Difference between revisions of "Aufgaben:Exercise 4.5: Locality Curve for DSB-AM"

From LNTwww
 
(38 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion
+
{{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function
 
}}
 
}}
  
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right| ZSB-AM (Aufgabe A4.5)]]
+
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spectrum of the analytical signal]]
  
Wir betrachten ein ähnliches Übertragungsszenario wie in Aufgabe A4.4:
+
We consider a similar transmission scenario as in  [[Aufgaben:Exercise_4.4:_Pointer_Diagram_for_DSB-AM|Exrcise 4.4]]  (but not the same):
sinusförmiges Nachrichtensignal, Amplitude $A_N$ = 2 V, Frequenz $f_N$ = 10 kHz,
+
* A sinusoidal source signal with amplitude  $A_{\rm N} = 2 \ \text{V}$   and frequency  $f_{\rm N} = 10 \ \text{kHz}$,
ZSB-Amplitudenmodulation mit Träger; mit $f_T$ = 50 kHz (Trägerfrequenz).
+
*Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm T} = 50 \ \text{kHz}$.
Nebenstehend sehen Sie die Spektralfunktion $S_+(f)$ des analytischen Signals. Berücksichtigen Sie bei der Lösung, dass das äquivalente Tiefpass-Signal auch in der Form
+
 
 +
 
 +
Opposite you see the spectral function  $S_+(f)$  of the analytical signal  $s_+(t)$.  
 +
 
 +
When solving, take into account that the equivalent low-pass signal is in the form
 +
 +
:$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm}  a(t) ≥ 0.$$
 +
 
 +
For&nbsp; $\phi(t)$,&nbsp; the range&nbsp; $–\pi < \phi(t) \leq +\pi$&nbsp; is permissible and the generally valid equation applies:
 
   
 
   
$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \phi(t)} $$
+
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
 +
TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$
 +
 
  
dargestellt werden kann, wobei $a(t)$ ≥ 0 gelten soll. Für $\Phi (t)$ ist der Wertebereich $– \pi < \Phi(t) \leq +\pi$ zulässig und es gilt die allgemeingültige Gleichung:
+
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]].
 
   
 
   
$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm
+
*You can check your solution with the interactive applet&nbsp; [[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical Signal & Equivalent Low-Pass Signal]]&nbsp; &nbsp; &rArr; &nbsp; "Locality Curve".
TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}.$$
 
  
Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 4.3.
 
Sie können Ihre Lösung mit dem folgenden Interaktionsmodul überprüfen:
 
Ortskurve – Darstellung des äquivalenten Tiefpass-Signals
 
 
   
 
   
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das äquivalente Tiefpass-Signal $s_{TP}(t)$ im Frequenz– und Zeitbereich. Welchen Wert besitzt $s_{TP}(t)$ zum Startzeitpunkt $t$ = 0?
+
{Calculate the equivalent low-pass signal&nbsp; $s_{\rm TP}(t)$&nbsp; in the frequency and time domain.&nbsp; What is the value of&nbsp; $s_{\rm TP}(t)$&nbsp; at the start time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
$\text{Re}[s_{\text{TP}}(t=0 \mu \text{s})] =$ { 1 } V
+
$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $ { 1 3% } &nbsp;$\text{V}$
$\text{Im}[s_{\text{TP}}(t=0 \mu \text{s})] =$ { 0 } V
+
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $ { 0. } &nbsp;$\text{V}$
  
{Welche Werte weist $s_{TP}(t)$ zu den Zeitpunkten $t = $T_0/10$, $T_0/4$, $3T_0/4$ und $T_0$ = 100 μs auf? Zeigen Sie, dass alle Werte rein reell sind.
+
{What are the values of&nbsp; $s_{\rm TP}(t)$&nbsp; at&nbsp; $t = 10 \ {\rm &micro;} \text{s}= T_0/10$, &nbsp; &nbsp; $t = 25 \ {\rm &micro;} \text{s}= T_0/4$, &nbsp; &nbsp; $t = 75 \ {\rm &micro;} \text{s}= 3T_0/4$&nbsp; and&nbsp; $T_0 = 100 \ {\rm &micro;s}$? <br>Show that all values are purely real.
 
