Difference between revisions of "Aufgaben:Exercise 4.4: Two-dimensional Gaussian PDF"

From LNTwww
 
(5 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID261__Sto_A_4_4_neu.png|right|frame|table: Gaussian error functions]]
+
[[File:P_ID261__Sto_A_4_4_neu.png|right|frame|Table:  Gaussian error functions]]
We consider two-dimensional random variables, where both components are always assumed to be mean-free.  
+
We consider two-dimensional random variables,  where both components are always assumed to be mean-free.  
*The 2D PDF of the random variable  $(u, v)$  is:
+
*The  »two-dimensional probability density function«  of the random variable  $(u, v)$  is:
 
:$$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
 
:$$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
  
*The following parameters are known from the 2D random variable $(x, y)$  which is also Gaussian:
+
*For another Gaussian two-dimensional random variable  $(x, y)$  the following parameters are known:
 
:$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$
 
:$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$
The values of the Gaussian error integral  ${\rm \phi}(x)$  and the complementary function  ${\rm Q}(x) = 1- {\rm \phi}(x)$  can be found in the adjacent table.
+
*In the adjacent table can be found
 
+
#the values of the  »Gaussian cumulative distribution function«  ${\rm \phi}(x)$  and  
 
+
#the  »complementary function«  ${\rm Q}(x) = 1- {\rm \phi}(x)$.
 
 
 
 
  
  
Line 21: Line 19:
  
 
Hints:
 
Hints:
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|Two-dimensional Gaussian Random Variables]].
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|»Two-dimensional Gaussian Random Variables«]].
*Reference is also made to the chapter  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|Gaussian distributed random variables]]
 
  
*More information on this topic is provided in the learning video  [[Gaußsche_2D-Zufallsgrößen_(Lernvideo)|Gaussian 2D random variables]]:
+
*Reference is also made to the chapter  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|»Gaussian distributed random variables«]].  
::Part 1:   Gaussian random variables without statistical bindings, 
 
::Part 2:   Gaussian random variables with statistical bindings.  
 
 
   
 
   
  
Line 34: Line 29:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Which of the statements are true with respect to 2D random variable&nbsp; $(u, v)$&nbsp;?
+
{Which of the statements are true with respect to the two-dimensional random variable&nbsp; $(u, v)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
+ The random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are uncorrelated.
 
+ The random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are uncorrelated.
Line 45: Line 40:
  
  
{Calculate the probability that&nbsp; $u$&nbsp; is less than&nbsp; $1$&nbsp;.
+
{Calculate the probability that&nbsp; $u$&nbsp; is less than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(u < 1)\ = \ $ { 0.9772 3% }
 
${\rm Pr}(u < 1)\ = \ $ { 0.9772 3% }
  
  
{Calculate the probability that the random variable&nbsp; $u$&nbsp; is less than&nbsp; $1$&nbsp; and at the same time the random variable&nbsp; $v$&nbsp; is greater than&nbsp; $1$&nbsp; .
+
{Calculate the probability that the random variable&nbsp; $u$&nbsp; is less than&nbsp; $1$&nbsp; and at the same time the random variable&nbsp; $v$&nbsp; is greater than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $ { 0.1551 3% }
 
${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $ { 0.1551 3% }
  
  
{Which of the statements are true for the 2D&ndash;random variable&nbsp; $(x, y)$&nbsp;?
+
{Which of the statements are true for the two-dimensional random variable&nbsp; $(x, y)$?
 
|type="[]"}
 
|type="[]"}
+ The 2D PDF $f_{xy}(x, y)$&nbsp; is always zero outside the straight line&nbsp; $y = 2x$&nbsp;.
+
+ The joint probability density function&nbsp; $f_{xy}(x, y)$&nbsp; is always zero outside the straight line&nbsp; $y = 2x$.
- For all pairs of values on the straight line $y = 2x$&nbsp; $f_{xy}(x, y)= 0.5$.
+
- For all pairs of values on the straight line&nbsp; $y = 2x$&nbsp; holds: &nbsp;$f_{xy}(x, y)= 0.5$.
+ With respect to the edge PDF, $f_{x}(x) = f_{u}(u)$&nbsp; and $f_{y}(y) = f_{v}(v)$ holds.
+
+ With respect to the edge PDFs:&nbsp; $f_{x}(x) = f_{u}(u)$&nbsp; and $f_{y}(y) = f_{v}(v)$ holds.
  
