Difference between revisions of "Aufgaben:Exercise 3.7: Bit Error Rate (BER)"
m (Text replacement - "rms value" to "standard deviation") |
|||
(4 intermediate revisions by 2 users not shown) | |||
Line 4: | Line 4: | ||
[[File:EN_Sto_A_3_7.png|right|frame|To illustrate the bit error rate]] | [[File:EN_Sto_A_3_7.png|right|frame|To illustrate the bit error rate]] | ||
− | We consider a binary transmission system with | + | We consider a binary transmission system with |
− | *the source symbol sequence $\langle q_\nu \rangle $ and | + | *the source symbol sequence $\langle q_\nu \rangle $, and |
*the sink symbol sequence $\langle v_\nu \rangle $. | *the sink symbol sequence $\langle v_\nu \rangle $. | ||
− | If sink symbol $v_\nu$ and source symbol $q_\nu$ do not match, there is a bit error ⇒ $e_\nu = 1$. | + | If the sink symbol $v_\nu$ and source symbol $q_\nu$ do not match, there is a "bit error" ⇒ $e_\nu = 1$. Otherwise $e_\nu = 0$ holds. |
− | |||
− | $\rm (A)$ The most important evaluation criterion of such a digital system is | + | $\rm (A)$ The most important evaluation criterion of such a digital system is the '''Bit Error Probability''': |
− | |||
:*With the expected value ${\rm E}\big[\text{ ...} \big]$ this is defined as follows: | :*With the expected value ${\rm E}\big[\text{ ...} \big]$ this is defined as follows: | ||
:: $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$ | :: $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$ | ||
− | :*The right part of this equation describes a time averaging; this must always be applied | + | :*The right part of this equation describes a time averaging; this must always be applied to time-varying channels. |
− | :*If the error probability is the same for all symbols (which is assumed here), the above equation can be simplified: | + | :*If the error probability is the same for all symbols (which is assumed here), the above equation can be simplified: |
::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$ | ::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$ | ||
+ | :*The bit error probability is an "a priori parameter", so it allows a prediction for the expected result. | ||
− | |||
− | + | $\rm (B)$ For the metrological determination of the transmission quality or for a system simulation, it is necessary to rely on the '''Bit Error Rate''' $\rm (BER)$: | |
− | $\rm (B)$ | + | :*The bit error rate is an "a posteriori parameter" derived from a performed statistical experiment as a [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Definition_der_Bitfehlerquote|relative frequency]]. |
− | |||
::$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$ | ::$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$ | ||
− | + | :*$n_{\rm B}$ indicates the number of bit errors occurred when a total of $N$ binary symbols ("bits") were transmitted. | |
− | :* | + | :*In the limiting case $N \to \infty$ the relative frequency $h_{\rm B}$ coincides with the probability $p_{\rm B}$. Here now the question shall be clarified, which statistical uncertainty has to be expected with finite $N$. |
− | |||
− | :*In the limiting case $N \to \infty$ the relative frequency $h_{\rm B}$ coincides with the probability $p_{\rm B}$ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
Line 44: | Line 34: | ||
Hints: | Hints: | ||
− | *The exercise belongs to the chapter [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|Gaussian random variables]]. | + | *The exercise belongs to the chapter [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|Gaussian random variables]]. |
− | + | *Solve this exercise as far as possible in general. Use the parameter values $p_{\rm B} = 10^{-3}$ and $N = 10^{5}$ for control input. | |
− | * | + | *The following are some values of the so-called "Q-function": |
− | |||
− | *The following are some values of the so-called Q-function: | ||
:$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$ | :$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$ | ||
Line 65: | Line 53: | ||
− | {How large | + | {How large is the standard deviation of the random variable $n_{\rm B}$ with $p_{\rm B} = 10^{-3}$ and $N = 10^{5}$? |
|type="{}"} | |type="{}"} | ||
$\sigma_{n{\rm B}} \ = \ $ { 10 3% } | $\sigma_{n{\rm B}} \ = \ $ { 10 3% } | ||
− | {What values can the bit error rate $h_{\rm B}$ take? | + | {What values can the bit error rate $h_{\rm B}$ take? Show that the linear mean $m_{h{\rm B}}$ of this random variable is equal to the bit error probability $p_{\rm B}$ What is its standard deviation? |
|type="{}"} | |type="{}"} | ||
$\sigma_{h{\rm B}} \ = \ $ { 0.0001 3% } | $\sigma_{h{\rm B}} \ = \ $ { 0.0001 3% } | ||
− | {Under certain conditions, a binomially distributed random variable can be approximated by a Gaussian distribution with equal mean $(m_{h{\rm B}})$ and equal | + | {Under certain conditions, a binomially distributed random variable can be approximated by a Gaussian distribution <br>with equal mean $(m_{h{\rm B}})$ and equal standard deviation $(\sigma_{h{\rm B}})$. Which statement is true? |
|type="()"} | |type="()"} | ||
+ ${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{\it h}{\rm B}}).$ | + ${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{\it h}{\rm B}}).$ | ||
