Difference between revisions of "Signal Representation/General Description"

From LNTwww
 
(67 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 
{{Header
 
{{Header
|Untermenü=Periodische Signale
+
|Untermenü=Periodic Signals
|Vorherige Seite=Zum Rechnen mit komplexen Zahlen
+
|Vorherige Seite=Calculating With Complex Numbers
|Nächste Seite=Gleichsignal - Grenzfall eines periodischen Signals
+
|Nächste Seite=Direct Current Signal - Limit Case of a Periodic Signal
 
}}
 
}}
  
==Eigenschaften und Anwendungen==
+
== # OVERVIEW OF THE SECOND MAIN CHAPTER # ==
Für die Nachrichtentechnik besitzen periodische Signale eine große Bedeutung. Sie gehören zu der Klasse der deterministischen Signale, deren Zeitfunktion in analytischer Form angegeben werden kann. Ihr Signalverlauf ist damit für alle Zeiten $t$ bekannt und für die Zukunft eindeutig vorhersagbar; sie sind daher niemals informationstragende Signale.
+
<br>
Trotzdem werden periodische Signale oft auch in der Nachrichtentechnik benötigt, zum Beispiel
+
In this chapter,&nbsp; &raquo;'''periodic signals'''&laquo;&nbsp; are considered and described mathematically &raquo;'''in the time and frequency domain'''&laquo;.  
*für die Modulation und Demodulation bei Trägerfrequenzsystemen,
 
*für die Synchronisation und Taktgenerierung bei Digitalsystemen,
 
*als Test- und Prüfsignale bei der Systemrealisierung.
 
  
 +
This chapter contains in detail:
 +
# Some basic terms like&nbsp; &raquo;period duration&laquo;,&nbsp; &raquo;basic frequency&laquo;&nbsp; and&nbsp; &raquo;circular frequency&laquo;,
 +
# the properties of a&nbsp; &raquo;DC signal&laquo;&nbsp; as a limiting case of a periodic signal,
 +
# the definition and interpretation of the&nbsp; &raquo;Dirac delta function&laquo;,
 +
# the&nbsp; &raquo;spectral representation&laquo;&nbsp; of a DC signal or a DC signal component,
 +
# the time  and frequency representation of&nbsp; &raquo;harmonic oscillations&laquo;,&nbsp; and finally
 +
# the application of&nbsp; &raquo;Fourier series&laquo;&nbsp; for spectral analysis of periodic signals.
  
{{Beispiel}}
 
[[File:P_ID161__Sig_T_2_1_S1.png|250px|right|Oszilloskopbild von Cosinus- und Dreiecksignal]]
 
Auf dem Oszilloskopbild sehen Sie zwei typische Vertreter periodischer Signale,
 
nämlich ein Cosinus– sowie ein Dreiecksignal.
 
Wie aus den eingeblendeten Einstellungen zu ersehen ist, beträgt bei beiden Signalen die Periodendauer eine Millisekunde und die Amplitude ein Volt.
 
{{end}}
 
  
  
==Definition und Parameter==
+
==Features and applications==
Bevor wir uns den Signalparametern eines periodischen Signals zuwenden, soll eine eindeutige Definition des Begriffs ''Periodizität'' erfolgen.
+
<br>
 +
Periodic signals are of great importance for Communications Engineering:
 +
*They belong to the class of&nbsp; [[Signal_Representation/Signal_classification#Deterministic_and_stochastic_signals|&raquo;deterministic signals&laquo;]],&nbsp; whose time function can be specified in analytical form.  
  
 +
*Their signal path is thus known for all times&nbsp; $t$&nbsp; and can be clearly predicted for the future.
  
{{Definition}}
+
*They are therefore never information-carrying signals.
Ein Signal $x(t)$ bezeichnet man dann und nur dann als periodisch, wenn für alle beliebigen Werte von $t$ und alle ganzzahligen Werte von $i$ gilt: $x(t+i\cdot T_{0}) = x(t)$.
 
{{end}}
 
  
  
Daraus ergeben sich die folgenden Kenngrößen:
+
Nevertheless,&nbsp; periodic signals are often also required in Communications Engineering,&nbsp; for example
*Die Periodendauer $T_{0}$ gibt den kleinstmöglichen Wert an, der obige Gleichung erfüllt.
+
*for modulation and demodulation in carrier frequency systems,
*Die Grundfrequenz $f_{0} = 1/T_{0}$ beschreibt die Anzahl der Perioden pro Zeiteinheit (meist je Sekunde). Die Einheit „1/s” wird auch mit „Hz” bezeichnet, benannt nach dem deutschen Physiker Heinrich Hertz.
 
