Difference between revisions of "Aufgaben:Exercise 3.8: Rate Compatible Punctured Convolutional Codes"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Code_Description_with_State_and_Trellis_Diagram}}
 
{{quiz-Header|Buchseite=Channel_Coding/Code_Description_with_State_and_Trellis_Diagram}}
  
[[File:P_ID2708__KC_A_3_8.png|right|frame|RCPC Puncturing Matrices]]
+
[[File:P_ID2708__KC_A_3_8.png|right|frame|RCPC puncturing matrices]]
 
An important application for  [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Punctured_convolutional_codes|$\text{punctured convolutional codes}$]]  are the  "Rate Compatible Punctured Convolutional Codes"  $($for short:  '''RCPC–Codes'''$)$  proposed by Joachim Hagenauer in  '''[Hag88]'''.   
 
An important application for  [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Punctured_convolutional_codes|$\text{punctured convolutional codes}$]]  are the  "Rate Compatible Punctured Convolutional Codes"  $($for short:  '''RCPC–Codes'''$)$  proposed by Joachim Hagenauer in  '''[Hag88]'''.   
  
Line 36: Line 36:
 
*The reference  '''[Hag88]''' refers to the paper  "Hagenauer, J.:  Rate Compatible Punctured Convolutional Codes (RCPC codes) and their Applications. In:  IEEE Transactions on Communications,  vol COM-36, pp 389 - 400, 1988."
 
*The reference  '''[Hag88]''' refers to the paper  "Hagenauer, J.:  Rate Compatible Punctured Convolutional Codes (RCPC codes) and their Applications. In:  IEEE Transactions on Communications,  vol COM-36, pp 389 - 400, 1988."
  
*Professor  [https://www.ce.cit.tum.de/en/lnt/people/professors/hagenauer/|$\text{Joachim Hagenauer}$]  was head of the Institute of Communications Engineering  $\rm(LNT)$  at the Technical University of Munich from 1993 to 2006.  The initiators of the learning tutorial  $($Günter Söder and Klaus Eichin$)$  thank their long-time boss for supporting and promoting our  $\rm LNTwww$  project during the first six years.
+
*Professor  [https://www.ce.cit.tum.de/en/lnt/people/professors/hagenauer/ $\text{Joachim Hagenauer}$]  was head of the Institute of Communications Engineering  $\rm(LNT)$  at the Technical University of Munich from 1993 to 2006.  The initiators of the learning tutorial  $($Günter Söder and Klaus Eichin$)$  thank their long-time boss for supporting and promoting our  $\rm LNTwww$  project during the first six years.
  
  
Line 68: Line 68:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct are <u>solutions 1 and 2</u>:
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>solutions 1 and 2</u>:
*The number of rows of the puncturing matrices gives the parameter $n$ of the $(n, \ k = 1)$&ndash;RCPC mother code.  
+
*The number of rows of the puncturing matrices gives the parameter&nbsp; $n$&nbsp; of the&nbsp; $(n, \ k = 1)$&nbsp; RCPC mother code.
*From this, its rate is $R_0 = 1/3$. The column number is equal to the puncturing period $p$. For the class of codes under consideration, $p = 8$.
+
* In contrast, the puncturing matrices do not provide any information about the memory of the code &nbsp;&#8658;&nbsp;
+
*From this,&nbsp; its rate is&nbsp; $R_0 = 1/3$.&nbsp; The column number is equal to the puncturing period&nbsp; $p$.&nbsp; For the class of codes under consideration:&nbsp; $p = 8$.
 +
 
 +
* In contrast,&nbsp; the puncturing matrices do not provide any information about the memory of the code.
 +
 
  
 +
'''(2)'''&nbsp; For the rate of code&nbsp; $\mathcal{C}_l = p/N_l$,&nbsp; where&nbsp; $N_l$&nbsp; denotes the number of all ones in the puncturing matrix&nbsp; $\mathbf{P}_l$&nbsp; and&nbsp; $p$&nbsp; denotes the puncturing period.
  
'''(2)'''&nbsp; For the rate of the code $\mathcal{C}_l = p/N_l$, where $N_l$ denotes the number of all ones in the puncturing matrix $\mathbf{P}_l$ and $p$ denotes the puncturing period. Starting from the rate $R_0 = 1/3$ of the mother code $\mathcal{C}_0$, we obtain:
+
Starting from the rate&nbsp; $R_0 = 1/3$&nbsp; of the mother code&nbsp; $\mathcal{C}_0$,&nbsp; we obtain:
 
* $R_1 = 8/20 = 2/5 = \underline{0.400}$,
 
* $R_1 = 8/20 = 2/5 = \underline{0.400}$,
 
* $R_2 = 8/16 = 1/2 = \underline{0.500}$,
 
* $R_2 = 8/16 = 1/2 = \underline{0.500}$,
Line 81: Line 85:
  
