Difference between revisions of "Aufgaben:Exercise 5.9: Minimization of the MSE"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
 
[[File:P_ID652__Sto_A_5_9.png|right|frame|Power-spectral densities <br>with the Wiener filter ]]
 
[[File:P_ID652__Sto_A_5_9.png|right|frame|Power-spectral densities <br>with the Wiener filter ]]
Given a stochastic useful signal&nbsp; $s(t)$ of which only the power-spectral density (PSD) is known:
+
Given a stochastic signal&nbsp; $s(t)$ of which only the power-spectral density&nbsp; $\rm (PSD)$&nbsp; is known:
 
:$${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$
 
:$${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$
 
This power-spectral density&nbsp; ${\it \Phi} _s (f)$&nbsp; is shown in blue in the accompanying diagram.
 
This power-spectral density&nbsp; ${\it \Phi} _s (f)$&nbsp; is shown in blue in the accompanying diagram.
Line 10: Line 10:
 
*The average power of&nbsp; $s(t)$&nbsp; is obtained by integration over the power-spectral density:
 
*The average power of&nbsp; $s(t)$&nbsp; is obtained by integration over the power-spectral density:
 
:$$P_s  = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0  \cdot f_0  \cdot {\rm{\pi }}.$$
 
:$$P_s  = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0  \cdot f_0  \cdot {\rm{\pi }}.$$
*Additively superimposed on the useful signal&nbsp; $s(t)$&nbsp; is white noise&nbsp; $n(t)$&nbsp; with noise power density&nbsp; ${\it \Phi}_n(f) = N_0/2.$  
+
*Additively superimposed on this signal&nbsp; $s(t)$&nbsp; is white noise&nbsp; $n(t)$&nbsp; with noise power density&nbsp; ${\it \Phi}_n(f) = N_0/2.$  
*As an abbreviation, we use&nbsp; $Q = 2 \cdot {\it \Phi}_0/N_0$, where&nbsp; $Q$&nbsp; could be interpreted as "quality".
+
*As an abbreviation,&nbsp; we use&nbsp; $Q = 2 \cdot {\it \Phi}_0/N_0$,&nbsp; where&nbsp; $Q$&nbsp; could be interpreted as&nbsp; "quality".
 
*Note that&nbsp; $Q$&nbsp; does not represent a signal&ndash;to&ndash;noise power ratio.
 
*Note that&nbsp; $Q$&nbsp; does not represent a signal&ndash;to&ndash;noise power ratio.
  
  
In this exercise, we want to determine the frequency response&nbsp; $H(f)$&nbsp; of a filter that minimizes the mean square error&nbsp; $\rm (MSE)$&nbsp; between the useful signal&nbsp; $s(t)$&nbsp; and the filter output signal&nbsp; $d(t)$:&nbsp;
+
In this exercise,&nbsp; we want to determine the frequency response&nbsp; $H(f)$&nbsp; of a filter that minimizes the mean square error&nbsp; $\rm (MSE)$&nbsp; between the useful signal&nbsp; $s(t)$&nbsp; and the filter output signal&nbsp; $d(t)$:&nbsp;
 
:$${\rm{MSE}} = \mathop {\lim }\limits_{T_{\rm M}  \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$
 
:$${\rm{MSE}} = \mathop {\lim }\limits_{T_{\rm M}  \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$
  
Line 21: Line 21:
  
  
 
+
Notes:  
 
 
 
 
''Notes:''
 
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Wiener–Kolmogorow–Filter|Wiener–Kolmogorow Filter]].
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Wiener–Kolmogorow–Filter|Wiener–Kolmogorow Filter]].
+
*For the optimal frequency response,&nbsp; according to Wiener and Kolmogorov,&nbsp; the following applies in general:
 +
:$$H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
 
*The following indefinite integral is given for solving:
 
*The following indefinite integral is given for solving:
 
:$$\int {\frac{1}{a^2  + x^2 }} \, {\rm{d}}x ={1}/{a} \cdot \arctan \left( {{x}/{a}} \right).$$
 
:$$\int {\frac{1}{a^2  + x^2 }} \, {\rm{d}}x ={1}/{a} \cdot \arctan \left( {{x}/{a}} \right).$$
Line 38: Line 36:
 
{Which of the following statements are true?
 