*Die Grundkreisfrequenz $\omega_{0}$ stellt die Winkeldrehung pro Sekunde dar, die meistens im Bogenmaß angegeben wird. Im Gegensatz zur Grundfrequenz ist hier nicht die Einheit „Hz”, sondern „1/s” üblich. Es gilt folgende Gleichung:
 
: $\omega_{0}=2\pi f_{0} = \frac{2\pi}{T_{0}}$.
 
  
 +
*for synchronization and clock regeneration in digital systems,
  
[[File:P_ID211__Sig_T_2_1_S2_neu.png|250px|right|Zur Definition von Periodendauer, Grundfrequenz und Kreisfrequenz]]
+
*as test and verification signals during system implementation.
Nachfolgend sehen Sie ein periodisches Zeitsignal mit der Periodendauer $T_{0} = 2.5 \text{ms}$.
+
 
Daraus ergeben sich die Grundfrequenz $f_0$ = 400 Hz und die Grundkreisfrequenz $\omega_{0}$ ≈ 2513 1/s.
+
 
 +
{{GraueBox|TEXT=
 +
[[File:P_ID161__Sig_T_2_1_S1.png|right|frame|Oscilloscope image of cosine and triangular signals]]
 +
$\text{Example 1:}$&nbsp;
 +
The oscilloscope image shows two typical representatives of periodic signals:
 +
*above a cosine signal,
 +
 
 +
*below a triangular signal.
 +
 
 +
 
 +
As can be seen from the displayed settings,&nbsp; the period duration of both signals is one millisecond and the amplitude one volt.}}
 +
 
 +
 
 +
==Definition and parameters==
 +
<br>
 +
Before we turn to the signal parameters of a periodic signal,&nbsp; the term&nbsp; &raquo;periodicity&laquo;&nbsp; shall be clearly defined:
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
A&nbsp; &raquo;'''periodic signal'''&laquo;&nbsp; $x(t)$&nbsp; is present if for all arbitrary values of&nbsp; $t$&nbsp; and all integer values of&nbsp; $i$&nbsp; with an appropriate&nbsp; $T_{0}$&nbsp; applies:
 +
:$$x(t+i\cdot T_{0}) = x(t).$$}}
 +
 
 +
 
 +
This results in the following parameters:
 +
*The&nbsp; &raquo;'''period duration'''&laquo;&nbsp; $T_{0}$&nbsp; indicates the smallest possible value,&nbsp; which satisfies the above equation.
 +
 
 +
*The&nbsp; &raquo;'''basic frequency'''&laquo;&nbsp; $f_{0} = 1/T_{0}$&nbsp; describes the number of periods per time unit&nbsp; $($mostly per second$)$.
 +
 
 +
*The unit&nbsp; "1/s"&nbsp; is also called&nbsp; "Hz",&nbsp; named after the German physicist &nbsp; [https://en.wikipedia.org/wiki/Heinrich_Hertz $\text{Heinrich Hertz}$].
 +
 
 +
*The&nbsp; &raquo;'''basic circular frequency'''&laquo;&nbsp; $\omega_{0}$&nbsp; represents the angular rotation per second,&nbsp; usually given in radians.
 
   
 
