Difference between revisions of "Aufgaben:Exercise 2.7Z: DSB-AM and Envelope Demodulator"

From LNTwww
m
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Hüllkurvendemodulation
+
{{quiz-Header|Buchseite=Modulationsverfahren/Modulation_Methods/Envelope_Demodulation
 
}}
 
}}
  
Line 6: Line 6:
 
Assume a source signal
 
Assume a source signal
 
:$$ q(t)  =  2 \,{\rm V} \cdot \cos(2 \pi \cdot 2\,{\rm kHz} \cdot t )  +  2 \,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t )\hspace{0.05cm}.$$
 
:$$ q(t)  =  2 \,{\rm V} \cdot \cos(2 \pi \cdot 2\,{\rm kHz} \cdot t )  +  2 \,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t )\hspace{0.05cm}.$$
This is modulated according to the modulation method "DSB-AM with carrier" and transmitted through an ideal channel. The influence of noise can be disregarded.
+
This is modulated according to the modulation method  "DSB-AM with carrier"  and transmitted through an ideal channel.  The influence of noise can be disregarded.
  
  
The graph shows the spectrum $R_{\rm TP}(f)$  of the received signal in the equivalent low-pass region, which is composed of Dirac lines at   $f = 0$  (originating from the carrier),  at  $±2\ \rm  kHz$  (originating from the cosine component)  and at  $±5\ \rm  kHz$  (originating from the sine component) .
+
The graph shows the spectrum  $R_{\rm TP}(f)$  of the received signal in the equivalent low-pass region,  which is composed of Dirac delta lines  
 +
*at   $f = 0$  (originating from the carrier),   
 +
*at  $±2\ \rm  kHz$  (originating from the cosine component)  and  
 +
*at  $±5\ \rm  kHz$  (originating from the sine component). 
  
  
*The locus curve is the plot of the equivalent low-pass signal  $r_{\rm TP}(t)$  in the complex plane,
+
The locus curve is the plot of the equivalent low-pass signal  $r_{\rm TP}(t)$  in the complex plane,  where  $r_{\rm TP}(t)$  is the Fourier retransform of  $R_{\ \rm  TP}(f)$ .
* where  $r_{\rm TP}(t)$  is the Fourier retransform of  $R_{\ \rm  TP}(f)$ .
 
  
  
Line 19: Line 21:
  
  
 
+
Hints:  
 
 
 
 
 
 
''Hints:''
 
 
*This exercise belongs to the chapter  [[Modulation_Methods/Envelope_Demodulation|Envelope Demodulation]].
 
*This exercise belongs to the chapter  [[Modulation_Methods/Envelope_Demodulation|Envelope Demodulation]].
*Particular reference is made to the page [[Modulation_Methods/Envelope_Demodulation#Description_using_the_equivalent_low-pass_signal|Description using the equivalent low-pass signal]].
+
*Particular reference is made to the section  [[Modulation_Methods/Envelope_Demodulation#Description_using_the_equivalent_low-pass_signal|Description using the equivalent low-pass signal]].
 
   
 
   
  
Line 33: Line 31:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Estimate the maximum magnitude &nbsp;$q_{\rm max} = {\rm Max} |q(t)|$&nbsp; of the source signal S.
+
{Estimate the maximum magnitude &nbsp;$q_{\rm max} = {\rm Max} |q(t)|$&nbsp; of the source signal.
 
|type="{}"}
 
|type="{}"}
 
$q_{\rm max} \ = \ $ { 4 3%  } $\ \rm V$
 
$q_{\rm max} \ = \ $ { 4 3%  } $\ \rm V$
  
{What is the amplitude &nbsp;$A_{\rm T}$&nbsp; of the carrier signal added at the transmitter?&nbsp; WHAT MODULATION DEPTH &nbsp;$m$&nbsp; results from this?
+
{What is the amplitude &nbsp;$A_{\rm T}$&nbsp; of the carrier signal added at the transmitter?&nbsp; What modulation depth &nbsp;$m$&nbsp; results from this?
 
|type="{}"}
 
|type="{}"}
 
$A_{\rm T} \ = \ $ { 4 3%  } $\ \rm V$
 
$A_{\rm T} \ = \ $ { 4 3%  } $\ \rm V$
 
$m \ = \ $ { 1 3% }  
 
$m \ = \ $ { 1 3% }  
  
{Which of these are arguments for or against using an envelope demodulator?  Assume the alternative would be a synchronous demodulator.
+
{Which of these are arguments for or against using an envelope demodulator?&nbsp; Assume the alternative would be a synchronous demodulator.
 
|type="[]"}
 
|type="[]"}
- With the envelope demodulator, distortion-free demodulation is not possible in the example considered.  
+
- With the envelope demodulator,&nbsp; distortion-free demodulation is not possible in the example considered.  
+ One can do without frequency and phase synchronization.
+
+ One can do demodulation without frequency and phase synchronization.
+ A smaller transmit power would be needed using a synchronous demodulator.
+
+ A smaller transmission power would be needed using a synchronous demodulator.
  
