Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.13: Quadrature Amplitude Modulation"

From LNTwww
m
 
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Weitere AM–Varianten
+
{{quiz-Header|Buchseite=Modulation Methods/Further AM Variants
 
}}
 
}}
  

Latest revision as of 16:27, 9 April 2022

QAM model under consideration

The  "quadrature amplitude modulation"  (QAM)  explained by the diagram allows the transmission of two source signals  q1(t)  and  q2(t)  over the same channel

  • under certain boundary conditions,
  • which are to be determined in this exercise.


In this exercise,  with  A1=A2=2 V:

q1(t)=A1cos(2πf1t),
q2(t)=A2sin(2πf2t).

For  ω_{\rm T} = 2π · 25\ \rm kHz,  the four carrier signals shown in the diagram are:

z_1(t) = \cos(\omega_{\rm T} \cdot t),
z_2(t) = \sin(\omega_{\rm T} \cdot t),
z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),
z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.

Both lowpass filters   \rm LP_1  and  \rm LP_2  with input signals  b_1(t)  resp.  b_2(t) , remove all frequency components  |f| > f_{\rm T}.



Hints:

  • This exercise belongs to the chapter  Further AM Variants.
  • Particular reference is made to the page  Quadrature Amplitude Modulation (QAM).
  • It is worth noting that the carrier signals  z_2(t)  and  z_{2,\hspace{0.05cm}{\rm E}}(t)  are applied with positive signs here.
  • Often – as in the theory section – these carrier signals are given as  "minus-sine".
  • The following trigonometric transformations are given:
\cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],
\sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],
\sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.


Questions

1

Calculate the transmitted signal  s(t)  in the case that  f_1 ≠ f_2.  Which of the following statements apply?

s(t)  is composed of two cosine and two sine oscillations.
s(t)  is composed of four cosine oscillations.
s(t)  is composed of four sine oscillations.

2

What is  s(t)  with  f_1 = f_2 = 5 \ \rm kHz?  What signal value arises for  t = 50 \ \rm µ s ?

s(t = 50 \ \rm µ s) \ = \

\ \rm V

3

Calculate the sink signals  v_1(t)  and  v_2(t) for  f_1 = f_2  and  Δϕ_{\rm T} = 0  (no phase offset).  Which statements are true?

v_1(t) = q_1(t)  and  v_2(t) = q_2(t)  both hold.
Linear distortions occur.
Nonlinear distortions occur.

4

Calculate the sink signals  v_1(t)  and  v_2(t)  for  f_1 = f_2  and a phase offset  Δϕ_{\rm T} = 30^\circ.  Which statements are true?

v_1(t) = q_1(t)  and  v_2(t) = q_2(t)  both hold.
Linear distortions occur.
Nonlinear distortions occur.

5

Which of the following statements apply when  f_1 ≠ f_2  and  Δϕ_{\rm T} ≠ 0  (with an arbitrary phase offset)?

v_1(t) = q_1(t)  and  v_2(t) = q_2(t)  both hold.
Linear distortions occur.
Nonlinear distortions occur.


Solution

(1)  With the given trigonometric transformations we get:

s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t)
\Rightarrow \hspace{0.3cm}s(t) = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) + \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.
  • The second answer is correct.


(2)  With A_1 = A_2 = 2 \ \rm V and f_1 = f_2 = 5\ \rm kHz, the first and third cosine oscillations constructively overlap and the other two cancel completely.

  • Thus,  the following simple result is obtained:
s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm µ s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.


(3)  The  first answer  is correct:

  • For phase-synchronous demodulation  (Δϕ_T = 0),  the signals before the low-pass filters according to subtask  (2) are obtained as:
b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),
b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.
  • Thus,  after eliminating the respective   45\ \rm kHz components,  we get   v_1(t) = q_1(t)  and  v_2(t) = q_2(t).


(4)  Analogously to subtask  (3)  it now holds that:

b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},
b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.
  • The sink signals  v_1(t)  and  v_2(t)  in this constellation exhibit delays and thus phase distortions compared with   q_1(t)  and  q_2(t).
  • These belong to the class of linear distortions   ⇒   Answer 2.


(5)  In general,  it holds for the received signal:

r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.

Multiplication by the receiver-side carrier signals  z_{1,\hspace{0.05cm}{\rm E}}(t)  and  z_{2,\hspace{0.05cm}{\rm E}}(t)  and band-limiting leads to the signals

v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),
v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.

From this it can be seen:

  • With a phase offset of   Δϕ_{\rm T} = 30^\circ,  the sink signal  v_1(t)  includes not only the signal   q_1(t) attenuated by about   \cos(30^\circ) = 0.866
    but also the frequency   f_2 is contained in   q_2(t).
  • This is weighted by the factor   \sin(30^\circ) = 0.5.
  • Thus,  nonlinear distortions are present   ⇒   Answer 3.