}\hspace{0.05cm}.$$
 
:$$P_{\rm 1} = \frac{2\,{\rm V}^2}{50\,{\rm \Omega}} \hspace{0.15cm}\underline {= 40\,{\rm mW}}\hspace{0.05cm}.$$
  
  
'''(3)'''  It has already been shown in the solution to subtask   '''(1)'''  that the phase has no influence on the power.  It follows that:
+
'''(3)'''  It has already been shown in the solution to subtask  '''(1)'''  that the phase has no influence on the power.  It follows that:
 
:$$P_{\rm 2} = \frac{A_2^2}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$P_{\rm 2} = \frac{A_2^2}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$
  
  
'''(4)''' To calculate power, we must average over $s^{2}(t)$, where:
+
'''(4)''' To calculate this power,  we have to average over $s^{2}(t)$,  where:
 
:$$s^2(t) = s_1^2(t) + s_2^2(t) + 2 \cdot s_1(t) \cdot s_2(t).$$
 
:$$s^2(t) = s_1^2(t) + s_2^2(t) + 2 \cdot s_1(t) \cdot s_2(t).$$
*Due to the division by the measurement duration  $T_{\rm M}$  and the required boundary transition, the last term does not contribute regardless of the phase   $ϕ$ .  Thus:
+
*Due to the division by the measurement duration  $T_{\rm M}$  and the required boundary transition,  the last term does not contribute regardless of the phase   $ϕ$ .  Thus:
 
:$$P_{\rm S} = P_{\rm 1} + P_{\rm 2} \hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$P_{\rm S} = P_{\rm 1} + P_{\rm 2} \hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
  
  
  
'''(5)'''  When  $f_2 = f_1$  the spectrum of the analytical signal is:
+
'''(5)'''  When  $f_2 = f_1$,  the spectrum of the analytical signal is:
 
:$$S_+(f) = (A_{\rm 1} + A_{\rm 2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm} \phi})\cdot \delta (f - f_1) \hspace{0.05cm}.$$
 
:$$S_+(f) = (A_{\rm 1} + A_{\rm 2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm} \phi})\cdot \delta (f - f_1) \hspace{0.05cm}.$$
 
*This results in the signal:
 
*This results in the signal:
Line 87: Line 86:
 
:$$A_3  =  \sqrt{ \left(A_1 + A_2 \cdot \cos(\phi)\right)^2 + A_2^2 \cdot \sin^2(\phi)} =
 
:$$A_3  =  \sqrt{ \left(A_1 + A_2 \cdot \cos(\phi)\right)^2 + A_2^2 \cdot \sin^2(\phi)} =
 
\sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cdot \cos(\phi)}\hspace{0.05cm}.$$
 
\sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cdot \cos(\phi)}\hspace{0.05cm}.$$
*For  $ϕ = 0$  the sum of the amplitudes is scalar:
+
*For  $ϕ = 0$,  the sum of the amplitudes is scalar:
 
:$$A_3 = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 } = A_1 + A_2 = 3\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 4.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$A_3 = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 } = A_1 + A_2 = 3\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 4.5\,{\rm V}^2}\hspace{0.05cm}.$$
*On the other hand, the amplitudes for  $ϕ = 90^\circ$  are added as vectors  ⇒   same result as in subtask  '''(4)''':
+
*On the other hand,  the amplitudes for  $ϕ = 90^\circ$  are added as vectors  ⇒   same result as in subtask  '''(4)''':
 
:$$ A_3 = \sqrt{ A_1^2 + A_2^2 } = \sqrt{5}\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} = \frac{5\,{\rm V}^2}{2}\hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$ A_3 = \sqrt{ A_1^2 + A_2^2 } = \sqrt{5}\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} = \frac{5\,{\rm V}^2}{2}\hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
*For  $ϕ = 180^\circ$  the cosine oscillations overlap destructively:
+
*For  $ϕ = 180^\circ$,  the cosine oscillations overlap destructively:
 
:$$A_3 = A_1 - A_2 = 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$A_3 = A_1 - A_2 = 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 16:34, 24 March 2022

Analytical signal - Line spectrum

Let us consider two harmonic oscillations

$$ s_1(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$
$$s_2(t) = A_2 \cdot \cos(\omega_{\rm 2} \cdot t + \phi) \hspace{0.05cm},$$

where  $f_2 ≥ f_1$  should hold for the frequencies.

