Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.14Z: Offset QPSK vs. MSK"

From LNTwww
m
m
 
(4 intermediate revisions by the same user not shown)
Line 38: Line 38:
 
   
 
   
 
*The associated phase function  ϕ(t)  is determined in  [[Aufgaben:Exercise_4.14:_Phase_Progression_of_the_MSK |Exercise 4.14]] , and is also based on the  (normalized)  MSK fundamental pulse:
 
*The associated phase function  ϕ(t)  is determined in  [[Aufgaben:Exercise_4.14:_Phase_Progression_of_the_MSK |Exercise 4.14]] , and is also based on the  (normalized)  MSK fundamental pulse:
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\pi/2 \cdot t/T ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}. \\ \end{array}$$
+
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\pi/2 \cdot t/T ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{otherwise}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm }. \\ \end{array}$$
  
  
Line 44: Line 44:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Bitdauer &nbsp;T_{\rm B}&nbsp; des Quellensignals?
+
{What is the bit duration &nbsp;T_{\rm B}&nbsp; of the source signal?
 
|type="{}"}
 
|type="{}"}
 
T_{\rm B} \ = \ { 1 3% } \ \rm &micro; s
 
T_{\rm B} \ = \ { 1 3% } \ \rm &micro; s
  
  
{Wie groß ist die Symboldauer &nbsp;T&nbsp; der Offset–QPSK?
+
{What is the symbol duration &nbsp;T&nbsp; of the offset QPSK?
 
|type="{}"}
 
|type="{}"}
 
T \ = \ { 2 3%  } \ \rm  &micro; s
 
T \ = \ { 2 3%  } \ \rm  &micro; s
  
{Geben Sie die genannten Amplitudenkoeffizienten der Offset–QPSK an.
+
{Give the above amplitude coefficients of the offset QPSK.
 
|type="{}"}
 
|type="{}"}
 
a_{\rm I3} \hspace{0.25cm} = \ { 1 3% }  
 
a_{\rm I3} \hspace{0.25cm} = \ { 1 3% }  
Line 60: Line 60:
 
a_{\rm Q4} \ = \ { 1 3% }
 
a_{\rm Q4} \ = \ { 1 3% }
  
{Wie groß ist die Symboldauer &nbsp;T&nbsp; der &nbsp;MSK?
+
{What is the symbol duration &nbsp;T&nbsp; of the &nbsp;MSK?
 
|type="{}"}
 
|type="{}"}
 
T \ = \ { 1 3% } \ \rm &micro; s
 
T \ = \ { 1 3% } \ \rm &micro; s
  
{Geben Sie die genannten  Amplitudenkoeffizienten der MSK an.
+
{Give the above amplitude coefficients of the MSK.
 
|type="{}"}
 
|type="{}"}
 
a_5 \ = \ { -1.03--0.97 }
 
a_5 \ = \ { -1.03--0.97 }
Line 76: Line 76:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus der oberen Skizze kann man&nbsp; T_{\rm B} \hspace{0.15cm}\underline{ = 1 \ \rm &micro; s}&nbsp; ablesen.
+
'''(1)'''&nbsp; It can be seen from the upper plot that &nbsp; T_{\rm B} \hspace{0.15cm}\underline{ = 1 \ \rm &micro; s}&nbsp;.
  
  
'''(2)'''&nbsp; Bei QPSK bzw. Offset–QPSK ist aufgrund der Seriell–Parallel–Wandlung die Symboldauer&nbsp; T&nbsp; doppelt so groß wie die Bitdauer&nbsp;  T_{\rm B}:
+
'''(2)'''&nbsp; For QPSK or offset QPSK , the symbol duration T&nbsp; is twice the bit duration&nbsp;  T_{\rm B} due to serial-to-parallel conversion:
 
: T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm &micro;  s}} \hspace{0.05cm}.
 
: T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm &micro;  s}} \hspace{0.05cm}.
  
  
'''(3)'''&nbsp; Entsprechend der aus der Skizze für die ersten Bit erkennbaren Zuordnung gilt:
+
'''(3)'''&nbsp; According to the allocation evident in the plot for the first bits:
 
: a_{\rm I3} = q_5  \hspace{0.15cm}\underline {= +1},
 
: a_{\rm I3} = q_5  \hspace{0.15cm}\underline {= +1},
 
:a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},  
 
:a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},  
Line 90: Line 90:
  
  
'''(4)'''&nbsp; Bei der MSK ist die Symboldauer&nbsp; T&nbsp; gleich der Bitdauer&nbsp; T_{\rm B}:
+
'''(4)'''&nbsp; In MSK, the symbol duration&nbsp; T&nbsp;is equal to the bit duration &nbsp; T_{\rm B}:
 
:T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm &micro;  s}} \hspace{0.05cm}.
 
