Difference between revisions of "Aufgaben:Exercise 2.8: Asymmetrical Channel"

From LNTwww
m
m
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Hüllkurvendemodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Envelope_Demodulation
 
}}
 
}}
  
 
[[File:P_ID1038__Mod_A_2_8.png|right|frame|Equivalent low-pass signal  <br>in the complex plane]]
 
[[File:P_ID1038__Mod_A_2_8.png|right|frame|Equivalent low-pass signal  <br>in the complex plane]]
A cosine-shaped source signal &nbsp;$q(t)$&nbsp; with amplitude &nbsp;$A_{\rm N}$&nbsp; and frequency &nbsp;$f_{\rm N}$&nbsp; is DSB amplitude modulated, such that the modulated signal is given by:
+
A cosine-shaped source signal &nbsp;$q(t)$&nbsp; with amplitude &nbsp;$A_{\rm N}$&nbsp; and frequency &nbsp;$f_{\rm N}$&nbsp; is double-sideband amplitude modulated.&nbsp; The modulated signal is given by:
 
:$$ s(t) = \big[ q(t) + A_{\rm T}\big] \cdot \cos(2 \pi \cdot f_{\rm T} \cdot t ) \hspace{0.05cm}.$$
 
:$$ s(t) = \big[ q(t) + A_{\rm T}\big] \cdot \cos(2 \pi \cdot f_{\rm T} \cdot t ) \hspace{0.05cm}.$$
 
The transmission channel exhibits linear distortions:  
 
The transmission channel exhibits linear distortions:  
 
*While the lower sideband $($LSB frequency: &nbsp; &nbsp;$f_{\rm T} - f_{\rm N})$&nbsp; and the carrier are transmitted undistorted,  
 
*While the lower sideband $($LSB frequency: &nbsp; &nbsp;$f_{\rm T} - f_{\rm N})$&nbsp; and the carrier are transmitted undistorted,  
*the upper sideband $($USB-Frequenz: &nbsp; &nbsp;$f_{\rm T} + f_{\rm N})$&nbsp; is weighted with the attenuation factor  &nbsp;$α_{\rm O} = 0.25$&nbsp;.
+
*the upper sideband $($USB frequency: &nbsp; &nbsp;$f_{\rm T} + f_{\rm N})$&nbsp; is weighted with the attenuation factor  &nbsp;$α_{\rm O} = 0.25$.
  
  
The graph shows the locus curve, i.e., the representation of the equivalent low-pass signal &nbsp;$r_{\rm TP}(t)$&nbsp; in the complex plane.  
+
The graph shows the locus curve, i.e.,&nbsp; the representation of the equivalent low-pass signal &nbsp;$r_{\rm TP}(t)$&nbsp; in the complex plane.  
  
Evaluating the signal &nbsp;$r(t)$&nbsp; with an ideal envelope demodulator, we obtain a sink signal&nbsp;$v(t)$, which can be approximated as follows:
+
Evaluating the signal &nbsp;$r(t)$&nbsp; with an ideal envelope demodulator,&nbsp; we obtain a sink signal&nbsp;$v(t)$,&nbsp; which can be approximated as follows:
 
:$$v(t) = 2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t ) -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t )-\text{ ...}$$
 
:$$v(t) = 2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t ) -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t )-\text{ ...}$$
For this measurement, the message frequency &nbsp;$f_{\rm N} = 2 \ \rm kHz$&nbsp; was used.
+
For this measurement,&nbsp; the message frequency &nbsp;$f_{\rm N} = 2 \ \rm kHz$&nbsp; was used.
  
 
In subtask&nbsp; '''(7)'''&nbsp; the signal-to-noise power ratio &nbsp; $\rm (SNR)$&nbsp; should be calculated as follows:
 
In subtask&nbsp; '''(7)'''&nbsp; the signal-to-noise power ratio &nbsp; $\rm (SNR)$&nbsp; should be calculated as follows:
:$$ \rho_{v } = \frac{P_{v 1}}{P_{\varepsilon }} \hspace{0.05cm}.$$
+
:$$ \rho_{v } = P_{v 1}/P_{\varepsilon } \hspace{0.05cm}.$$
Here, &nbsp;$P_{v1} = α^2 · P_q$&nbsp; and &nbsp;$P_ε$&nbsp; denote the "powers" of both signals:
+
Here, &nbsp;$P_{v1} = α^2 · P_q$&nbsp; and &nbsp;$P_ε$&nbsp; denote the&nbsp; "powers"&nbsp; of both signals:
 