   
 +
*In contrast to the basic frequency,&nbsp; the unit&nbsp; "Hz"&nbsp; is not common here, but&nbsp; "1/s".&nbsp; The following equation applies:
 +
:$$\omega_{0}=2\pi f_{0} = {2\pi}/{T_{0}}.$$
 +
 +
 +
{{GraueBox|TEXT=
 +
[[File:P_ID211__Sig_T_2_1_S2_neu.png|right|frame|Given signal and period duration]] 
 +
$\text{Example 2:}$&nbsp;
 +
Here, a periodic time signal is shown:
 +
*The period duration is&nbsp; $T_{0} = 2.5 \ \rm ms$.
 +
 +
*From this the basic frequency &nbsp; $f_0 =  400  \ \rm  Hz$&nbsp; is calculated.
 +
 +
*The basic circular frequency results to &nbsp;$\omega_{0}=2513 \ \rm  1/s.$}}
 +
 +
 +
 +
==Resulting period duration==
 +
<br>
 +
If a signal&nbsp; $x(t)$&nbsp; consists of the sum of two periodic signals&nbsp; $x_{1}(t)$&nbsp; and&nbsp; $x_{2}(t)$&nbsp; with period durations&nbsp; $T_{1}$&nbsp; or &nbsp; $T_{2}$,&nbsp; the resulting period duration of the sum signal is the smallest common multiple of&nbsp; $T_{1}$&nbsp; and&nbsp; $T_{2}$.
 +
*This statement applies independently of the amplitude and phase relations.
 +
 +
*On the other hand,&nbsp; if &nbsp; $T_{1}$&nbsp; and&nbsp; $T_{2}$&nbsp; don't  have a  rational common multiple&nbsp; $($Example: &nbsp; $T_{2} = \pi \cdot T_{1})$,&nbsp; then the sum signal&nbsp; $x(t)$&nbsp; is in contrast to its two components&nbsp; $x_{1}(t)$&nbsp; and&nbsp; $x_{2}(t)$&nbsp; not periodic.
 +
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp;
 +
Here,&nbsp; a cosinusoidal signal&nbsp; $x_{1}(t)$&nbsp; with period duration&nbsp; $T_{1} = 2\; {\rm ms}$&nbsp; $($blue signal course$)$&nbsp;is added with  a sinusoidal signal&nbsp; $x_{2}(t)$&nbsp; with period duration&nbsp; $T_{2} = 5\; {\rm ms}$&nbsp; and twice the amplitude&nbsp; $($green curve).
 +
 +
[[File:P_ID247__Sig_T_2_1_S3_neu.png|frame|Resulting period duration of the sum of cosine and sine signal]]
 +
 +
*The&nbsp; $($red$)$&nbsp; sum signal&nbsp; $x(t) = x_{1}(t) + x_{2}(t)$&nbsp; then shows the resulting period duration&nbsp; $T_{0} = 10\; {\rm ms}$ &nbsp; &rArr; &nbsp; basic frequency&nbsp; $f_{0} = 100\; {\rm Hz}$.
 +
 +
*The frequency&nbsp; $f_{0}$&nbsp; itself is not contained in&nbsp; $x(t)$&nbsp; only integer multiples of it,&nbsp; namely&nbsp;
 +
::$f_{1} = 500\; {\rm Hz}$&nbsp; and&nbsp; $f_{2} = 200\; {\rm Hz}$.
 +
 +
 +
  
  
 +
&rArr; &nbsp; With the interactive applet&nbsp; [[Applets:Period_Duration_of_Periodic_Signals|&raquo;Period Duration of Periodic Signals&laquo;]]&nbsp; the resulting period of two harmonic oscillations can be determined.}}
  
==Resultierende Periodendauer==
 
Besteht ein Signal $x(t)$ aus der Summe zweier periodischer Signale $x_{1}(t)$ und $x_{2}(t)$ mit Periodendauer $T_{1}$ bzw. $T_{2}$, so ist die resultierende Periodendauer des Summensignals das kleinste gemeinsame Vielfache von $T_{1}$ und $T_{2}$, und zwar unabhängig von den Amplituden– und Phasenverhältnissen.
 
Besitzen $T_{1}$ und $T_{2}$ dagegen kein rationales gemeinsames Vielfaches (z. B.: $T_{2} = \pi \cdot T_{1}$), so ist das Summensignal im Gegensatz zu seinen beiden Komponenten nicht periodisch.
 
  
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_2.1:_Rectifying|Exercise 2.1: Rectification]]
  
{{Beispiel}}
+
[[Aufgaben:Exercise_2.1Z:_Sum_Signal|Exercise 2.1Z: Sum Signal]]
Addiert werden ein cosinusförmiges Signal $x_{1}(t)$ mit Periodendauer $T_{1}$ = 2 ms (blauer Signalverlauf) und ein Sinussignal $x_{2}(t)$ mit Periodendauer $T_{2}$ = 5 ms und doppelt so großer Amplitude (grüner Verlauf).
 
  
[[File:P_ID247__Sig_T_2_1_S3_neu.png
 
|250px|right|Resultierende Periodendauer]]
 
  
Das (rote) Summensignal $x(t) = x_{1}(t) + x_{2}(t)$ weist dann die resultierende Periodendauer $T_{0}$ = 10 ms auf, und damit die Grundfrequenz  $f_{0}$ = 100 Hz. Diese Frequenz $f_{0}$ selbst ist in $x(t)$ nicht enthalten, lediglich ganzzahlige Vielfache davon, nämlich $f_{1}$ = 500 Hz und $f_{a2}$ = 200 Hz.
 
Mit folgendem Interaktionsmodul lässt sich die resultierende Periodendauer zweier harmonischer Schwingungen ermitteln: 
 
{{end}}
 
  
  
==Aufgaben zu Kapitel 2.1==
 
[[Aufgaben:2.1 Gleichrichtung]]
 
  
 
  {{Display}}
 
  {{Display}}

Latest revision as of 15:13, 8 June 2023

# OVERVIEW OF THE SECOND MAIN CHAPTER #


In this chapter,  »periodic signals«  are considered and described mathematically »in the time and frequency domain«.