:T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm &micro;  s}} \hspace{0.05cm}.
  
  
'''(5)'''&nbsp; Entsprechend der angegebenen Umcodiervorschrift gilt mit&nbsp; a_4 = –1:
+
'''(5)'''&nbsp; According to the given recoding rule, when &nbsp; a_4 = –1, we get:
 
:q_5 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},  
 
:q_5 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},  
 
:q_6 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},
 
:q_6 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},

Latest revision as of 17:49, 21 March 2022

Koeffizientenzuordnung bei O-QPSK und MSK

One possible implementation fordie  \rm MSK  is offered by  "Offset–QPSK"  \rm (O–QPSK), as can be seen from the  block diagrams  in the theory section.

In "normal offset QPSK operation", two bits of the source symbol sequence 〈q_k〉 are assigned to one bit 𝑎Iν a_{{\rm I}ν}  in the in-phase branch and one bit  a_{{\rm Q}ν}  in the quadrature branch, respectively.

The graph shows this serial-to-parallel conversion in the top three plots for the first four bits of the source signal  q(t).  It should be noted:

  • The Offset–QPSK plot is for for a rectangular-shaped fundamental pulse.  The coefficients  a_{{\rm I}ν}  and  a_{{\rm Q}ν}  can take the values  ±1 .
  • If the time index of the source symbols passes through the values  k =1, ... , 8, then the time variable  ν  only takes on the values  1, ... , 4  an.
  • The sketch also takes the time offset for the quadrature branch into account.


For a  "MSK–implementation using Offset–QPSK"  a recoding is required.  Here, with  q_k ∈ \{+1, –1\}  and  a_k ∈ \{+1, –1\}, it holds that:

a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.

For example, by assuming  a_0 = +1 one gets:

a_1 = a_0 \cdot q_1 = +1,\hspace{0.4cm}a_2 = -a_1 \cdot q_2 = +1,\hspace{0.4cm} a_3 = a_2 \cdot q_3 = -1,\hspace{0.4cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.

Additionally, one must take into account:

  • The coefficients  a_0 = +1,  a_2 = +1,  a_4 = -1  and the coefficients  a_6  and  a_8  which are yet to be calculated, are assigned to the signal  s_{\rm I}(t) .
  • On the other hand, the coefficients  a_1 = +1  and  a_3 = -1  as well as all other coefficients with an odd index are applied to the signal  s_{\rm Q}(t) .






Hints:

  • The associated phase function  ϕ(t)  is determined in  Exercise 4.14 , and is also based on the  (normalized)  MSK fundamental pulse:
g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\pi/2 \cdot t/T ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{otherwise}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm }. \\ \end{array}


Questions

1

What is the bit duration  T_{\rm B}  of the source signal?

T_{\rm B} \ = \

\ \rm µ s

2

What is the symbol duration  T  of the offset QPSK?

T \ = \

\ \rm µ s

3

Give the above amplitude coefficients of the offset QPSK.

a_{\rm I3} \hspace{0.25cm} = \

a_{\rm Q3} \ = \

a_{\rm I4} \hspace{0.25cm} = \

a_{\rm Q4} \ = \

4

What is the symbol duration  T  of the  MSK?

T \ = \

\ \rm µ s

5

Give the above amplitude coefficients of the MSK.

a_5 \ = \

a_6 \ = \

a_7 \ = \

a_8 \ = \


Solution

(1)  It can be seen from the upper plot that   T_{\rm B} \hspace{0.15cm}\underline{ = 1 \ \rm µ s} .


(2)  For QPSK or offset QPSK , the symbol duration T  is twice the bit duration  T_{\rm B} due to serial-to-parallel conversion:

T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm µ s}} \hspace{0.05cm}.


(3)  According to the allocation evident in the plot for the first bits:

a_{\rm I3} = q_5 \hspace{0.15cm}\underline {= +1},
a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},
a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},
a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.


(4)  In MSK, the symbol duration  T is equal to the bit duration   T_{\rm B}:

T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm µ s}} \hspace{0.05cm}.


(5)  According to the given recoding rule, when   a_4 = –1, we get:

q_5 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},
q_6 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},
q_7 = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1},
q_8 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.