:$$ v_1(t)  =  2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t )\hspace{0.05cm},$$
 
:$$ v_1(t)  =  2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t )\hspace{0.05cm},$$
 
:$$ \varepsilon(t)  =  v(t) - v_1(t) \approx -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t ) \hspace{0.05cm}.$$
 
:$$ \varepsilon(t)  =  v(t) - v_1(t) \approx -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t ) \hspace{0.05cm}.$$
Line 27: Line 27:
  
  
 
+
Hints:  
 
 
 
 
''Hints:''
 
 
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Envelope_Demodulation|Envelope Demodulation]].
 
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Envelope_Demodulation|Envelope Demodulation]].
*Particular reference is made to the page&nbsp;  [[Modulation_Methods/Envelope_Demodulation#Description_using_the_equivalent_low-pass_signal|Description using the equivalent low-pass signal]].
+
*Particular reference is made to the section&nbsp;  [[Modulation_Methods/Envelope_Demodulation#Description_using_the_equivalent_low-pass_signal|Description using the equivalent low-pass signal]].
 
   
 
   
  
Line 41: Line 38:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Give the low-pass signal &nbsp;$r_{\rm TP}(t)$&nbsp; in its analytical form. What value results for time &nbsp;$t = 0$?
+
{Give the low-pass signal &nbsp;$r_{\rm TP}(t)$&nbsp; in its analytical form.&nbsp; What value results for time &nbsp;$t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$r_{\rm TP}(t=0) \ = \ $ { 15 3% } $\ \rm V$
 
$r_{\rm TP}(t=0) \ = \ $ { 15 3% } $\ \rm V$
Line 50: Line 47:
 
$A_{\rm N} \ = \ $ { 8 3% } $\ \rm V$
 
$A_{\rm N} \ = \ $ { 8 3% } $\ \rm V$
  
{Let &nbsp;$f_{\rm N} \hspace{0.15cm}\underline{= 2 \ \rm kHz}$.&nbsp; At which time &nbsp;$t_1$&nbsp; is the starting point &nbsp; '''(1)'''&nbsp; first reached again after &nbsp;$t = 0$&nbsp;?
+
{Let &nbsp;$f_{\rm N} \hspace{0.15cm}\underline{= 2 \ \rm kHz}$.&nbsp; At which time &nbsp;$t_1$&nbsp; is the starting point &nbsp; '''(1)'''&nbsp; first reached again after &nbsp;$t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$t_1 \ = \ $ { 0.5 3% } $\ \rm ms$  
 
$t_1 \ = \ $ { 0.5 3% } $\ \rm ms$  
  
{At which point in time &nbsp;$t_2$&nbsp; is the elliptical point &nbsp; '''(2)'''&nbsp; with value &nbsp;$\rm j · 3\ V$&nbsp; first reached?
+
{At which time &nbsp;$t_2$&nbsp; is the elliptical point &nbsp; '''(2)'''&nbsp; with value &nbsp;$\rm j · 3\ V$&nbsp; reached first?
 
|type="{}"}
 
|type="{}"}
 
$t_2 \ = \ $ { 0.375 3% } $\ \rm ms$  
 
$t_2 \ = \ $ { 0.375 3% } $\ \rm ms$  
 
   
 
   
{Calculate the  magnitude function (envelope) &nbsp;$a(t)$&nbsp; and the phase function &nbsp;$ϕ(t)$&nbsp; for this time point &nbsp;$t_2$.
+
{Calculate the  magnitude function&nbsp; (envelope) &nbsp;$a(t)$&nbsp; and the phase function &nbsp;$ϕ(t)$&nbsp; for this time point &nbsp;$t_2$.
 