This chapter contains in detail:

  1. Some basic terms like  »period duration«,  »basic frequency«  and  »circular frequency«,
  2. the properties of a  »DC signal«  as a limiting case of a periodic signal,
  3. the definition and interpretation of the  »Dirac delta function«,
  4. the  »spectral representation«  of a DC signal or a DC signal component,
  5. the time and frequency representation of  »harmonic oscillations«,  and finally
  6. the application of  »Fourier series«  for spectral analysis of periodic signals.


Features and applications


Periodic signals are of great importance for Communications Engineering:

  • Their signal path is thus known for all times  $t$  and can be clearly predicted for the future.
  • They are therefore never information-carrying signals.


Nevertheless,  periodic signals are often also required in Communications Engineering,  for example

  • for modulation and demodulation in carrier frequency systems,
  • for synchronization and clock regeneration in digital systems,
  • as test and verification signals during system implementation.


Oscilloscope image of cosine and triangular signals

$\text{Example 1:}$  The oscilloscope image shows two typical representatives of periodic signals:

  • above a cosine signal,
  • below a triangular signal.


As can be seen from the displayed settings,  the period duration of both signals is one millisecond and the amplitude one volt.


Definition and parameters


Before we turn to the signal parameters of a periodic signal,  the term  »periodicity«  shall be clearly defined:

$\text{Definition:}$  A  »periodic signal«  $x(t)$  is present if for all arbitrary values of  $t$  and all integer values of  $i$  with an appropriate  $T_{0}$  applies:

$$x(t+i\cdot T_{0}) = x(t).$$


This results in the following parameters:

  • The  »period duration«  $T_{0}$  indicates the smallest possible value,  which satisfies the above equation.
  • The  »basic frequency«  $f_{0} = 1/T_{0}$  describes the number of periods per time unit  $($mostly per second$)$.
  • The  »basic circular frequency«  $\omega_{0}$  represents the angular rotation per second,  usually given in radians.
  • In contrast to the basic frequency,  the unit  "Hz"  is not common here, but  "1/s".  The following equation applies:
$$\omega_{0}=2\pi f_{0} = {2\pi}/{T_{0}}.$$


Given signal and period duration

$\text{Example 2:}$  Here, a periodic time signal is shown:

  • The period duration is  $T_{0} = 2.5 \ \rm ms$.
  • From this the basic frequency   $f_0 = 400 \ \rm Hz$  is calculated.
  • The basic circular frequency results to  $\omega_{0}=2513 \ \rm 1/s.$


Resulting period duration


If a signal  $x(t)$  consists of the sum of two periodic signals  $x_{1}(t)$  and  $x_{2}(t)$  with period durations  $T_{1}$  or   $T_{2}$,  the resulting period duration of the sum signal is the smallest common multiple of  $T_{1}$  and  $T_{2}$.

  • This statement applies independently of the amplitude and phase relations.
  • On the other hand,  if   $T_{1}$  and  $T_{2}$  don't have a rational common multiple  $($Example:   $T_{2} = \pi \cdot T_{1})$,  then the sum signal  $x(t)$  is in contrast to its two components  $x_{1}(t)$  and  $x_{2}(t)$  not periodic.


$\text{Example 3:}$  Here,  a cosinusoidal signal  $x_{1}(t)$  with period duration  $T_{1} = 2\; {\rm ms}$  $($blue signal course$)$ is added with a sinusoidal signal  $x_{2}(t)$  with period duration  $T_{2} = 5\; {\rm ms}$  and twice the amplitude  $($green curve).

Resulting period duration of the sum of cosine and sine signal
  • The  $($red$)$  sum signal  $x(t) = x_{1}(t) + x_{2}(t)$  then shows the resulting period duration  $T_{0} = 10\; {\rm ms}$   ⇒   basic frequency  $f_{0} = 100\; {\rm Hz}$.
  • The frequency  $f_{0}$  itself is not contained in  $x(t)$  only integer multiples of it,  namely 
$f_{1} = 500\; {\rm Hz}$  and  $f_{2} = 200\; {\rm Hz}$.



⇒   With the interactive applet  »Period Duration of Periodic Signals«  the resulting period of two harmonic oscillations can be determined.


Exercises for the chapter


Exercise 2.1: Rectification

Exercise 2.1Z: Sum Signal