|type="{}"}
 
|type="{}"}
$\text{Re}[s_{\text{TP}}(t=10 \mu \text{s})] =$ { 2.176 3% } V
+
$\text{Re}[s_{\text{TP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ $ { 2.176 3% } &nbsp;$\text{V}$
$\text{Re}[s_{\text{TP}}(t=25 \mu \text{s})] =$ { 3 } V
+
$\text{Re}[s_{\text{TP}}(t=25 \ {\rm &micro;} \text{s})] \ = \ $ { 3 3% } &nbsp;$\text{V}$
$\text{Re}[s_{\text{TP}}(t=75 \mu \text{s})] =$ { -1 } V
+
$\text{Re}[s_{\text{TP}}(t=75 \ {\rm &micro;} \text{s})]\ = \ $ { -1.03--0.97 } &nbsp;$\text{V}$
$\text{Re}[s_{\text{TP}}(t=100 \mu \text{s})] =$ { 1 } V
+
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ $ { 1 3% } &nbsp;$\text{V}$
  
{Wie lautet die Betragsfunktion $a(t)$? Welche Werte ergeben sich zu den Zeiten $t$ = 25 μs und $t$ = 75 μs?
+
{What is the magnitude function&nbsp; $a(t)$&nbsp;  in the time domain?&nbsp; What are the values at times&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; and&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
 
|type="{}"}
 
|type="{}"}
$a(t=25 \mu \text{s}) =$ { 3 } V
+
$a(t=25 \ {\rm &micro;} \text{s})\ = \ $ { 3 3% } &nbsp;$\text{V}$
$a(t=25 \mu \text{s}) =$ { 1 } V
+
$a(t=75 \ {\rm &micro;} \text{s})\ = \ $ { 1 3% } &nbsp;$\text{V}$
  
{Geben Sie die Phasenfunktion $\Phi(t)$ allgemein an. Welche Werte ergeben sich zu den Zeiten $t$ = 25 μs und $t$ = 75 μs?
+
{Give the phase function&nbsp; $\phi(t)$&nbsp;  in the time domain.&nbsp; What values result at the times&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; and&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
 
|type="{}"}
 
|type="{}"}
$\phi(t=25 \mu \text{s}) =$ { 0 } Grad
+
$\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ $ { 0. } &nbsp;$\text{Grad}$
$\phi(t=25 \mu \text{s}) =$ { 180 } Grad
+
$\phi(t=75\ {\rm &micro;} \text{s})\ = \ $ { 180 1% } &nbsp;$\text{Grad}$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
  
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
[[File:P_ID755__Sig_A_4_5_a_neu.png|250px|right|Ortskurve zur Zeit 0 (ML zu Aufgabe A4.5)]]
+
[[File:EN_Sig_A_4_5_a.png|250px|right|frame|Locality curve at time&nbsp; $t = 0$]]
'''1.''' Verschiebt man alle Diraclinien jeweils um $f_T$ = 50 kHz nach links, so liegen diese bei –10 kHz, 0 und +10 kHz. Die Gleichung $s_{TP}(t)$ lautet mit $\omega_10$ = 2 \pi \cdot$ 10 kHz:
+
'''(1)'''&nbsp; If all Dirac delta lines are shifted to the left by&nbsp; $f_{\rm T} = 50 \ \text{kHz}$&nbsp;, they are located at&nbsp; $-\hspace{-0.08cm}10 \ \text{kHz}$,&nbsp; $0$&nbsp; and&nbsp; $+10 \ \text{kHz}$.  
 +
*The equation for&nbsp; $s_{\rm TP}(t)$&nbsp; is with&nbsp; $\omega_{10} = 2 \pi \cdot 10 \ \text{kHz}$:
 
    
 
    
$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1
+
:$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1
 
\hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm}
 
\hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm}
 
\omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1
 
\omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1
Line 62: Line 73:
 
\omega_{\rm 10} \hspace{0.05cm} t }$$
 
\omega_{\rm 10} \hspace{0.05cm} t }$$
  
$$\Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1
+
:$$\Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1
 
\hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1
 
\hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1
 
\hspace{0.05cm} V}.$$
 
\hspace{0.05cm} V}.$$
  
$$\Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ]  \hspace{0.15 cm}\underline{= {\rm 1 \hspace{0.05cm} V}},  \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ]  \hspace{0.15 cm}\underline{= 0}
+
:$$\Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ]  \hspace{0.15 cm}\underline{= {+\rm 1 \hspace{0.05cm} V}},  \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ]  \hspace{0.15 cm}\underline{= 0}
 
