Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.1: Gaussian ACF and Gaussian Low-Pass"

From LNTwww
m (Text replacement - "rms value" to "standard deviation")
 
Line 33: Line 33:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What is the rms value of the filter input signal?
+
{What is the standard deviation of the filter input signal?
 
|type="{}"}
 
|type="{}"}
 
σx =  { 0.2 3% }  V
 
σx =  { 0.2 3% }  V

Latest revision as of 13:11, 17 February 2022

Gaussian ACF at the filter input and output

At the input of a low-pass filter with frequency response  H(f),  there is a Gaussian distributed mean-free noise signal  x(t)  with the following auto-correlation function  (ACF):

φx(τ)=σ2xeπ(τ/τx)2.

This ACF is shown in the accompanying diagram above.

Let the filter be Gaussian with the DC gain  H0  and the equivalent bandwidth  Δf.  Thus,  for the frequency response,  it can be written:

H(f)=H0eπ(f/Δf)2.

In the course of this task,  the two filter parameters  H0  and  Δf  are to be dimensioned so that the output signal  y(t)  has an ACF corresponding to the diagram below.



Notes:

  • Consider the following Fourier correspondence:
eπ(f/Δf)2Δfeπ(Δft)2.


Questions

1

What is the standard deviation of the filter input signal?

σx = 

 V

2

From the sketched ACF,  also determine the equivalent ACF duration  τx  of the input signal.  How can this be determined in general?

τx = 

\ \rm µ s

3

What is the power-spectral density  {\it Φ}_x(f)  of the input signal?  What is the PSD value at  f= 0?

{\it Φ}_x(f=0) \ = \

\ \cdot 10^{-9}\ \rm V^2/Hz

4

Calculate the PSD  {\it Φ}_y(f)  at the filter output in general as a function of  \sigma_x\nabla \tau_xH_0  and  \Delta f.  Which statements are true?

The PSD  {\it Φ}_y(f)  is also Gaussian.
The smaller  \Delta f  is,  the wider  {\it Φ}_y(f).
H_0  only affects the height,  but not the width of  {\it Φ}_y(f).

5

How large must the equivalent filter bandwidth  \Delta f  be chosen so that  \nabla \tau_y = 3 \ \rm µ s  holds for the equivalent ACF duration?

\Delta f \ = \

\ \rm MHz

6

How large must one select the DC signal transfer factor  H_0  so that the condition  \sigma_y = \sigma_x  is fulfilled?

H_0 \ = \


Solution

(1)  The variance is equal to the ACF value at  \tau = 0,  so  \sigma_x^2 = 0.04 \ \rm V^2.

  • From this follows  \sigma_x\hspace{0.15cm}\underline {= 0.2 \ \rm V}.


(2)  The equivalent ACF duration can be determined via the rectangle of equal area.

  • According to the sketch,  we obtain  \nabla \tau_x\hspace{0.15cm}\underline {= 1 \ \rm µ s}.


(3)  The PSD is the Fourier transform of the ACF.

  • With the given Fourier correspondence holds:
{\it \Phi}_{x}(f) = \sigma_x^2 \cdot {\rm \nabla} \tau_x \cdot {\rm e}^{- \pi ({\rm \nabla} \tau_x \hspace{0.03cm}\cdot \hspace{0.03cm}f)^2} .
  • At frequency  f = 0,  we obtain:
{\it \Phi}_{x}(f = 0) = \sigma_x^2 \cdot {\rm \nabla} \tau_x = \rm 0.04 \hspace{0.1cm} V^2 \cdot 10^{-6} \hspace{0.1cm} s \hspace{0.15cm} \underline{= 40 \cdot 10^{-9} \hspace{0.1cm} V^2 / Hz}.


(4)  Solutions 1 and 3  are correct:

  • In general,  {\it \Phi}_{y}(f) = {\it \Phi}_{x}(f) \cdot |H(f)|^2.  It follows:
{\it \Phi}_{y}(f) = \sigma_x^2 \cdot {\rm \nabla} \tau_x \cdot {\rm e}^{- \pi ({\rm \nabla} \tau_x \cdot f)^2}\cdot H_{\rm 0}^2 \cdot{\rm e}^{- 2 \pi (f/ {\rm \Delta} f)^2} .
  • By combining the two exponential functions,  we obtain:
{\it \Phi}_{y}(f) = \sigma_x^2 \cdot {\rm \nabla} \tau_x \cdot H_0^2 \cdot {\rm e}^{- \pi\cdot ({\rm \nabla} \tau_x^2 + 2/\Delta f^2 ) \hspace{0.1cm}\cdot f^2}.
  • Also  {\it \Phi}_{y}(f)  is Gaussian and never wider than  {\it \Phi}_{x}(f).  For f \to \infty,  the approximation  {\it \Phi}_{y}(f) \approx {\it \Phi}_{x}(f)  holds.
  • As  \Delta f  gets smaller,  {\it \Phi}_{y}(f)  gets narrower  (so the second statement is false).
  • H_0  actually affects only the PSD height,  but not the width of the PSD.


(5)  Analogous to task  (1),  it can be written for the PSD of the output signal  y(t):

{\it \Phi}_{y}(f) = \sigma_y^2 \cdot {\rm \nabla} \tau_y \cdot {\rm e}^{- \pi \cdot {\rm \nabla} \tau_y^2 \cdot f^2 }.
  • By comparing with the result from  (4)  we get:
{{\rm \nabla} \tau_y^2} = {{\rm \nabla} \tau_x^2} + \frac {2}{{\rm \Delta} f^2}.
  • Solving the equation for  \Delta f  and considering the values  \nabla \tau_x {= 1 \ \rm µ s}  as well as  \nabla \tau_y {= 3 \ \rm µ s},  it follows:
{\rm \Delta} f = \sqrt{\frac{2}{{\rm \nabla} \tau_y^2 - {\rm \nabla} \tau_x^2}} = \sqrt{\frac{2}{9 - 1}} \hspace{0.1cm}\rm MHz \hspace{0.15cm} \underline{= 0.5\hspace{0.1cm} MHz} .


(6)  The condition  \sigma_y = \sigma_x  is equivalent to  \varphi_y(\tau = 0)= \varphi_x(\tau = 0).

  • Moreover,  since  \nabla \tau_y = 3 \cdot \nabla \tau_x  is given,  therefore  {\it \Phi}_{y}(f= 0) = 3 \cdot {\it \Phi}_{x}(f= 0)  must also hold.
  • From this we obtain:
H_{\rm 0} = \sqrt{\frac{\it \Phi_y (f \rm = 0)}{\it \Phi_x (f = \rm 0)}} = \sqrt {3}\hspace{0.15cm} \underline{=1.732}.