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- $H(f)$&nbsp; is a Gaussian low pass.
+
- $H(f)$&nbsp; is a Gaussian low-pass.
 
- $H(f)$&nbsp; represents a matched filter.
 
- $H(f)$&nbsp; represents a matched filter.
 
+ $H(f)$&nbsp; represents a Wiener&ndash;Kolmogorov filter.
 
+ $H(f)$&nbsp; represents a Wiener&ndash;Kolmogorov filter.
  
  
{Determine the frequency response&nbsp; $H(f)$&nbsp; of the optimum filter for this purpose.&nbsp; What values result with&nbsp; $Q = 3$&nbsp; at&nbsp; $f = 0$&nbsp; and&nbsp; $f = 2f_0$?
+
{Determine the frequency response&nbsp; $H(f)=H_{\rm WF} (f)$&nbsp; of the optimum filter for this purpose.&nbsp; <br>What values result with&nbsp; $Q = 3$&nbsp; at&nbsp; $f = 0$&nbsp; and&nbsp; $f = 2f_0$?
 
|type="{}"}
 
|type="{}"}
 
$H(f = 0) \ = \ $ { 0.75 3% }
 
$H(f = 0) \ = \ $ { 0.75 3% }
Line 49: Line 47:
  
  
{Let&nbsp; $Q = 3$.&nbsp; Calculate the mean square error&nbsp; $(\rm MSE)$&nbsp; with respect to&nbsp; $P_s$&nbsp; or the best possible filter.
+
{Let&nbsp; $Q = 3$.&nbsp; Calculate the mean square error&nbsp; $(\rm MSE)$&nbsp; with respect to&nbsp; $P_s$&nbsp; of the best possible filter.
 
|type="{}"}
 
|type="{}"}
 
${\rm MSE}/P_s \ =  \ $ { 0.5 3% }
 
${\rm MSE}/P_s \ =  \ $ { 0.5 3% }
  
  
{How large must the "quality factor"&nbsp; $Q$&nbsp; be chosen at least, so that for the quotient the value&nbsp; ${\rm MSE}/P_s = 0.1$&nbsp; can be reached?
+
{How must the&nbsp; "quality factor"&nbsp; $Q$&nbsp; be chosen at least,&nbsp; so that for the quotient the value&nbsp; ${\rm MSE}/P_s = 0.1$&nbsp; can be reached?
 
|type="{}"}
 
|type="{}"}
 
$Q_\text{min} \ =  \ $ { 99 3% }
 
$Q_\text{min} \ =  \ $ { 99 3% }
Line 70: Line 68:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Only the last solution</u> is correct:  
+
'''(1)'''&nbsp; <u>Only the last solution</u>&nbsp; is correct:  
*The task &nbsp; &rArr; &nbsp; "Minimization of the mean square error" already points to the&ndash;Kolmogorow filter.
+
*The task&nbsp; "Minimization of the mean square error"&nbsp; already points to the Wiener&ndash;Kolmogorow filter.
*The matched filter, on the other hand, is used to concentrate the signal energy and thereby maximize the S/N ratio for a given time.
+
*The matched filter,&nbsp; on the other hand,&nbsp; is used to concentrate the signal energy and thereby maximize the S/N ratio for a given time.
  