.$$
 
.$$
  
'''2.''' Obige Gleichung kann man nach dem Satz von Euler mit $T_0 = 1/f_N = 100$ Mikrosekunden wie folgt umformen:
+
 
 +
 
 +
'''(2)'''&nbsp; The above equation can be transformed according to&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_Amplidute_and_Phase|Euler's theorem]]&nbsp; with&nbsp; $T_0 = 1/f_{\rm N} = 100 \ {\rm &micro;} \text{s}$&nbsp; as follows:
 
   
 
   
$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm
+
:$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm
 
j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}  \sin({
 
j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}  \sin({
 
\omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({
 
\omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({
 
\omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm
 
\omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm
 
10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi
 
10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi
\frac{t}{T_0}) .$$
+
{t}/{T_0}) .$$
  
Damit ist gezeigt, dass $s_{TP}(t)$ für alle Zeiten $t$ reell ist. Für die gesuchten Zahlenwerte erhält man:
+
*This shows that&nbsp; $s_{\rm TP}(t)$&nbsp; is real for all times&nbsp; $t$.  
 +
*We obtain for the numerical values we are looking for:
 
      
 
      
$$s_{\rm TP}(t = {\rm 10 \hspace{0.05cm} \mu s}) = {\rm 1
+
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
 
\hspace{0.05cm} V} \cdot \left[1+2 \cdot
 
\hspace{0.05cm} V} \cdot \left[1+2 \cdot
\sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm 2.176 \hspace{0.05cm} V}}},$$
+
\sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +2.176 \hspace{0.05cm} V}}},$$
  
$$s_{\rm TP}(t = {\rm 25 \hspace{0.05cm} \mu s}) = {\rm 1
+
:$$s_{\rm TP}(t = {\rm 25 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
 
\hspace{0.05cm} V} \cdot \left[1+2 \cdot
 
\hspace{0.05cm} V} \cdot \left[1+2 \cdot
\sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm 3 \hspace{0.05cm} V}}},$$
+
\sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +3 \hspace{0.05cm} V}}},$$
  
$$s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} \mu s}) = {\rm 1
+
:$$s_{\rm TP}(t = {\rm 75 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
 
\hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{=
 
\hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{=
 
-{{\rm 1 \hspace{0.05cm} V}}},$$
 
-{{\rm 1 \hspace{0.05cm} V}}},$$
  
$$s_{\rm TP}(t = {\rm 100 \hspace{0.05cm} \mu s}) = s_{\rm TP}(t =
+
:$$s_{\rm TP}(t = {\rm 100 \hspace{0.1cm}{\rm &micro;} s}) = s_{\rm TP}(t =
0) \hspace{0.15 cm}\underline{={{\rm 1 \hspace{0.05cm} V}}}.$$
+
0) \hspace{0.15 cm}\underline{={{\rm +1 \hspace{0.05cm} V}}}.$$
  
  
'''3.''' Definitionsgemäß gilt $a(t) = |s_{TP}(t)|$. Damit erhält man folgende Zahlenwerte:
+
 
+
'''(3)'''&nbsp;  By definition,&nbsp; $a(t) = |s_{\rm TP}(t)|$. This gives the following numerical values:
$$a(t = {\rm 25 \hspace{0.05cm} \mu s}) = s_{\rm TP}(t = {\rm 25
+
:$$a(t = {\rm 25 \hspace{0.1cm} {\rm &micro;} s}) = s_{\rm TP}(t = {\rm 25
\hspace{0.05cm} \mu s}) \hspace{0.15 cm}\underline{= {\rm 3 \hspace{0.05cm} V}} ,
+
\hspace{0.05cm}{\rm &micro;} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} ,
 
\hspace{4.15 cm}$$
 
\hspace{4.15 cm}$$
  
$$a(t = {\rm 75 \hspace{0.05cm} \mu s}) = |s_{\rm TP}(t = {\rm 75
+
:$$a(t = {\rm 75 \hspace{0.1cm} {\rm &micro;} s}) = |s_{\rm TP}(t = {\rm 75
\hspace{0.05cm} \mu s})| \hspace{0.15 cm}\underline{= {\rm 1 \hspace{0.05cm} V}} .$$
+
\hspace{0.05cm} {\rm &micro;} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .$$
 +
 