|type="{}"}
 
|type="{}"}
 
$a(t = t_2) \ = \ $ { 10.44 3% } $\ \rm V$
 
$a(t = t_2) \ = \ $ { 10.44 3% } $\ \rm V$
Line 78: Line 75:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  For a cosine-shaped source signal and attenuation of the upper sideband, it holds that:
+
'''(1)'''&nbsp;  For a cosine-shaped source signal and attenuation of the upper sideband,&nbsp; it holds that:
 
:$$ r_{\rm TP}(t) = A_{\rm T} + \frac{A_{\rm N}}{2} \cdot \alpha_{\rm O} \cdot{\rm e}^{{\rm j} \cdot \hspace{0.03cm}\omega_{\rm N}\cdot t} + \frac{A_{\rm N}}{2} \cdot{\rm e}^{-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm N}\cdot t}\hspace{0.05cm}.$$
 
:$$ r_{\rm TP}(t) = A_{\rm T} + \frac{A_{\rm N}}{2} \cdot \alpha_{\rm O} \cdot{\rm e}^{{\rm j} \cdot \hspace{0.03cm}\omega_{\rm N}\cdot t} + \frac{A_{\rm N}}{2} \cdot{\rm e}^{-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm N}\cdot t}\hspace{0.05cm}.$$
 
*At time &nbsp; $t = 0$&nbsp; all vectors point in the direction of the real axis.  
 
*At time &nbsp; $t = 0$&nbsp; all vectors point in the direction of the real axis.  
Line 88: Line 85:
 
'''(2)'''&nbsp;  The carrier amplitude is defined by the center of the ellipse:
 
'''(2)'''&nbsp;  The carrier amplitude is defined by the center of the ellipse:
 
&nbsp; $A_{\rm T}\hspace{0.15cm}\underline { = 10 \ \rm V}$.  
 
&nbsp; $A_{\rm T}\hspace{0.15cm}\underline { = 10 \ \rm V}$.  
*From the equation given in the first subtask, the amplitude&nbsp; $A_{\rm N}$&nbsp; can thus also be calculated:
+
*From the equation given in the first subtask,&nbsp; the amplitude&nbsp; $A_{\rm N}$&nbsp; can thus also be calculated:
 
:$$ \frac{A_{\rm N}}{2} \cdot ( 1+ \alpha_0) = r_{\rm TP}(t= 0) - A_{\rm T} = 5 \,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm N} \hspace{0.15cm}\underline {= 8 \,{\rm V}} \hspace{0.05cm}.$$
 
:$$ \frac{A_{\rm N}}{2} \cdot ( 1+ \alpha_0) = r_{\rm TP}(t= 0) - A_{\rm T} = 5 \,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm N} \hspace{0.15cm}\underline {= 8 \,{\rm V}} \hspace{0.05cm}.$$
 
*The point marked &nbsp; '''(2)'''&nbsp; can be used as a check:
 
*The point marked &nbsp; '''(2)'''&nbsp; can be used as a check:
Line 95: Line 92:
  
  
'''(3)'''&nbsp;  The necessary time for one cycle t&nbsp; $t_1$&nbsp; is equal to the period of the source signal, i.e.,
+
'''(3)'''&nbsp;  The necessary time for one cycle &nbsp; $t_1$&nbsp; is equal to the time period of the source signal:
 
:$$t_1= 1/f_{\rm N} \hspace{0.15cm}\underline {=0.5 \ \rm ms}.$$
 
:$$t_1= 1/f_{\rm N} \hspace{0.15cm}\underline {=0.5 \ \rm ms}.$$
  
  
  
'''(4)'''&nbsp;  Since the lower sideband is larger than the upper sideband, the peak of the pointer composite moves clockwise around the ellipse.  
+
'''(4)'''&nbsp;  Since the lower sideband is larger than the upper sideband,&nbsp; the peak of the pointer composite moves clockwise around the ellipse.  
*Point&nbsp; '''(2)'''&nbsp; is first reached at time&nbsp; $t_2 = 3/4 · t_1\hspace{0.15cm}\underline { = 0.375 \ \rm ms}$&nbsp; .
+
*Point&nbsp; '''(2)'''&nbsp; is first reached at time&nbsp; $t_2 = 3/4 · t_1\hspace{0.15cm}\underline { = 0.375 \ \rm ms}$.
  