{Calculate the equivalent low-pass signal &nbsp;$r_{\rm TP}(t)$  &nbsp; ⇒ &nbsp; "locus curve", &nbsp;using the Fourier retransform of &nbsp;$R_{\rm TP}(f)$&nbsp;. Which statements are true?
+
{Calculate the equivalent low-pass signal &nbsp;$r_{\rm TP}(t)$  &nbsp; ⇒ &nbsp; "locus curve", &nbsp;using the Fourier retransform of &nbsp;$R_{\rm TP}(f)$.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
 
+ The locus curve &nbsp;$r_{\rm TP}(t)$&nbsp; is composed of five pointers.
 
+ The locus curve &nbsp;$r_{\rm TP}(t)$&nbsp; is composed of five pointers.
Line 55: Line 53:
 
- The pointer for &nbsp;$2 \ \rm  kHz$&nbsp; rotates twice as fast as the one for &nbsp;$5 \ \rm  kHz$.
 
- The pointer for &nbsp;$2 \ \rm  kHz$&nbsp; rotates twice as fast as the one for &nbsp;$5 \ \rm  kHz$.
  
{Which statements can be made based on the locus curve? Answer the following questions by considering the application of envelope demodulation.
+
{Which statements can be made based on the locus curve?&nbsp; Answer the following questions by considering the application of envelope demodulation.
 
|type="[]"}
 
|type="[]"}
 
+ A distortionless demodulation is only possible when &nbsp;$r_{\rm TP}(t)$&nbsp; is real at all times.
 
+ A distortionless demodulation is only possible when &nbsp;$r_{\rm TP}(t)$&nbsp; is real at all times.
 
+ A distortionless demodulation is only possible when &nbsp;$r_{\rm TP}(t)$&nbsp; does not become negative at any point in time.
 
+ A distortionless demodulation is only possible when &nbsp;$r_{\rm TP}(t)$&nbsp; does not become negative at any point in time.
- If the first two conditions mentioned are not met, linear distortions will occur.
+
- If the first two conditions mentioned are not met,&nbsp; linear distortions will occur.
 
</quiz>
 
</quiz>
  
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID1035__Mod_Z_2_7_a.png|right|frame|Quellensignal im Bereich bis&nbsp; $1\text{ ms}$]]
+
[[File:EN_Mod_Z_2_7_a.png|right|frame|Source signal in the region up to&nbsp; $1\text{ ms}$]]
'''(1)'''&nbsp; Die Grafik zeigt, dass das Quellensignal alle Werte zwischen&nbsp; $–4 \ \rm V$&nbsp; und&nbsp; $+3.667\ \rm  V$&nbsp; annehmen kann.
+
'''(1)'''&nbsp; The graph shows that the source signal can take on all values between &nbsp; $–4 \ \rm V$&nbsp; and&nbsp; $+3.667\ \rm  V$.&nbsp;
*Der maximale Betrag tritt zum Beispiel zum Zeitpunkt&nbsp; $t = t_0 =0.75\ \rm   ms$&nbsp; auf:
+
*For example,&nbsp; the maximum magnitude occurs at time &nbsp; $t = t_0 =0.75\ \rm ms$:
 
:$$q(t = t_0)  =  2 \,{\rm V} \cdot \cos(2 \pi \cdot 2\,{\rm kHz} \cdot t_0 ) + 2 \,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t_0 )$$
 
:$$q(t = t_0)  =  2 \,{\rm V} \cdot \cos(2 \pi \cdot 2\,{\rm kHz} \cdot t_0 ) + 2 \,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t_0 )$$
 
:$$\Rightarrow \hspace{0.3cm}q(t = 0.75 \,{\rm ms})  =  2 \,{\rm V} \cdot \cos(3 \pi) + 2 \,{\rm V} \cdot \sin(7.5 \pi)= -4 \,{\rm V}\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm}q(t = 0.75 \,{\rm ms})  =  2 \,{\rm V} \cdot \cos(3 \pi) + 2 \,{\rm V} \cdot \sin(7.5 \pi)= -4 \,{\rm V}\hspace{0.05cm}.$$
 +
*From this,&nbsp; it follows for the maximum magnitude: &nbsp; $q_{\rm max}\hspace{0.15cm}\underline{ = 4 \ \rm V}$.
  
