Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.13: Quadrature Amplitude Modulation"

From LNTwww
m
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Weitere AM–Varianten
+
{{quiz-Header|Buchseite=Modulation Methods/Further AM Variants
 
}}
 
}}
  
[[File:P_ID1055__Mod_A_2_11.png|right|frame|QAM model under consideration]]
+
[[File:EN_Mod_A_2_11.png|right|frame|QAM model under consideration]]
 
The  "quadrature amplitude modulation"  (QAM)  explained by the diagram allows the transmission of two source signals  q1(t)  and  q2(t)  over the same channel  
 
The  "quadrature amplitude modulation"  (QAM)  explained by the diagram allows the transmission of two source signals  q1(t)  and  q2(t)  over the same channel  
 
*under certain boundary conditions,  
 
*under certain boundary conditions,  

Latest revision as of 16:27, 9 April 2022

QAM model under consideration

The  "quadrature amplitude modulation"  (QAM)  explained by the diagram allows the transmission of two source signals  q1(t)  and  q2(t)  over the same channel

  • under certain boundary conditions,
  • which are to be determined in this exercise.


In this exercise,  with  A1=A2=2 V:

q1(t)=A1cos(2πf1t),
q2(t)=A2sin(2πf2t).

For  ω_{\rm T} = 2π · 25\ \rm kHz,  the four carrier signals shown in the diagram are:

z_1(t) = \cos(\omega_{\rm T} \cdot t),
z_2(t) = \sin(\omega_{\rm T} \cdot t),
z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),
z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.

Both lowpass filters   \rm LP_1  and  \rm LP_2  with input signals  b_1(t)  resp.  b_2(t) , remove all frequency components  |f| > f_{\rm T}.



Hints:

  • This exercise belongs to the chapter  Further AM Variants.
  • Particular reference is made to the page  Quadrature Amplitude Modulation (QAM).
  • It is worth noting that the carrier signals  z_2(t)  and  z_{2,\hspace{0.05cm}{\rm E}}(t)  are applied with positive signs here.
  • Often – as in the theory section – these carrier signals are given as  "minus-sine".
  • The following trigonometric transformations are given:
\cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],
\sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],
\sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.


Questions

1

Calculate the transmitted signal  s(t)  in the case that  f_1 ≠ f_2.  Which of the following statements apply?

s(t)  is composed of two cosine and two sine oscillations.
s(t)  is composed of four cosine oscillations.
s(t)  is composed of four sine oscillations.

2

What is  s(t)  with  f_1 = f_2 = 5 \ \rm kHz?  What signal value arises for  t = 50 \ \rm µ s ?

s(t = 50 \ \rm µ s) \ = \

\ \rm V

3

Calculate the sink signals  v_1(t)  and  v_2(t) for  f_1 = f_2  and  Δϕ_{\rm T} = 0  (no phase offset).  Which statements are true?

v_1(t) = q_1(t)  and  v_2(t) = q_2(t)  both hold.
Linear distortions occur.
Nonlinear distortions occur.

4

Calculate the sink signals  v_1(t)  and  v_2(t)  for  f_1 = f_2  and a phase offset  Δϕ_{\rm T} = 30^\circ.  Which statements are true?

v_1(t) = q_1(t)  and  v_2(t) = q_2(t)  both hold.
Linear distortions occur.
Nonlinear distortions occur.

5

Which of the following statements apply when  f_1 ≠ f_2  and  Δϕ_{\rm T} ≠ 0  (with an arbitrary phase offset)?

v_1(t) = q_1(t)  and  v_2(t) = q_2(t)  both hold.
Linear distortions occur.
Nonlinear distortions occur.


Solution

(1)  With the given trigonometric transformations we get:

s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t)
\Rightarrow \hspace{0.3cm}s(t) = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) + \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.
  • The second answer is correct.


(2)  With A_1 = A_2 = 2 \ \rm V and f_1 = f_2 = 5\ \rm kHz, the first and third cosine oscillations constructively overlap and the other two cancel completely.

  • Thus,  the following simple result is obtained:
s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm µ s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.


(3)  The  first answer  is correct:

  • For phase-synchronous demodulation  (Δϕ_T = 0),  the signals before the low-pass filters according to subtask  (2) are obtained as:
b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),
b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.
  • Thus,  after eliminating the respective   45\ \rm kHz components,  we get   v_1(t) = q_1(t)  and  v_2(t) = q_2(t).


(4)  Analogously to subtask  (3)  it now holds that:

b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},
b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.
  • The sink signals  v_1(t)  and  v_2(t)  in this constellation exhibit delays and thus phase distortions compared with   q_1(t)  and  q_2(t).
  • These belong to the class of linear distortions   ⇒   Answer 2.


(5)  In general,  it holds for the received signal:

r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.

Multiplication by the receiver-side carrier signals  z_{1,\hspace{0.05cm}{\rm E}}(t)  and  z_{2,\hspace{0.05cm}{\rm E}}(t)  and band-limiting leads to the signals

v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),
v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.

From this it can be seen:

  • With a phase offset of   Δϕ_{\rm T} = 30^\circ,  the sink signal  v_1(t)  includes not only the signal   q_1(t) attenuated by about   \cos(30^\circ) = 0.866
    but also the frequency   f_2 is contained in   q_2(t).
  • This is weighted by the factor   \sin(30^\circ) = 0.5.
  • Thus,  nonlinear distortions are present   ⇒   Answer 3.