  
{Calculate the probability that&nbsp; $x$&nbsp; is less than&nbsp; $1$&nbsp;.
+
{Calculate the probability that&nbsp; $x$&nbsp; is less than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(x < 1)\ = \ $ { 0.9772 3% }
 
${\rm Pr}(x < 1)\ = \ $ { 0.9772 3% }
  
  
{Now calculate the probability that the random variable&nbsp; $x$&nbsp; is smaller than&nbsp; $1$&nbsp; and at the same time the random variable&nbsp; $y$&nbsp; is larger than&nbsp; $1$&nbsp; .
+
{Now calculate the probability that the random variable&nbsp; $x$&nbsp; is less than&nbsp; $1$&nbsp; and at the same time the random variable&nbsp; $y$&nbsp; is greater than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $ { 0.1359 3% }
 
${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $ { 0.1359 3% }
Line 78: Line 73:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; <u>Both statements are true</u>:  
 
'''(1)'''&nbsp; <u>Both statements are true</u>:  
*Comparing the given 2D PDF with the general 2D PDF.
+
*Comparing the given 2D&ndash;PDF with the general 2D&ndash;PDF
$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
+
:$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
  
:so it can be seen that no term with&nbsp; $u \cdot v$&nbsp; occurs in the exponent, which is only possible with&nbsp; $\rho_{uv} = 0$&nbsp; m&ouml;gible.  
+
:so it can be seen that no term with&nbsp; $u \cdot v$&nbsp; occurs in the exponent,&nbsp; which is only possible with&nbsp; $\rho_{uv} = 0$.  
 
*But this means that&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are uncorrelated.  
 
*But this means that&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are uncorrelated.  
*For Gaussian random variables, however, statistical independence always follows from uncorrelatedness.
+
*For Gaussian random variables,&nbsp; however,&nbsp; statistical independence always follows from uncorrelatedness.
  
  
  
 
'''(2)'''&nbsp; With statistical independence holds:
 
'''(2)'''&nbsp; With statistical independence holds:
:$$f_{uv}(u, v) = f_u(u)\cdot f_v(v), \hspace{0.5cm}
+
:$$f_{uv}(u, v) = f_u(u)\cdot f_v(v) $$
f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , \hspace{0.5cm} \it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
+
:$$f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , $$
 +
:$$\it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
  
*By comparing coefficients, we get&nbsp; $\sigma_u = 0.5$&nbsp; and&nbsp; $\sigma_v = 1$.  
+
*By comparing coefficients,&nbsp; we get&nbsp; $\sigma_u = 0.5$&nbsp; and&nbsp; $\sigma_v = 1$.  
 
*The quotient is thus&nbsp; $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.
 
*The quotient is thus&nbsp; $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.
  
  
  
[[File:P_ID265__Sto_A_4_4_d.png|right|frame|Probability: &nbsp; $\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$]]
+
'''(3)'''&nbsp; Because&nbsp; $u$&nbsp; is a continuous random variable:
'''(3)'''&nbsp; Since&nbsp; $u$&nbsp; is a continuous random variable, holds:
 
 
:$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
 
:$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
  
Line 104: Line 99:
  
  
 
+
[[File:P_ID265__Sto_A_4_4_d.png|right|frame|$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$]]
 
'''(4)'''&nbsp; Due to the statistical independence between&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; holds:
 
'''(4)'''&nbsp; Due to the statistical independence between&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; holds:
 
:$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
 
:$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
Line 113: Line 108:
 
:$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$
 
:$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$
  
The sketch illustrates the given constellation:  
+
The sketch on the right illustrates the given constellation:  
*The PDF (blue) height lines are stretched ellipses due to&nbsp; $\sigma_v > \sigma_u$&nbsp; in vertical direction.  
+
*The PDF contour lines&nbsp; (blue)&nbsp; are stretched ellipses due to&nbsp; $\sigma_v > \sigma_u$&nbsp; in vertical direction.  
*Drawn in red shading is the area whose probability should be calculated in this subtask.
+
*Drawn in red&nbsp; (shading)&nbsp; is the area whose probability should be calculated in this subtask.
  