*Daraus folgt für den maximalen Betrag: &nbsp; $q_{\rm max}\hspace{0.15cm}\underline{ = 4 \ \rm V}$.
 
  
  
 +
'''(2)'''&nbsp; In the graph on the information page,&nbsp; the weight of the Dirac delta line at&nbsp; $f = 0$&nbsp; indicates the amplitude of the added carrier.&nbsp; This is&nbsp; $A_{\rm T}\hspace{0.15cm}\underline{ = 4\ \rm V }$.
 +
*From this,&nbsp; we get the modulation depth&nbsp; $m = q_{\rm max}/A_{\rm T} \hspace{0.15cm}\underline{ = 1}$.
  
'''(2)'''&nbsp; In der Angabenseite&ndash;Grafik  gibt das Gewicht der Diraclinie bei&nbsp; $f = 0$&nbsp; die Amplitude des zugesetzten Trägers an.
 
*Diese ist&nbsp; $A_{\rm T}\hspace{0.15cm}\underline{ = 4\ \rm V }$.
 
*Daraus erhält man den Modulationsgrad&nbsp; $m = q_{\rm max}/A_{\rm T} \hspace{0.15cm}\underline{ = 1}$.
 
  
  
 +
'''(3)'''&nbsp;<u>Answers 2 and 3</u>&nbsp; are correct:
 +
*Since the modulation depth is not greater than&nbsp; $m = 1$,&nbsp; the envelope demodulator does not cause distortion either.
 +
*The main advantage of envelope demodulation is that no frequency and phase synchronization is necessary.
 +
*A disadvantage is that a significantly higher power must be applied at the transmitter relative to synchronous demodulation.
 +
*When&nbsp; $m = 1$,&nbsp; this results in three times the transmit power compared to DSB-AM without a carrier.
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
 
*Da der Modulationsgrad nicht größer als&nbsp; $m = 1$&nbsp; ist, führt auch der Hüllkurvendemodulator nicht zu Verzerrungen.
 
*Der wesentliche Vorteil der Hüllkurvendemodulation ist, dass keine Frequenz– und Phasensynchronität notwendig ist.
 
*Nachteilig ist, dass im Gegensatz zur Synchrondemodulation beim Sender eine deutlich höhere Leistung aufgebracht werden muss.
 
*Bei&nbsp; $m = 1$&nbsp; ergibt sich gegenüber der ZSB–AM ohne Träger die dreifache Sendeleistung.
 
  
  
 
+
[[File:P_ID1036__Mod_Z_2_7_d.png|right|frame|Equivalent low-pass signal <br>in the complex plane]]
[[File:P_ID1036__Mod_Z_2_7_d.png|right|frame|Äquivalentes Tiefpass–Signal <br>in der komplexen Ebene]]
+
'''(4)'''&nbsp; <u>Answers 1 and 3</u>&nbsp; are correct:&nbsp; When&nbsp; $ω_2 = 2 π · 2 \ \rm kHz$&nbsp; and&nbsp; $ω_5 = 2 π · \ \rm 5 kHz$:
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
 
*Mit&nbsp; $ω_2 = 2 π · 2 \ \rm kHz$&nbsp; und&nbsp; $ω_5 = 2 π · \ \rm 5 kHz$&nbsp; gilt:
 
 
:$$ r_{\rm TP}(t) = 4 \,{\rm V} \hspace{-0.05cm}+\hspace{-0.05cm} 1 \,{\rm V} \cdot {\rm e}^{{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 2}\cdot \hspace{0.03cm}t} \hspace{-0.05cm}+\hspace{-0.05cm} 1 \,{\rm V} \cdot {\rm e}^{-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 2}\cdot \hspace{0.03cm}t}  
 