Line 82: | Line 70: | ||
− | {For abbreviation, we use the confidence level $p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)$. Which $p_\varepsilon$ results with $\varepsilon = 10^{-4}$, $p_{\rm B} = 10^{-3}$ and $N = 10^{5}$ ? | + | {For abbreviation, we use the confidence level $p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)$. Which $p_\varepsilon$ results with $\varepsilon = 10^{-4}$, $p_{\rm B} = 10^{-3}$ and $N = 10^{5}$ ? |
|type="{}"} | |type="{}"} | ||
$p_\varepsilon \ = \ $ { 0.684 3% } | $p_\varepsilon \ = \ $ { 0.684 3% } | ||
− | {Let the argument of the Q-function be $\alpha$. What is the minimum $\alpha$ that must be chosen for the confidence level $p_\varepsilon = 95\%$ | + | {Let the argument of the Q-function be $\alpha$. What is the minimum value of $\alpha$ that must be chosen for the confidence level $p_\varepsilon = 95\%$ ? |
|type="{}"} | |type="{}"} | ||
$\alpha_{\rm min} \ = \ $ { 1.96 3% } | $\alpha_{\rm min} \ = \ $ { 1.96 3% } | ||
− | {It still holds $p_{\rm B} = 10^{-3}$ and $p_\varepsilon = 95\%$. Over how many symbols $(N_\text{min})$ must be averaged at least, <br>so that the determined bit error rate in the range between $0. 9 \cdot 10^{-3}$ and $1.1 \cdot 10^{-3}$ | + | {It still holds $p_{\rm B} = 10^{-3}$ and $p_\varepsilon = 95\%$. Over how many symbols $(N_\text{min})$ must be averaged at least, <br>so that the determined bit error rate lies in the range between $0. 9 \cdot 10^{-3}$ and $1.1 \cdot 10^{-3}$ $(\varepsilon = 10^{-4}, \ \text{10% of its nominal value)}$ ? |
|type="{}"} | |type="{}"} | ||
$N_\text{min} \ = \ ${ 400000 3% } | $N_\text{min} \ = \ ${ 400000 3% } | ||
Line 102: | Line 90: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' The <u>last two statements</u> are true: | + | '''(1)''' The <u>last two statements</u> are true: |
*Relative to the random variable $n_{\rm B}$ there is the classical case of a binomial distribution. | *Relative to the random variable $n_{\rm B}$ there is the classical case of a binomial distribution. | ||
− | *The sum over $N$ binary random variables is formed. | + | *The sum over $N$ binary random variables is formed. The possible values of $n_{\rm B}$ thus lie between $0$ and $N$. |
− | |||
*The linear mean gives $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$ | *The linear mean gives $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$ | ||
− | '''(2)''' Für the | + | '''(2)''' Für the standard deviation of the binomial distribution holds with good approximation: |
:$$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}} | :$$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}} | ||
\hspace{0.15cm}\underline{\approx 10}.$$ | \hspace{0.15cm}\underline{\approx 10}.$$ | ||
Line 118: | Line 105: | ||
'''(3)''' Possible values of $h_{\rm B}$ are all integer multiples of $1/N$. These all lie between $0$ and $1$. | '''(3)''' Possible values of $h_{\rm B}$ are all integer multiples of $1/N$. These all lie between $0$ and $1$. | ||
− | *For the mean value, one obtains: | + | *For the mean value, one obtains: |
:$$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$ | :$$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$ | ||
− | *The | + | *The standard deviation results in |
:$$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.$$ | :$$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.$$ | ||
− | '''(4)''' Correct is <u>the first proposition</u>. It holds: | + | '''(4)''' Correct is <u>the first proposition</u>. It holds: |
:$${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}}),$$ | :$${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}}),$$ | ||
:$$\rm Pr(\it h_{\rm B} < p_{\rm B} - \varepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}}{\rm )}$$ | :$$\rm Pr(\it h_{\rm B} < p_{\rm B} - \varepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}}{\rm )}$$ | ||
:$$\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}}).$$ | :$$\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}}).$$ | ||
− | |||
Line 136: | Line 122: | ||
:$$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$ | :$$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$ | ||
− | In words: | + | In words: If one determines the bit error rate by simulation over $10^5$ symbols, with a confidence level of $\underline{68.4\%}$ <br>one obtains a value between $0.9 \cdot 10^{-3}$ and $1.1 \cdot 10^{-3}$, if $p_{\rm B} = 10^{-3}$. |
− | |||
− | |||
− | |||
Line 148: | Line 131: | ||
− | '''(7)''' It must $\alpha = \varepsilon/\sigma_{h{\rm B}}$ With the result of the subtask '''(2)''' then follows: | + | '''(7)''' It must $\alpha = \varepsilon/\sigma_{h{\rm B}}$. With the result of the subtask '''(2)''' then follows: |
:$$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} | :$$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} | ||
N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.$$ | N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.$$ |
Latest revision as of 12:11, 17 February 2022
We consider a binary transmission system with
- the source symbol sequence $\langle q_\nu \rangle $, and
- the sink symbol sequence $\langle v_\nu \rangle $.