  
Line 110: Line 107:
 
*The phase function is:
 
*The phase function is:
 
:$$\phi(t = t_2) = {\rm arctan} \frac{3 \,{\rm V}}{10 \,{\rm V}} \hspace{0.15cm}\underline {= 16.7^{\circ}}\hspace{0.05cm}.$$
 
:$$\phi(t = t_2) = {\rm arctan} \frac{3 \,{\rm V}}{10 \,{\rm V}} \hspace{0.15cm}\underline {= 16.7^{\circ}}\hspace{0.05cm}.$$
*The maximum phase&nbsp; $ϕ_{\rm max}$&nbsp; is slightly larger.&nbsp; It occurs (with a positive sign) at time &nbsp; $t_3 < t_2$&nbsp; when a straight line from the origin is tangent to the ellipse.  
+
*The maximum phase&nbsp; $ϕ_{\rm max}$&nbsp; is slightly larger.&nbsp;  
 +
*It occurs (with a positive sign) at time &nbsp; $t_3 < t_2$&nbsp; when a straight line from the origin is tangent to the ellipse.  
 
*By setting up the ellipse equation, this point &nbsp; $(x_3$,&nbsp; $y_3)$&nbsp; can be accurately calculated analytically.  
 
*By setting up the ellipse equation, this point &nbsp; $(x_3$,&nbsp; $y_3)$&nbsp; can be accurately calculated analytically.  
 
*From this, the following would hold for the maximum phase:  
 
*From this, the following would hold for the maximum phase:  
:&nbsp; $\phi_{\rm max} = {\rm arctan} \ {y_3}/{x_3} \hspace{0.05cm}.$
+
:$$\phi_{\rm max} = {\rm arctan} \ {y_3}/{x_3} \hspace{0.05cm}.$$
  
  
  
'''(6)'''&nbsp;  The distortion factors of second and third order can be obtained from the given equation for nbsp; $v(t)$&nbsp; $($valid for $f_{\rm N} = 2 \ \rm kHz)$&nbsp;, and are:
+
'''(6)'''&nbsp;  The distortion factors of second and third order can be obtained from the equation given for&nbsp; $v(t)$&nbsp; $($valid for $f_{\rm N} = 2 \ \rm kHz)$:
 
:$$ K_2 = \frac{0.148 \,{\rm V}}{2.424 \,{\rm V}} = 0.061, \hspace{0.3cm} K_3 = \frac{0.056 \,{\rm V}}{2.424 \,{\rm V}} = 0.023 \hspace{0.05cm}.$$
 
:$$ K_2 = \frac{0.148 \,{\rm V}}{2.424 \,{\rm V}} = 0.061, \hspace{0.3cm} K_3 = \frac{0.056 \,{\rm V}}{2.424 \,{\rm V}} = 0.023 \hspace{0.05cm}.$$
*Thus for the total distortion factor we get:
+
*Thus,&nbsp; for the total distortion factor we get:
 
:$$K = \sqrt{K_2^2 + K_3^2 }\hspace{0.15cm}\underline { \approx 6.6 \%}.$$
 
:$$K = \sqrt{K_2^2 + K_3^2 }\hspace{0.15cm}\underline { \approx 6.6 \%}.$$
  
  
  
'''(7)'''&nbsp;  Frot he power of the useful signal and the interference signal, we obtain:
+
'''(7)'''&nbsp;  From the power of the useful signal and the interference signal,&nbsp; we obtain:
 
:$$ P_{v 1} = \frac{(2.424 \,{\rm V})^2}{2} = 2.94 \,{\rm V}^2\hspace{0.05cm},\hspace{0.3cm} P_{\varepsilon} = \frac{(-0.148 \,{\rm V})^2}{2} + \frac{(0.056 \,{\rm V})^2}{2}= 0.0125 \,{\rm V}^2\hspace{0.05cm}$$
 
:$$ P_{v 1} = \frac{(2.424 \,{\rm V})^2}{2} = 2.94 \,{\rm V}^2\hspace{0.05cm},\hspace{0.3cm} P_{\varepsilon} = \frac{(-0.148 \,{\rm V})^2}{2} + \frac{(0.056 \,{\rm V})^2}{2}= 0.0125 \,{\rm V}^2\hspace{0.05cm}$$
 