  
  
'''(2)'''&nbsp; For the optimal frequency response, according to Wiener and Kolmogorov, the following applies in general:
+
'''(2)'''&nbsp; For the optimal frequency response,&nbsp; according to Wiener and Kolmogorov,&nbsp; the following applies in general:
 
:$$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
 
:$$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
  
*With the given power-spectral density, it is also possible to write for this:
+
*With the given power-spectral density,&nbsp; it is also possible to write for this:
 
:$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
 
:$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
  
Line 88: Line 86:
  
  
'''(3)'''&nbsp; For the filter calculated in subtask&nbsp; '''(2)''',&nbsp; taking symmetry into account, the following holds:
+
'''(3)'''&nbsp; For the filter calculated in subtask&nbsp; '''(2)''',&nbsp; taking symmetry into account,&nbsp; the following holds:
 
:$${\rm{MSE = }}\int_{-\infty}^{+\infty}  H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty}  \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
 
:$${\rm{MSE = }}\int_{-\infty}^{+\infty}  H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty}  \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
  
*For this, with &nbsp;$Q = 2 \cdot {\it \Phi}_0/N_0$&nbsp; and &nbsp;$a^2 = Q + 1$,&nbsp; we can also write:<br />
+
*For this,&nbsp; with &nbsp;$Q = 2 \cdot {\it \Phi}_0/N_0$&nbsp; and &nbsp;$a^2 = Q + 1$,&nbsp; we can also write:<br />
 
:$${\rm{MSE = }}\int_0^\infty  {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0  \cdot f_0 \int_0^\infty  {\frac{1}{a^2  + x^2 }}\,\, {\rm{d}}x.$$
 
:$${\rm{MSE = }}\int_0^\infty  {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0  \cdot f_0 \int_0^\infty  {\frac{1}{a^2  + x^2 }}\,\, {\rm{d}}x.$$
  
*With the integral given, this leads to the result:
+
*This leads to the result with the integral given:
 
:$${\rm{MSE}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty  ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
 
:$${\rm{MSE}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty  ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
  
*Normalizing MSE to the useful power&nbsp; $P_s$, we obtain for&nbsp; $Q=3$:
+
*Normalizing MSE to the power&nbsp; $P_s$&nbsp; of the&nbsp; signal $s(t)$,&nbsp; we obtain for&nbsp; $Q=3$:
 
:$$\frac{\rm{MSE}}{P_s}  = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$
 
:$$\frac{\rm{MSE}}{P_s}  = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$
  
Line 103: Line 101:
  
 
'''(4)'''&nbsp; From the calculation in subtask&nbsp; '''(3)''',&nbsp; the condition&nbsp; $Q \ge 99$ &nbsp; &#8658; &nbsp; $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$ follows directly for&nbsp; ${\rm MSE}/P_s \ge 0.1.$  
 
'''(4)'''&nbsp; From the calculation in subtask&nbsp; '''(3)''',&nbsp; the condition&nbsp; $Q \ge 99$ &nbsp; &#8658; &nbsp; $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$ follows directly for&nbsp; ${\rm MSE}/P_s \ge 0.1.$  
*The larger&nbsp; $Q$&nbsp; is, the smaller the mean square error becomes.
+
*The larger&nbsp; $Q$,&nbsp; the smaller the mean square error becomes.
  
  
  
  
'''(5)'''&nbsp; <u>Only the second solution</u> is correct:
+
'''(5)'''&nbsp; <u>Only the second solution</u>&nbsp; is correct:
 
*A frequency response of the same shape as the Wiener&ndash;Kolmogorov filter &nbsp; &#8658; &nbsp; $H(f) = K \cdot H_{\rm WF}(f)$&nbsp; with&nbsp; $K \ne 1$&nbsp; always leads to large distortions.
 
*A frequency response of the same shape as the Wiener&ndash;Kolmogorov filter &nbsp; &#8658; &nbsp; $H(f) = K \cdot H_{\rm WF}(f)$&nbsp; with&nbsp; $K \ne 1$&nbsp; always leads to large distortions.
*This can be illustrated, for example, by the noise-free case&nbsp; $(Q \to \infty)$.&nbsp; In this case,&nbsp; $d(t) = K \cdot s(t)$&nbsp; and the optimization task would be extremely poorly solved despite good conditions.
+
*This can be illustrated by the noise-free case&nbsp; $(Q \to \infty)$:&nbsp; $d(t) = K \cdot s(t)$&nbsp; and the optimization task would be extremely poorly solved despite good conditions.
*From the equation
+
*One might incorrectly conclude from the equation
 +
[[File:P_ID651__Sto_A_5_9_e.png|right|frame|Power-spectral density with the <br>Wiener&ndash;Kolmogorov filter]]
 +
 