 +
 
 
   
 
   
'''4.''' Aufgrund der Tatsache, dass für alle Zeiten Im[ $s_{TP}(t)$ ] = 0 ist, erhält man aus der Beziehung
+
'''(4)'''&nbsp; In general, the phase function is:
 
   
 
   
$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan}
+
:$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan}
 
\hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm
 
\hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm
 
Re}\left[s_{\rm TP}(t)\right]}$$
 
Re}\left[s_{\rm TP}(t)\right]}$$
  
das Ergebnis $\Phi(t)$ = 0, falls Re[ $s_{TP}(t)$ ] positiv ist, und $\Phi(t) = \pi$ bei negativem Realteil.
+
Due to the fact that here&nbsp; ${\rm Im}[s_{\rm TP}(t)] = 0$&nbsp; for all times, one obtains:
Wir beschränken uns hier auf den Zeitbereich einer Periode: $0 \leq t \leq T_0$. Im Bereich zwischen $t_1$ und $t_2$ liegt eine Phase von 180° vor, ansonsten gilt $\text{Re}[s_{TP}(t)] \geq 0$. Zur Berechung von $t_1$ kann das Ergebnis aus 2) herangezogen werden:
+
* If&nbsp; ${\rm Re}[s_{\rm TP}(t)] > 0$&nbsp; holds, the phase&nbsp; $\phi(t) = 0$.
 +
* On the other hand, if the real part is negative: &nbsp; &nbsp; $\phi(t) = \pi$.
 
   
 
   
$$\sin(2 \pi \cdot  \frac{t_1}{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
+
 
\hspace{0.3cm} 2 \pi \cdot \frac{t_1}{T_0} = 2 \pi \cdot  
+
We restrict ourselves here to the time range of one period: &nbsp; $0 \leq t \leq T_0$.
\frac{7}{12}\hspace{0.3cm}{\rm (entspricht}\hspace{0.1cm}210^\circ
+
*In the range between&nbsp; $t_1$&nbsp; and&nbsp; $t_2$&nbsp; there is a phase of&nbsp; $180^\circ$&nbsp; otherwise&nbsp; $\text{Re}[s_{\rm TP}(t)] \geq 0$.
 +
 
 +
*To calculate&nbsp; $t_1$&nbsp;, the result of subtask&nbsp; '''(2)'''&nbsp; can be used:
 +
 +
:$$\sin(2 \pi \cdot  {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
 +
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot  
 +
{7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ
 
)$$
 
)$$
  
Daraus erhält man $t_1$ = 7/12 · $T_0$ = 58.33 μs. Durch ähnliche Überlegungen kommt man zum Ergebnis $t_2$ = 11/12 · $T_0$ = 91.67 μs.
+
*From this one obtains&nbsp; $t_1 = 7/12 · T_0 = 58.33 \ {\rm &micro;} \text{s}$.  
Die gesuchten Werte sind somit $\Phi(t =$ 25 μs) = 0 und $\Phi(t = $75 μs) = 180° (= $\pi$).
+
*By similar reasoning one arrives at the result:&nbsp; $t_2 = 11/12 · T_0 = 91.63  \ {\rm &micro;} \text{s}$.
 +
 +
 
 +
The values we are looking for are therefore:&nbsp;
 +
:$$\phi(t = 25 \ {\rm &micro;} \text{s}) \; \underline { = 0},$$
 +
:$$\phi(t = 75 \ {\rm &micro;} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^4.3 Equivalent LP Signal and its Spectral Function^]]

Latest revision as of 14:22, 18 January 2023

Spectrum of the analytical signal

We consider a similar transmission scenario as in  Exrcise 4.4  (but not the same):

  • A sinusoidal source signal with amplitude  $A_{\rm N} = 2 \ \text{V}$  and frequency  $f_{\rm N} = 10 \ \text{kHz}$,
  • Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm T} = 50 \ \text{kHz}$.


Opposite you see the spectral function  $S_+(f)$  of the analytical signal  $s_+(t)$.