*This gives the signal-to-noise power ratio &nbsp; $\rm (SNR)$:
 
*This gives the signal-to-noise power ratio &nbsp; $\rm (SNR)$:
 
:$$\rho_{v} = \frac{P_{v 1}}{P_{\varepsilon }}= \frac{(2.94 \,{\rm V})^2}{0.0125 \,{\rm V}^2} \hspace{0.15cm}\underline {\approx 230} = \frac{1}{K^2} \hspace{0.05cm}.$$
 
:$$\rho_{v} = \frac{P_{v 1}}{P_{\varepsilon }}= \frac{(2.94 \,{\rm V})^2}{0.0125 \,{\rm V}^2} \hspace{0.15cm}\underline {\approx 230} = \frac{1}{K^2} \hspace{0.05cm}.$$
*If, on the other hand, the amplitude distortion were also assigned to the error signal, we would arrive at a much smaller&nbsp; $\rm SNR$.
+
*If,&nbsp; on the other hand,&nbsp; the amplitude distortion were also assigned to the error signal,&nbsp; we would arrive at a much smaller&nbsp; $\rm SNR$.
*When $P_q = A_{\rm N}^2/2 = 8 \ \rm V^2$&nbsp; and&nbsp; $P_{\varepsilon}\hspace{0.02cm}' = \overline{(v(t)-q(t))^2} = {1}/{2}\cdot ( 4 \,{\rm V} - 2.424 \,{\rm V})^2 + P_{\varepsilon}= 1.254 \,{\rm V}^2$&nbsp; one would get:
+
*When&nbsp; $P_q = A_{\rm N}^2/2 = 8 \ \rm V^2$&nbsp; and&nbsp; $P_{\varepsilon}\hspace{0.02cm}' = \overline{(v(t)-q(t))^2} = {1}/{2}\cdot ( 4 \,{\rm V} - 2.424 \,{\rm V})^2 + P_{\varepsilon}= 1.254 \,{\rm V}^2$&nbsp; one would get:
 
:$$\rho_{v }\hspace{0.02cm}' = \frac{8 \,{\rm V}^2}{1.254 \,{\rm V}^2} \approx 6.4\hspace{0.05cm}.$$
 
:$$\rho_{v }\hspace{0.02cm}' = \frac{8 \,{\rm V}^2}{1.254 \,{\rm V}^2} \approx 6.4\hspace{0.05cm}.$$
  
  
 
'''(8)'''&nbsp;  All calculations are valid regardless of the message frequency &nbsp; $f_{\rm N}$ if the attenuation factor of the upper sideband remains at &nbsp; $α_{\rm O} = 0.25$&nbsp;.  
 
'''(8)'''&nbsp;  All calculations are valid regardless of the message frequency &nbsp; $f_{\rm N}$ if the attenuation factor of the upper sideband remains at &nbsp; $α_{\rm O} = 0.25$&nbsp;.  
*Thus, the same distortion factor &nbsp; $K\hspace{0.15cm}\underline { \approx 6.6 \%}$ is obtained even for &nbsp; $f_{\rm N} = 4 \ \rm kHz$&nbsp;.
+
*Thus,&nbsp; the same distortion factor &nbsp; $K\hspace{0.15cm}\underline { \approx 6.6 \%}$&nbsp; is obtained even for &nbsp; $f_{\rm N} = 4 \ \rm kHz$&nbsp;.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 16:30, 31 March 2022

Equivalent low-pass signal
in the complex plane

A cosine-shaped source signal  $q(t)$  with amplitude  $A_{\rm N}$  and frequency  $f_{\rm N}$  is double-sideband amplitude modulated.  The modulated signal is given by:

$$ s(t) = \big[ q(t) + A_{\rm T}\big] \cdot \cos(2 \pi \cdot f_{\rm T} \cdot t ) \hspace{0.05cm}.$$

The transmission channel exhibits linear distortions:

  • While the lower sideband $($LSB frequency:    $f_{\rm T} - f_{\rm N})$  and the carrier are transmitted undistorted,
  • the upper sideband $($USB frequency:    $f_{\rm T} + f_{\rm N})$  is weighted with the attenuation factor  $α_{\rm O} = 0.25$.