  
  
[[File:P_ID266__Sto_A_4_4_e.png|right|frame|2D Dirac "wall" on the correlation line]]
+
[[File:P_ID266__Sto_A_4_4_e.png|right|frame|"Dirac wall"&nbsp; on the correlation line]]
'''(5)'''&nbsp; Correct are <u>the first and the third suggested solutions</u>:
+
'''(5)'''&nbsp; Correct are&nbsp; <u>the first and the third suggested solutions</u>:
 
*Because&nbsp; $\rho_{xy} = 1$&nbsp; there is a deterministic correlation between&nbsp; $x$&nbsp; and&nbsp; $y$  
 
*Because&nbsp; $\rho_{xy} = 1$&nbsp; there is a deterministic correlation between&nbsp; $x$&nbsp; and&nbsp; $y$  
:&#8658; &nbsp; All values lie on the straight line&nbsp; $y =K(x) \cdot x$.  
+
:&#8658; &nbsp; All values lie on the straight line&nbsp; $y =K \cdot x$.  
 
*Because of the standard deviations&nbsp; $\sigma_x = 0.5$&nbsp; and&nbsp; $\sigma_y = 1$&nbsp; it holds&nbsp; $K = 2$.
 
*Because of the standard deviations&nbsp; $\sigma_x = 0.5$&nbsp; and&nbsp; $\sigma_y = 1$&nbsp; it holds&nbsp; $K = 2$.
*On this straight line&nbsp; $y = 2x$&nbsp; all PDF values are infinitely large.  
+
*On this straight line&nbsp; $y = 2x$ &nbsp; &rArr; &nbsp; all PDF values are infinitely large.  
*This means: &nbsp; The 2D PDF is here a "Dirac wall".
+
*This means: &nbsp; The joint PDF is here a&nbsp; "Dirac wall".
*As you can see from the sketch, the PDF values are distributed evenly on the straight line $y = 2x$&nbsp.
+
*As you can see from the sketch,&nbsp; the PDF values are Gaussian distributed on the straight line $y = 2x$.
*The straight line&nbsp; $y = 2x$&nbsp; also represents the correlation line. 
+
*The two marginal probability densities are also Gaussian functions,&nbsp; each with zero mean.  
*The two marginal probability densities are also Gaussian functions, each with zero mean.  
+
*Because of&nbsp; $\sigma_x = \sigma_u$&nbsp; and&nbsp; $\sigma_y = \sigma_v$&nbsp; also holds:
*Because&nbsp; $\sigma_x = \sigma_u$&nbsp; and&nbsp; $\sigma_y = \sigma_v$&nbsp; also holds:
 
 
:$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$
 
:$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$
  
  
 
[[File:P_ID274__Sto_A_4_4_g.png|right|frame|Probability calculation for the Dirac wall]]
 
[[File:P_ID274__Sto_A_4_4_g.png|right|frame|Probability calculation for the Dirac wall]]
'''(6)'''&nbsp; Since the PDF of the random variable is&ouml;&aerospace;e&nbsp; $x$&nbsp; identical to the PDF&nbsp; $f_u(u)$, it also results in exactly the same probability as calculated in the subtask&nbsp; '''(3)'''&nbsp; :
+
'''(6)'''&nbsp; Since the PDF of the random variable&nbsp; $x$&nbsp; is identical to the PDF&nbsp; $f_u(u)$,&nbsp; it also results in exactly the same probability as calculated in the subtask&nbsp; '''(3)''':
 
:$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$
 
:$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$
  
Line 141: Line 135:
 
'''(7)'''&nbsp; The random event&nbsp; $y > 1$&nbsp; is identical to the event&nbsp; $x > 0.5$.&nbsp;  
 
'''(7)'''&nbsp; The random event&nbsp; $y > 1$&nbsp; is identical to the event&nbsp; $x > 0.5$.&nbsp;  
 
*Thus, the wanted probability is equal to:
 
*Thus, the wanted probability is equal to:
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \it F_x \rm( 1) - \it F_x\rm (0.5).  $$
+
:$${\rm Pr}\big[(x < 1) ∩ (y > 1)\big] = \rm Pr \big[ (\it x < \rm 1)\cap (\it x > \rm 0.5) \big] = \it F_x \rm( 1) - \it F_x\rm (0.5).  $$
  
*With the standard deviation&nbsp; $\sigma_x = 0.5$&nbsp; follows further:
+
*With the standard deviation&nbsp; $\sigma_x = 0.5$&nbsp; it follows further:
 
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$
 
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 17:37, 9 January 2024

Table:  Gaussian error functions

We consider two-dimensional random variables,  where both components are always assumed to be mean-free.

  • The  »two-dimensional probability density function«  of the random variable  $(u, v)$  is:
$$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
  • For another Gaussian two-dimensional random variable  $(x, y)$  the following parameters are known:
$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$
  • In the adjacent table can be found
  1. the values of the  »Gaussian cumulative distribution function«  ${\rm \phi}(x)$  and
  2. the  »complementary function«  ${\rm Q}(x) = 1- {\rm \phi}(x)$.