:$$ r_{\rm TP}(t) = 4 \,{\rm V} \hspace{-0.05cm}+\hspace{-0.05cm} 1 \,{\rm V} \cdot {\rm e}^{{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 2}\cdot \hspace{0.03cm}t} \hspace{-0.05cm}+\hspace{-0.05cm} 1 \,{\rm V} \cdot {\rm e}^{-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 2}\cdot \hspace{0.03cm}t}  
 
\hspace{-0.05cm}-\hspace{-0.05cm} \hspace{0.15cm}{\rm j} \cdot1 \,{\rm V} \cdot {\rm e}^{{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 5}\cdot \hspace{0.03cm}t} \hspace{-0.05cm}+\hspace{-0.05cm} {\rm j} \cdot1 \,{\rm V} \cdot {\rm e}^{-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 5}\cdot \hspace{0.03cm}t} \hspace{0.05cm}. \hspace{0.1cm}$$
 
\hspace{-0.05cm}-\hspace{-0.05cm} \hspace{0.15cm}{\rm j} \cdot1 \,{\rm V} \cdot {\rm e}^{{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 5}\cdot \hspace{0.03cm}t} \hspace{-0.05cm}+\hspace{-0.05cm} {\rm j} \cdot1 \,{\rm V} \cdot {\rm e}^{-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 5}\cdot \hspace{0.03cm}t} \hspace{0.05cm}. \hspace{0.1cm}$$
*Bei der Konstruktion der Ortskurve&nbsp; $r_{TP}(t)$&nbsp; sind somit genau fünf Zeiger zu berücksichtigen &nbsp; &rArr; &nbsp; Antwort 1 ist richtig.&nbsp; Die Grafik zeigt eine Momentaufnahme zum Zeitpunkt&nbsp; $t = 0$.
+
Thus,&nbsp; in constructing the locus &nbsp; $r_{TP}(t)$,&nbsp; there are exactly five pointers to consider &nbsp; &rArr; &nbsp; answer 1 is correct.&nbsp; The graph shows a snapshot at time &nbsp; $t = 0$.
:*Der (rote) Träger ist für alle Zeiten durch den reellen Zeiger der Länge&nbsp; $4 \ \rm V$ gegeben.&nbsp; Im Gegensatz zum Zeigerdiagramm (Darstellung des analytischen Signals) dreht dieser nicht &nbsp; &rArr; &nbsp; Antwort 2 ist falsch.
+
*The (red) carrier is given by the real pointer of length&nbsp; $4 \ \rm V$ for all time points.&nbsp; In contrast to the pointer diagram&nbsp; (showing the analytic signal),&nbsp; this does not rotate &nbsp; &rArr; &nbsp; Answer 2 is false.
:*Die dritte Aussage ist ebenso wie die Aussage 1 richtig:&nbsp; Die Drehzeiger bei negativen Frequenzen drehen in mathematisch negativer Richtung&nbsp; (im Uhrzeigersinn)&nbsp; im Gegensatz zu den beiden Zeigern mit&nbsp; $f > 0$.  
+
*The third statement is similarly correct:&nbsp; The rotating pointers at negative frequencies rotate in mathematically negative direction&nbsp; ("clockwise")&nbsp; in contrast to the two pointers with&nbsp; $f > 0$.
:*Die letzte Aussage trifft nicht zu.&nbsp; Je größer die Frequenz&nbsp; $f$&nbsp; ist, um so schneller dreht der zugehörige Zeiger.
+
*The last statement is false.&nbsp; The larger the frequency &nbsp; $f$,&nbsp; the faster the associated pointer rotates.
 +
 
  
  
[[File:P_ID1037__Mod_Z_2_7_e.png|right|frame|Ortskurve für verzerrungsfreie Hüllkurvendemodulation]]
+
[[File:P_ID1037__Mod_Z_2_7_e.png|right|frame|Locus curve for <br>distortionless envelope demodulation]]
'''(5)'''&nbsp; Richtig sind die <u>Aussagen 1 und 2</u>:
+
'''(5)'''&nbsp; <u>Statements 1 and 2</u>&nbsp; are correct:
  
*Im betrachteten Beispiel kann für das äquivalente TP–Signal auch geschrieben werden:
+
*In the example considered,&nbsp; the equivalent low-pass signal can be written as:
 