When solving, take into account that the equivalent low-pass signal is in the form

$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm} a(t) ≥ 0.$$

For  $\phi(t)$,  the range  $–\pi < \phi(t) \leq +\pi$  is permissible and the generally valid equation applies:

$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$



Hints:


Questions

1

Calculate the equivalent low-pass signal  $s_{\rm TP}(t)$  in the frequency and time domain.  What is the value of  $s_{\rm TP}(t)$  at the start time  $t = 0$?

$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $

 $\text{V}$
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $

 $\text{V}$

2

What are the values of  $s_{\rm TP}(t)$  at  $t = 10 \ {\rm µ} \text{s}= T_0/10$,     $t = 25 \ {\rm µ} \text{s}= T_0/4$,     $t = 75 \ {\rm µ} \text{s}= 3T_0/4$  and  $T_0 = 100 \ {\rm µs}$?
Show that all values are purely real.

$\text{Re}[s_{\text{TP}}(t=10 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=25 \ {\rm µ} \text{s})] \ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=75 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$

3

What is the magnitude function  $a(t)$  in the time domain?  What are the values at times  $t = 25 \ {\rm µ} \text{s}$  and  $t = 75 \ {\rm µ} \text{s}$?

$a(t=25 \ {\rm µ} \text{s})\ = \ $

 $\text{V}$
$a(t=75 \ {\rm µ} \text{s})\ = \ $

 $\text{V}$

4

Give the phase function  $\phi(t)$  in the time domain.  What values result at the times  $t = 25 \ {\rm µ} \text{s}$  and  $t = 75 \ {\rm µ} \text{s}$?

$\phi(t=25 \ {\rm µ} \text{s}) \ = \ $

 $\text{Grad}$
$\phi(t=75\ {\rm µ} \text{s})\ = \ $

 $\text{Grad}$


Solution

Locality curve at time  $t = 0$

(1)  If all Dirac delta lines are shifted to the left by  $f_{\rm T} = 50 \ \text{kHz}$ , they are located at  $-\hspace{-0.08cm}10 \ \text{kHz}$,  $0$  and  $+10 \ \text{kHz}$.

  • The equation for  $s_{\rm TP}(t)$  is with  $\omega_{10} = 2 \pi \cdot 10 \ \text{kHz}$:
$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }$$
$$\Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1 \hspace{0.05cm} V}.$$
$$\Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= {+\rm 1 \hspace{0.05cm} V}}, \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= 0} .$$


(2)  The above equation can be transformed according to  Euler's theorem  with  $T_0 = 1/f_{\rm N} = 100 \ {\rm µ} \text{s}$  as follows:

$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi {t}/{T_0}) .$$
  • This shows that  $s_{\rm TP}(t)$  is real for all times  $t$.
  • We obtain for the numerical values we are looking for:
$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +2.176 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +3 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{= -{{\rm 1 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 100 \hspace{0.1cm}{\rm µ} s}) = s_{\rm TP}(t = 0) \hspace{0.15 cm}\underline{={{\rm +1 \hspace{0.05cm} V}}}.$$


(3)  By definition,  $a(t) = |s_{\rm TP}(t)|$. This gives the following numerical values:

$$a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 \hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , \hspace{4.15 cm}$$
$$a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .$$


(4)  In general, the phase function is:

$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}$$

Due to the fact that here  ${\rm Im}[s_{\rm TP}(t)] = 0$  for all times, one obtains:

  • If  ${\rm Re}[s_{\rm TP}(t)] > 0$  holds, the phase  $\phi(t) = 0$.
  • On the other hand, if the real part is negative:     $\phi(t) = \pi$.


We restrict ourselves here to the time range of one period:   $0 \leq t \leq T_0$.

  • In the range between  $t_1$  and  $t_2$  there is a phase of  $180^\circ$  otherwise  $\text{Re}[s_{\rm TP}(t)] \geq 0$.
  • To calculate  $t_1$ , the result of subtask  (2)  can be used:
$$\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot {7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ )$$
  • From this one obtains  $t_1 = 7/12 · T_0 = 58.33 \ {\rm µ} \text{s}$.
  • By similar reasoning one arrives at the result:  $t_2 = 11/12 · T_0 = 91.63 \ {\rm µ} \text{s}$.


The values we are looking for are therefore: 

$$\phi(t = 25 \ {\rm µ} \text{s}) \; \underline { = 0},$$
$$\phi(t = 75 \ {\rm µ} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).$$