The graph shows the locus curve, i.e.,  the representation of the equivalent low-pass signal  $r_{\rm TP}(t)$  in the complex plane.

Evaluating the signal  $r(t)$  with an ideal envelope demodulator,  we obtain a sink signal $v(t)$,  which can be approximated as follows:

$$v(t) = 2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t ) -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t )-\text{ ...}$$

For this measurement,  the message frequency  $f_{\rm N} = 2 \ \rm kHz$  was used.

In subtask  (7)  the signal-to-noise power ratio   $\rm (SNR)$  should be calculated as follows:

$$ \rho_{v } = P_{v 1}/P_{\varepsilon } \hspace{0.05cm}.$$

Here,  $P_{v1} = α^2 · P_q$  and  $P_ε$  denote the  "powers"  of both signals:

$$ v_1(t) = 2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t )\hspace{0.05cm},$$
$$ \varepsilon(t) = v(t) - v_1(t) \approx -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t ) \hspace{0.05cm}.$$



Hints:



Questions

1

Give the low-pass signal  $r_{\rm TP}(t)$  in its analytical form.  What value results for time  $t = 0$?

$r_{\rm TP}(t=0) \ = \ $

$\ \rm V$

2

What are the amplitude values  $A_{\rm T}$  and  $A_{\rm N}$?

$A_{\rm T} \ = \ $

$\ \rm V$
$A_{\rm N} \ = \ $

$\ \rm V$

3

Let  $f_{\rm N} \hspace{0.15cm}\underline{= 2 \ \rm kHz}$.  At which time  $t_1$  is the starting point   (1)  first reached again after  $t = 0$?

$t_1 \ = \ $

$\ \rm ms$

4

At which time  $t_2$  is the elliptical point   (2)  with value  $\rm j · 3\ V$  reached first?

$t_2 \ = \ $

$\ \rm ms$

5

Calculate the magnitude function  (envelope)  $a(t)$  and the phase function  $ϕ(t)$  for this time point  $t_2$.

$a(t = t_2) \ = \ $

$\ \rm V$
$ϕ(t = t_2)\ = \ $

$\ \rm degrees$

6

Calculate the distortion factor  $K$  for  $f_{\rm N} \hspace{0.15cm}\underline{= 2 \ \rm kHz}$.

$K \ = \ $

$\ \text{%}$

7

Calculate the signal-to-noise power ratio  $\rm (SNR)$ for  $f_{\rm N}\hspace{0.15cm}\underline{ = 2 \ \rm kHz}$  according to the given definition.

$ρ_v \ = \ $

8

What distortion factor results from otherwise equal conditions for the message frequency  $f_{\rm N} \hspace{0.15cm}\underline{= 4 \ \rm kHz}$?

$K \ = \ $

$\ \text{%}$


Solution

(1)  For a cosine-shaped source signal and attenuation of the upper sideband,  it holds that:

$$ r_{\rm TP}(t) = A_{\rm T} + \frac{A_{\rm N}}{2} \cdot \alpha_{\rm O} \cdot{\rm e}^{{\rm j} \cdot \hspace{0.03cm}\omega_{\rm N}\cdot t} + \frac{A_{\rm N}}{2} \cdot{\rm e}^{-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm N}\cdot t}\hspace{0.05cm}.$$
  • At time   $t = 0$  all vectors point in the direction of the real axis.
  • Thus   $r_{\rm TP}(t = 0)\hspace{0.15cm}\underline { = 15 \ \rm V}$  can be read from the graph on the exercise page.



(2)  The carrier amplitude is defined by the center of the ellipse:   $A_{\rm T}\hspace{0.15cm}\underline { = 10 \ \rm V}$.

  • From the equation given in the first subtask,  the amplitude  $A_{\rm N}$  can thus also be calculated:
$$ \frac{A_{\rm N}}{2} \cdot ( 1+ \alpha_0) = r_{\rm TP}(t= 0) - A_{\rm T} = 5 \,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm N} \hspace{0.15cm}\underline {= 8 \,{\rm V}} \hspace{0.05cm}.$$
  • The point marked   (2)  can be used as a check:
$$\frac{A_{\rm N}}{2} \cdot ( 1- \alpha_0) = 3 \,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm N} = 8 \,{\rm V} \hspace{0.05cm}.$$


(3)  The necessary time for one cycle   $t_1$  is equal to the time period of the source signal:

$$t_1= 1/f_{\rm N} \hspace{0.15cm}\underline {=0.5 \ \rm ms}.$$


(4)  Since the lower sideband is larger than the upper sideband,  the peak of the pointer composite moves clockwise around the ellipse.