  • The graph on the right shows the spectrum of the analytical signal  $s_+(t)$, which is additively composed of the two components  $s_{1+}(t)$  and  $s_ {2+}(t)$ .
  • Here,  the transmission power  $P_{\rm S}$  should be understood as the second order moment of the signal  $s(t)$,  averaged over the largest measurement period possible:
$$P_{\rm S} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {s^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
  • According to this definition:  If  $s(t)$ describes a voltage waveform,  $P_{\rm S}$  has unit   $\rm V^2$  and refers to resistance  $R = 1 \ \rm Ω$. 
  • Dividing by $R$  gives the physical power in   $\rm W$.



Hints:



Questions

1

Calculate the power of the cosine signal  $s_1(t)$.

$P_1 \ = \ $

$\ \rm V^{ 2 }$

2

Let  $R = 50 \ \rm Ω$.  What is the physical power of the signal  $s_1(t)$?

$P_1 \ = \ $

$\ \text{mW}$

3

What is the power of the phase-shifted oscillation  $s_2(t)$?

$P_2 \ = \ $

$\ \rm V^{ 2 }$

4

What is the power of the sum signal  $s(t)$  when  $f_2 ≠ f_1$?

$P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$

5

What power is obtained for $f_2 = f_1$  with  $ϕ = 0$,  $ϕ = 90^\circ$  and  $ϕ = 180^\circ$?

$ϕ = 0\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$
$ϕ = 90^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$
$ϕ = 180^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$


Solution

(1)  According to the equations specified on the exercise page:

$$P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {A_1^2 \cdot \cos^2(\omega_{\rm 1} t + \phi_1) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
  • For more general calculation,  we consider the phase  $ϕ_1$,  which is actually zero here.  Using the equation  $\cos^{2}(α) = 0.5 · (1 + \cos(2α))$,  we get:
$$ P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}}\hspace{0.1cm}{\rm d}t + \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}\cdot \cos(2\omega_{\rm 1} t + 2\phi_1)}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}.$$
  • Regardless of the phase  $ϕ_1$,  the second term does not contribute to the division by  $T_{\rm M}$  and subsequent boundary transition due to integration over the cosine function.  Thus,  we get:
$$P_{\rm 1} = \frac{A_1^2}{2} = \frac{(2\,{\rm V})^2}{2} \hspace{0.15cm}\underline {= 2\,{\rm V}^2}\hspace{0.05cm}.$$


(2)  With  $R = 50\ \rm Ω$,  we get the  "unnormalized"  power:

$$P_{\rm 1} = \frac{2\,{\rm V}^2}{50\,{\rm \Omega}} \hspace{0.15cm}\underline {= 40\,{\rm mW}}\hspace{0.05cm}.$$


(3)  It has already been shown in the solution to subtask  (1)  that the phase has no influence on the power.  It follows that:

$$P_{\rm 2} = \frac{A_2^2}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$


(4) To calculate this power,  we have to average over $s^{2}(t)$,  where:

$$s^2(t) = s_1^2(t) + s_2^2(t) + 2 \cdot s_1(t) \cdot s_2(t).$$
  • Due to the division by the measurement duration  $T_{\rm M}$  and the required boundary transition,  the last term does not contribute regardless of the phase   $ϕ$ .  Thus:
$$P_{\rm S} = P_{\rm 1} + P_{\rm 2} \hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$


(5)  When  $f_2 = f_1$,  the spectrum of the analytical signal is:

$$S_+(f) = (A_{\rm 1} + A_{\rm 2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm} \phi})\cdot \delta (f - f_1) \hspace{0.05cm}.$$
  • This results in the signal:
$$s(t) = A_3 \cdot \cos(\omega_{\rm 1} t + \phi_3) \hspace{0.05cm},$$
whose phase  $ϕ_3$  does not matter for the power calculation. The amplitude of this signal is
$$A_3 = \sqrt{ \left(A_1 + A_2 \cdot \cos(\phi)\right)^2 + A_2^2 \cdot \sin^2(\phi)} = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cdot \cos(\phi)}\hspace{0.05cm}.$$
  • For  $ϕ = 0$,  the sum of the amplitudes is scalar:
$$A_3 = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 } = A_1 + A_2 = 3\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 4.5\,{\rm V}^2}\hspace{0.05cm}.$$
  • On the other hand,  the amplitudes for  $ϕ = 90^\circ$  are added as vectors  ⇒   same result as in subtask  (4):
$$ A_3 = \sqrt{ A_1^2 + A_2^2 } = \sqrt{5}\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} = \frac{5\,{\rm V}^2}{2}\hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
  • For  $ϕ = 180^\circ$,  the cosine oscillations overlap destructively:
$$A_3 = A_1 - A_2 = 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$