:$$r_{\rm TP}(t) = q(t) + A_{\rm T} \hspace{0.05cm}.$$
 
:$$r_{\rm TP}(t) = q(t) + A_{\rm T} \hspace{0.05cm}.$$
*Damit ist offensichtlich, dass&nbsp; $r_{\rm TP}(t)$&nbsp; stets reell ist.&nbsp; Aus den Teilaufgaben&nbsp; '''(1)'''&nbsp; und&nbsp; '''(2)'''&nbsp; folgt zudem &nbsp; $r_{\rm TP}(t) ≥ 0$.
+
*Thus,&nbsp; it is obvious that &nbsp; $r_{\rm TP}(t)$&nbsp; is always real.&nbsp;  
 +
*Moreover,&nbsp; it follows from subtasks&nbsp; '''(1)'''&nbsp; and&nbsp; '''(2)'''&nbsp; that &nbsp; $r_{\rm TP}(t) ≥ 0$.
  
  
Das bedeutet:
+
This means:
:*Die Ortskurve ist hier eine horizontale Gerade auf der reellen Gerade und liegt stets in der rechten Halbebene.  
+
#Here, the locus curve is a horizontal line on the real plane and always lies in the right half-plane.
:*Dies sind die beiden notwendigen Bedingungen, dass mit einem Hüllkurvendemodulator das Nachrichtensignal verzerrungsfrei wiedergewonnen werden kann.  
+
#These are the two necessary conditions for an envelope demodulator to recover the signal without distortion.
:*Ist eine dieser Voraussetzungen nicht erfüllt, so kommt es zu&nbsp; <u>'''nichtlinearen'''</u>&nbsp; Verzerrungen, nicht zu linearen &nbsp; &rArr; &nbsp; Antwort 3 ist falsch.  
+
#If one of these conditions is not satisfied, &nbsp; <u>'''nonlinear'''</u>&nbsp; distortions arise,&nbsp; not linear ones &nbsp; &rArr; &nbsp; Answer 3 is wrong.  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 15:19, 18 January 2023

Spectrum  $R_{\rm TP}(f)$  of the received signal in the equivalent low-pass range

Assume a source signal

$$ q(t) = 2 \,{\rm V} \cdot \cos(2 \pi \cdot 2\,{\rm kHz} \cdot t ) + 2 \,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t )\hspace{0.05cm}.$$

This is modulated according to the modulation method  "DSB-AM with carrier"  and transmitted through an ideal channel.  The influence of noise can be disregarded.


The graph shows the spectrum  $R_{\rm TP}(f)$  of the received signal in the equivalent low-pass region,  which is composed of Dirac delta lines

  • at   $f = 0$  (originating from the carrier), 
  • at  $±2\ \rm kHz$  (originating from the cosine component)  and
  • at  $±5\ \rm kHz$  (originating from the sine component). 


The locus curve is the plot of the equivalent low-pass signal  $r_{\rm TP}(t)$  in the complex plane,  where  $r_{\rm TP}(t)$  is the Fourier retransform of  $R_{\ \rm TP}(f)$ .



Hints:


Questions

1

Estimate the maximum magnitude  $q_{\rm max} = {\rm Max} |q(t)|$  of the source signal.

$q_{\rm max} \ = \ $

$\ \rm V$

2

What is the amplitude  $A_{\rm T}$  of the carrier signal added at the transmitter?  What modulation depth  $m$  results from this?

$A_{\rm T} \ = \ $

$\ \rm V$
$m \ = \ $

3

Which of these are arguments for or against using an envelope demodulator?  Assume the alternative would be a synchronous demodulator.

With the envelope demodulator,  distortion-free demodulation is not possible in the example considered.
One can do demodulation without frequency and phase synchronization.
A smaller transmission power would be needed using a synchronous demodulator.

4

Calculate the equivalent low-pass signal  $r_{\rm TP}(t)$   ⇒   "locus curve",  using the Fourier retransform of  $R_{\rm TP}(f)$.  Which statements are true?

The locus curve  $r_{\rm TP}(t)$  is composed of five pointers.
The carrier rotates with a rotation speed  $ω_{\rm T}$.
The rotational pointers of the negative frequencies rotate clockwise.
The pointer for  $2 \ \rm kHz$  rotates twice as fast as the one for  $5 \ \rm kHz$.

5

Which statements can be made based on the locus curve?  Answer the following questions by considering the application of envelope demodulation.

A distortionless demodulation is only possible when  $r_{\rm TP}(t)$  is real at all times.
A distortionless demodulation is only possible when  $r_{\rm TP}(t)$  does not become negative at any point in time.
If the first two conditions mentioned are not met,  linear distortions will occur.