 
:$${\rm{MSE}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)}  \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
 
:$${\rm{MSE}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)}  \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
:one might incorrectly conclude that a filter&nbsp; $H(f) = 2 \cdot H_{\rm WF}(f)$&nbsp; only doubles the mean squared error.
+
:that a filter&nbsp; $H(f) = 2 \cdot H_{\rm WF}(f)$&nbsp; only doubles the mean squared error.
*However, this is not the case, since&nbsp; $H(f)$&nbsp; is then no longer a Wiener filter and the above equation is also no longer applicable.
+
*However,&nbsp;  this is not the case,&nbsp; since&nbsp; $H(f)$&nbsp; is then no longer a Wiener filter and the above equation is no longer applicable.
  
  
[[File:P_ID651__Sto_A_5_9_e.png|right|frame|Power-spectral density with the Wiener filter]]
+
The second statement is true,&nbsp; as can be seen from the accompanying diagram.  
The second statement is true, as can be seen from the accompanying diagram.  
+
*The dots mark the frequency response&nbsp; $H_{\rm WF}(f)$&nbsp; of the filter for&nbsp; $Q = 3$&nbsp; and for&nbsp; $Q = 10$, resp.  
*The dots mark the frequency response&nbsp; $H_{\rm WF}(f))$&nbsp; of the Wiener&ndash;Kolmogorow filter for&nbsp; $Q = 3$&nbsp; and for&nbsp; $Q = 10$, respectively.  
 
 
*For larger&nbsp; $Q (= 10)$,&nbsp; high components are attenuated less than for lower&nbsp; $Q (= 3)$.  
 
*For larger&nbsp; $Q (= 10)$,&nbsp; high components are attenuated less than for lower&nbsp; $Q (= 3)$.  
*Therefore, in the case of&nbsp; $Q = 10$,&nbsp; the filter output signal also contains more higher frequency components, which are due to the noise&nbsp;  $n(t)$.&nbsp;  
+
*Therefore,&nbsp; in the case of&nbsp; $Q = 10$,&nbsp; the filter output signal contains more higher frequency components,&nbsp; which are due to the noise&nbsp;  $n(t)$.&nbsp;  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 15:35, 23 February 2022

Power-spectral densities
with the Wiener filter

Given a stochastic signal  $s(t)$ of which only the power-spectral density  $\rm (PSD)$  is known:

$${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$

This power-spectral density  ${\it \Phi} _s (f)$  is shown in blue in the accompanying diagram.

  • The average power of  $s(t)$  is obtained by integration over the power-spectral density:
$$P_s = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0 \cdot f_0 \cdot {\rm{\pi }}.$$
  • Additively superimposed on this signal  $s(t)$  is white noise  $n(t)$  with noise power density  ${\it \Phi}_n(f) = N_0/2.$
  • As an abbreviation,  we use  $Q = 2 \cdot {\it \Phi}_0/N_0$,  where  $Q$  could be interpreted as  "quality".
  • Note that  $Q$  does not represent a signal–to–noise power ratio.


In this exercise,  we want to determine the frequency response  $H(f)$  of a filter that minimizes the mean square error  $\rm (MSE)$  between the useful signal  $s(t)$  and the filter output signal  $d(t)$: 

$${\rm{MSE}} = \mathop {\lim }\limits_{T_{\rm M} \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$



Notes:

  • The exercise belongs to the chapter  Wiener–Kolmogorow Filter.
  • For the optimal frequency response,  according to Wiener and Kolmogorov,  the following applies in general:
$$H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
  • The following indefinite integral is given for solving:
$$\int {\frac{1}{a^2 + x^2 }} \, {\rm{d}}x ={1}/{a} \cdot \arctan \left( {{x}/{a}} \right).$$



Questions

1

Which of the following statements are true?