Hints:



Questions

1

Which of the statements are true with respect to the two-dimensional random variable  $(u, v)$ ?

The random variables  $u$  and  $v$  are uncorrelated.
The random variables  $u$  and  $v$  are statistically independent.

2

Calculate the two standard deviations  $\sigma_u$  and  $\sigma_v$.  Enter the quotient of the two standard deviations as a check.

$\sigma_u/\sigma_v \ = \ $

3

Calculate the probability that  $u$  is less than  $1$.

${\rm Pr}(u < 1)\ = \ $

4

Calculate the probability that the random variable  $u$  is less than  $1$  and at the same time the random variable  $v$  is greater than  $1$.

${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $

5

Which of the statements are true for the two-dimensional random variable  $(x, y)$?

The joint probability density function  $f_{xy}(x, y)$  is always zero outside the straight line  $y = 2x$.
For all pairs of values on the straight line  $y = 2x$  holds:  $f_{xy}(x, y)= 0.5$.
With respect to the edge PDFs:  $f_{x}(x) = f_{u}(u)$  and $f_{y}(y) = f_{v}(v)$ holds.

6

Calculate the probability that  $x$  is less than  $1$.

${\rm Pr}(x < 1)\ = \ $

7

Now calculate the probability that the random variable  $x$  is less than  $1$  and at the same time the random variable  $y$  is greater than  $1$.

${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $


Solution

(1)  Both statements are true:

  • Comparing the given 2D–PDF with the general 2D–PDF
$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
so it can be seen that no term with  $u \cdot v$  occurs in the exponent,  which is only possible with  $\rho_{uv} = 0$.
  • But this means that  $u$  and  $v$  are uncorrelated.
  • For Gaussian random variables,  however,  statistical independence always follows from uncorrelatedness.


(2)  With statistical independence holds:

$$f_{uv}(u, v) = f_u(u)\cdot f_v(v) $$
$$f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , $$
$$\it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
  • By comparing coefficients,  we get  $\sigma_u = 0.5$  and  $\sigma_v = 1$.
  • The quotient is thus  $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.


(3)  Because  $u$  is a continuous random variable:

$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
  • With the mean  $m_u = 0$  and the standard deviation  $\sigma_u = 0.5$  we get:
$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$


$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$

(4)  Due to the statistical independence between  $u$  and  $v$  holds:

$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
  • The probability  ${\rm Pr}(u < 1) =0.9772$  has already been calculated.
  • For the second probability  ${\rm Pr}(v > 1)$  holds for reasons of symmetry:
$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$

The sketch on the right illustrates the given constellation:

  • The PDF contour lines  (blue)  are stretched ellipses due to  $\sigma_v > \sigma_u$  in vertical direction.
  • Drawn in red  (shading)  is the area whose probability should be calculated in this subtask.


"Dirac wall"  on the correlation line

(5)  Correct are  the first and the third suggested solutions:

  • Because  $\rho_{xy} = 1$  there is a deterministic correlation between  $x$  and  $y$
⇒   All values lie on the straight line  $y =K \cdot x$.
  • Because of the standard deviations  $\sigma_x = 0.5$  and  $\sigma_y = 1$  it holds  $K = 2$.
  • On this straight line  $y = 2x$   ⇒   all PDF values are infinitely large.
  • This means:   The joint PDF is here a  "Dirac wall".
  • As you can see from the sketch,  the PDF values are Gaussian distributed on the straight line $y = 2x$.
  • The two marginal probability densities are also Gaussian functions,  each with zero mean.
  • Because of  $\sigma_x = \sigma_u$  and  $\sigma_y = \sigma_v$  also holds:
$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$


Probability calculation for the Dirac wall

(6)  Since the PDF of the random variable  $x$  is identical to the PDF  $f_u(u)$,  it also results in exactly the same probability as calculated in the subtask  (3):

$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$


(7)  The random event  $y > 1$  is identical to the event  $x > 0.5$. 

  • Thus, the wanted probability is equal to:
$${\rm Pr}\big[(x < 1) ∩ (y > 1)\big] = \rm Pr \big[ (\it x < \rm 1)\cap (\it x > \rm 0.5) \big] = \it F_x \rm( 1) - \it F_x\rm (0.5). $$
  • With the standard deviation  $\sigma_x = 0.5$  it follows further:
$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$