Solution

Source signal in the region up to  $1\text{ ms}$

(1)  The graph shows that the source signal can take on all values between   $–4 \ \rm V$  and  $+3.667\ \rm V$. 

  • For example,  the maximum magnitude occurs at time   $t = t_0 =0.75\ \rm ms$:
$$q(t = t_0) = 2 \,{\rm V} \cdot \cos(2 \pi \cdot 2\,{\rm kHz} \cdot t_0 ) + 2 \,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t_0 )$$
$$\Rightarrow \hspace{0.3cm}q(t = 0.75 \,{\rm ms}) = 2 \,{\rm V} \cdot \cos(3 \pi) + 2 \,{\rm V} \cdot \sin(7.5 \pi)= -4 \,{\rm V}\hspace{0.05cm}.$$
  • From this,  it follows for the maximum magnitude:   $q_{\rm max}\hspace{0.15cm}\underline{ = 4 \ \rm V}$.


(2)  In the graph on the information page,  the weight of the Dirac delta line at  $f = 0$  indicates the amplitude of the added carrier.  This is  $A_{\rm T}\hspace{0.15cm}\underline{ = 4\ \rm V }$.

  • From this,  we get the modulation depth  $m = q_{\rm max}/A_{\rm T} \hspace{0.15cm}\underline{ = 1}$.


(3) Answers 2 and 3  are correct:

  • Since the modulation depth is not greater than  $m = 1$,  the envelope demodulator does not cause distortion either.
  • The main advantage of envelope demodulation is that no frequency and phase synchronization is necessary.
  • A disadvantage is that a significantly higher power must be applied at the transmitter relative to synchronous demodulation.
  • When  $m = 1$,  this results in three times the transmit power compared to DSB-AM without a carrier.


Equivalent low-pass signal
in the complex plane

(4)  Answers 1 and 3  are correct:  When  $ω_2 = 2 π · 2 \ \rm kHz$  and  $ω_5 = 2 π · \ \rm 5 kHz$:

$$ r_{\rm TP}(t) = 4 \,{\rm V} \hspace{-0.05cm}+\hspace{-0.05cm} 1 \,{\rm V} \cdot {\rm e}^{{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 2}\cdot \hspace{0.03cm}t} \hspace{-0.05cm}+\hspace{-0.05cm} 1 \,{\rm V} \cdot {\rm e}^{-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 2}\cdot \hspace{0.03cm}t} \hspace{-0.05cm}-\hspace{-0.05cm} \hspace{0.15cm}{\rm j} \cdot1 \,{\rm V} \cdot {\rm e}^{{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 5}\cdot \hspace{0.03cm}t} \hspace{-0.05cm}+\hspace{-0.05cm} {\rm j} \cdot1 \,{\rm V} \cdot {\rm e}^{-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 5}\cdot \hspace{0.03cm}t} \hspace{0.05cm}. \hspace{0.1cm}$$

Thus,  in constructing the locus   $r_{TP}(t)$,  there are exactly five pointers to consider   ⇒   answer 1 is correct.  The graph shows a snapshot at time   $t = 0$.

  • The (red) carrier is given by the real pointer of length  $4 \ \rm V$ for all time points.  In contrast to the pointer diagram  (showing the analytic signal),  this does not rotate   ⇒   Answer 2 is false.
  • The third statement is similarly correct:  The rotating pointers at negative frequencies rotate in mathematically negative direction  ("clockwise")  in contrast to the two pointers with  $f > 0$.
  • The last statement is false.  The larger the frequency   $f$,  the faster the associated pointer rotates.


Locus curve for
distortionless envelope demodulation

(5)  Statements 1 and 2  are correct:

  • In the example considered,  the equivalent low-pass signal can be written as:
$$r_{\rm TP}(t) = q(t) + A_{\rm T} \hspace{0.05cm}.$$
  • Thus,  it is obvious that   $r_{\rm TP}(t)$  is always real. 
  • Moreover,  it follows from subtasks  (1)  and  (2)  that   $r_{\rm TP}(t) ≥ 0$.


This means:

  1. Here, the locus curve is a horizontal line on the real plane and always lies in the right half-plane.
  2. These are the two necessary conditions for an envelope demodulator to recover the signal without distortion.
  3. If one of these conditions is not satisfied,   nonlinear  distortions arise,  not linear ones   ⇒   Answer 3 is wrong.