$H(f)$  is a Gaussian low-pass.
$H(f)$  represents a matched filter.
$H(f)$  represents a Wiener–Kolmogorov filter.

2

Determine the frequency response  $H(f)=H_{\rm WF} (f)$  of the optimum filter for this purpose. 
What values result with  $Q = 3$  at  $f = 0$  and  $f = 2f_0$?

$H(f = 0) \ = \ $

$H(f = 2f_0)\ = \ $

3

Let  $Q = 3$.  Calculate the mean square error  $(\rm MSE)$  with respect to  $P_s$  of the best possible filter.

${\rm MSE}/P_s \ = \ $

4

How must the  "quality factor"  $Q$  be chosen at least,  so that for the quotient the value  ${\rm MSE}/P_s = 0.1$  can be reached?

$Q_\text{min} \ = \ $

5

Which of the following statements are true?

A filter of the same shape  $H(f) = K \cdot H_{\rm WF}(f)$  leads to the same result.
The output signal  $d(t)$  contains more higher frequency components when  $Q$  is larger.


Solution

(1)  Only the last solution  is correct:

  • The task  "Minimization of the mean square error"  already points to the Wiener–Kolmogorow filter.
  • The matched filter,  on the other hand,  is used to concentrate the signal energy and thereby maximize the S/N ratio for a given time.


(2)  For the optimal frequency response,  according to Wiener and Kolmogorov,  the following applies in general:

$$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
  • With the given power-spectral density,  it is also possible to write for this:
$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
  • With  $Q = 3$  it follows:
$$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1} \hspace{0.15cm}\underline {= 0.75},$$
$$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5} \hspace{0.15cm}\underline {= 0.375}.$$


(3)  For the filter calculated in subtask  (2),  taking symmetry into account,  the following holds:

$${\rm{MSE = }}\int_{-\infty}^{+\infty} H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty} \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
  • For this,  with  $Q = 2 \cdot {\it \Phi}_0/N_0$  and  $a^2 = Q + 1$,  we can also write:
$${\rm{MSE = }}\int_0^\infty {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0 \cdot f_0 \int_0^\infty {\frac{1}{a^2 + x^2 }}\,\, {\rm{d}}x.$$
  • This leads to the result with the integral given:
$${\rm{MSE}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
  • Normalizing MSE to the power  $P_s$  of the  signal $s(t)$,  we obtain for  $Q=3$:
$$\frac{\rm{MSE}}{P_s} = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$


(4)  From the calculation in subtask  (3),  the condition  $Q \ge 99$   ⇒   $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$ follows directly for  ${\rm MSE}/P_s \ge 0.1.$

  • The larger  $Q$,  the smaller the mean square error becomes.



(5)  Only the second solution  is correct:

  • A frequency response of the same shape as the Wiener–Kolmogorov filter   ⇒   $H(f) = K \cdot H_{\rm WF}(f)$  with  $K \ne 1$  always leads to large distortions.
  • This can be illustrated by the noise-free case  $(Q \to \infty)$:  $d(t) = K \cdot s(t)$  and the optimization task would be extremely poorly solved despite good conditions.
  • One might incorrectly conclude from the equation
Power-spectral density with the
Wiener–Kolmogorov filter
$${\rm{MSE}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)} \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
that a filter  $H(f) = 2 \cdot H_{\rm WF}(f)$  only doubles the mean squared error.
  • However,  this is not the case,  since  $H(f)$  is then no longer a Wiener filter and the above equation is no longer applicable.


The second statement is true,  as can be seen from the accompanying diagram.

  • The dots mark the frequency response  $H_{\rm WF}(f)$  of the filter for  $Q = 3$  and for  $Q = 10$, resp.
  • For larger  $Q (= 10)$,  high components are attenuated less than for lower  $Q (= 3)$.
  • Therefore,  in the case of  $Q = 10$,  the filter output signal contains more higher frequency components,  which are due to the noise  $n(t)$.