If the sink symbol $v_\nu$ and source symbol $q_\nu$ do not match, there is a "bit error" ⇒ $e_\nu = 1$. Otherwise $e_\nu = 0$ holds.
$\rm (A)$ The most important evaluation criterion of such a digital system is the Bit Error Probability:
- With the expected value ${\rm E}\big[\text{ ...} \big]$ this is defined as follows:
- $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$
- The right part of this equation describes a time averaging; this must always be applied to time-varying channels.
- If the error probability is the same for all symbols (which is assumed here), the above equation can be simplified:
- $$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
- The bit error probability is an "a priori parameter", so it allows a prediction for the expected result.
$\rm (B)$ For the metrological determination of the transmission quality or for a system simulation, it is necessary to rely on the Bit Error Rate $\rm (BER)$:
- The bit error rate is an "a posteriori parameter" derived from a performed statistical experiment as a relative frequency.
- $$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
- $n_{\rm B}$ indicates the number of bit errors occurred when a total of $N$ binary symbols ("bits") were transmitted.
- In the limiting case $N \to \infty$ the relative frequency $h_{\rm B}$ coincides with the probability $p_{\rm B}$. Here now the question shall be clarified, which statistical uncertainty has to be expected with finite $N$.
Hints:
- The exercise belongs to the chapter Gaussian random variables.
- Solve this exercise as far as possible in general. Use the parameter values $p_{\rm B} = 10^{-3}$ and $N = 10^{5}$ for control input.
- The following are some values of the so-called "Q-function":
- $$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$
Questions
Solution
- Relative to the random variable $n_{\rm B}$ there is the classical case of a binomial distribution.
- The sum over $N$ binary random variables is formed. The possible values of $n_{\rm B}$ thus lie between $0$ and $N$.
- The linear mean gives $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$
(2) Für the standard deviation of the binomial distribution holds with good approximation:
- $$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}} \hspace{0.15cm}\underline{\approx 10}.$$
(3) Possible values of $h_{\rm B}$ are all integer multiples of $1/N$. These all lie between $0$ and $1$.
- For the mean value, one obtains:
- $$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$
- The standard deviation results in
- $$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.$$
(4) Correct is the first proposition. It holds:
- $${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}}),$$
- $$\rm Pr(\it h_{\rm B} < p_{\rm B} - \varepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}}{\rm )}$$
- $$\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}}).$$
(5) One obtains with the numerical values $\varepsilon = \sigma_{h{\rm B}} = 10^{-4}$:
- $$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$
In words: If one determines the bit error rate by simulation over $10^5$ symbols, with a confidence level of $\underline{68.4\%}$
one obtains a value between $0.9 \cdot 10^{-3}$ and $1.1 \cdot 10^{-3}$, if $p_{\rm B} = 10^{-3}$.
(6) From the relation $p_{\varepsilon}=\rm 1-\rm 2\cdot {\rm Q}(\alpha) = 0.95$ it follows directly:
- $$\alpha_{\rm min}=\rm Q^{\rm -1}\Big(\frac{\rm 1-\it p_{\varepsilon}}{\rm 2}\Big)=\rm Q^{\rm -1}(\rm 0.025)\hspace{0.15cm}\underline{=\rm 1.96}\hspace{0.15cm}{\approx\rm 2}.$$
(7) It must $\alpha = \varepsilon/\sigma_{h{\rm B}}$. With the result of the subtask (2) then follows:
- $$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.$$