  • Point  (2)  is first reached at time  $t_2 = 3/4 · t_1\hspace{0.15cm}\underline { = 0.375 \ \rm ms}$.


Calculation of   $t_2$  and  $t_3$

(5)  The pointer length at time   $t_2$  can be determined with the   Pythagorean Theorem :

$$ a(t = t_2) = \sqrt{(10 \,{\rm V})^2 + (3 \,{\rm V})^2}\hspace{0.15cm}\underline { = 10.44 \,{\rm V}}\hspace{0.05cm}.$$
  • The phase function is:
$$\phi(t = t_2) = {\rm arctan} \frac{3 \,{\rm V}}{10 \,{\rm V}} \hspace{0.15cm}\underline {= 16.7^{\circ}}\hspace{0.05cm}.$$
  • The maximum phase  $ϕ_{\rm max}$  is slightly larger. 
  • It occurs (with a positive sign) at time   $t_3 < t_2$  when a straight line from the origin is tangent to the ellipse.
  • By setting up the ellipse equation, this point   $(x_3$,  $y_3)$  can be accurately calculated analytically.
  • From this, the following would hold for the maximum phase:
$$\phi_{\rm max} = {\rm arctan} \ {y_3}/{x_3} \hspace{0.05cm}.$$


(6)  The distortion factors of second and third order can be obtained from the equation given for  $v(t)$  $($valid for $f_{\rm N} = 2 \ \rm kHz)$:

$$ K_2 = \frac{0.148 \,{\rm V}}{2.424 \,{\rm V}} = 0.061, \hspace{0.3cm} K_3 = \frac{0.056 \,{\rm V}}{2.424 \,{\rm V}} = 0.023 \hspace{0.05cm}.$$
  • Thus,  for the total distortion factor we get:
$$K = \sqrt{K_2^2 + K_3^2 }\hspace{0.15cm}\underline { \approx 6.6 \%}.$$


(7)  From the power of the useful signal and the interference signal,  we obtain:

$$ P_{v 1} = \frac{(2.424 \,{\rm V})^2}{2} = 2.94 \,{\rm V}^2\hspace{0.05cm},\hspace{0.3cm} P_{\varepsilon} = \frac{(-0.148 \,{\rm V})^2}{2} + \frac{(0.056 \,{\rm V})^2}{2}= 0.0125 \,{\rm V}^2\hspace{0.05cm}$$
  • This gives the signal-to-noise power ratio   $\rm (SNR)$:
$$\rho_{v} = \frac{P_{v 1}}{P_{\varepsilon }}= \frac{(2.94 \,{\rm V})^2}{0.0125 \,{\rm V}^2} \hspace{0.15cm}\underline {\approx 230} = \frac{1}{K^2} \hspace{0.05cm}.$$
  • If,  on the other hand,  the amplitude distortion were also assigned to the error signal,  we would arrive at a much smaller  $\rm SNR$.
  • When  $P_q = A_{\rm N}^2/2 = 8 \ \rm V^2$  and  $P_{\varepsilon}\hspace{0.02cm}' = \overline{(v(t)-q(t))^2} = {1}/{2}\cdot ( 4 \,{\rm V} - 2.424 \,{\rm V})^2 + P_{\varepsilon}= 1.254 \,{\rm V}^2$  one would get:
$$\rho_{v }\hspace{0.02cm}' = \frac{8 \,{\rm V}^2}{1.254 \,{\rm V}^2} \approx 6.4\hspace{0.05cm}.$$


(8)  All calculations are valid regardless of the message frequency   $f_{\rm N}$ if the attenuation factor of the upper sideband remains at   $α_{\rm O} = 0.25$ .

  • Thus,  the same distortion factor   $K\hspace{0.15cm}\underline { \approx 6.6 \%}$  is obtained even for   $f_{\rm N} = 4 \ \rm kHz$ .