  
'''(3)'''&nbsp; Correct are the <u>solutions 1 and 4</u>:
+
'''(3)'''&nbsp; Correct are the&nbsp; <u>solutions 1 and&nbsp; 4</u>:
*All ones in the matrix $\mathbf{P}_4$ are also in the matrices $\mathbf{P}_3, \hspace{0.05cm}\text{ ...} above it. \hspace{0.05cm}, \ \mathbf{P}_0$.  
+
*All ones in the matrix&nbsp; $\mathbf{P}_4$&nbsp; are also in the matrices&nbsp; $\mathbf{P}_3, \hspace{0.05cm}\text{ ...} \hspace{0.05cm}, \ \mathbf{P}_0$.
*In the matrix $\mathbf{P}_3$ three ones are added compared to $\mathbf{P}_4$, in the matrix $\mathbf{P}_2$ compared to $\mathbf{P}_3$ again four, etc.   
+
 +
*In the matrix&nbsp; $\mathbf{P}_3$&nbsp; three ones are added compared to&nbsp; $\mathbf{P}_4$,&nbsp; in the matrix $\mathbf{P}_2$&nbsp; compared to $\mathbf{P}_3$ again four, etc.   
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
[[Category:Channel Coding: Exercises|^3.3 State and Trellis Diagram^]]
 
[[Category:Channel Coding: Exercises|^3.3 State and Trellis Diagram^]]

Latest revision as of 14:39, 19 November 2022

RCPC puncturing matrices

An important application for  $\text{punctured convolutional codes}$  are the  "Rate Compatible Punctured Convolutional Codes"  $($for short:  RCPC–Codes$)$  proposed by Joachim Hagenauer in  [Hag88].

Starting from a mother code   $\mathcal{C}_0$   with rate  $R_0 = 1/n$,  other codes   $\mathcal{C}_l$   with higher code rate  $(R_l > R_0)$  are determined by different puncturing matrices  $\mathbf{P}_l$.

The puncturing matrices   $\mathbf{P}_0, \hspace{0.05cm}\text{ ...} \hspace{0.05cm} , \ \mathbf{P}_4$  to be analyzed are shown on the right.

  • If for the matrix  $\mathbf{P}_l$  the matrix element  $P_{ij} = 1$,  the corresponding code bit is transmitted,  while  $P_{ij} = 0$  indicates puncturing.
  • In the questionnaire,  we also use the shorter notation  $P_{ij}^{(l)}$  for the element  $P_{ij}$  of the matrix  $\mathbf{P}_l$.
  • In the graph:  All the zeros in the matrix  $\mathbf{P}_l$  that were still ones in the matrix  $\mathbf{P}_{l–1}$  are marked in red.  This measure increases the code rate  $R_{l}$  compared to  $R_{l-1}$.


The RCPC–codes are well suited for the realization of

  • "unequal error protection"  for hybrid ARQ procedures,
  • systems with  "incremental redundancy".  This means that after conventional convolutional coding,  bits corresponding to the puncturing matrix  $\mathbf{P}_l$  are omitted from the code word  $\underline{x}^{(0)}$  and the shortened code word  $\underline{x}^{(l)}$  is transmitted:
  • If the punctured code word cannot be correctly decoded in the receiver,  the receiver requests further redundancy from the transmitter in the form of the previously punctured bits.
  • This prevents the transmission of redundancy that is not required and adapts the throughput to the channel conditions.



Joachim Hagenauer




Hints:

  • The reference  [Hag88] refers to the paper  "Hagenauer, J.:  Rate Compatible Punctured Convolutional Codes (RCPC codes) and their Applications. In:  IEEE Transactions on Communications,  vol COM-36, pp 389 - 400, 1988."
  • Professor  $\text{Joachim Hagenauer}$  was head of the Institute of Communications Engineering  $\rm(LNT)$  at the Technical University of Munich from 1993 to 2006.  The initiators of the learning tutorial  $($Günter Söder and Klaus Eichin$)$  thank their long-time boss for supporting and promoting our  $\rm LNTwww$  project during the first six years.




Questions

1

What statements do the given puncturing matrices provide?

The rate of the RCPC mother code is  $R_0 = 1/3$.
The puncturing period is  $p = 8$.
The memory of the RCPC code class is  $M = 4$.

2

Which code rates do the codes   $\mathcal{C}_1$, ... , $\mathcal{C}_4$   have?

${\rm matrix \ P_1} \ \Rightarrow \ {\rm code \ \mathcal{C}_1} \text{:} \hspace{0.4cm} R_1 \ = \ $

${\rm matrix \ P_2} \ \Rightarrow ß {\rm code \ \mathcal{C}_2} \text{:} \hspace{0.4cm}R_2 \ = \ $

${\rm matrix \ P_3} \ \Rightarrow \ {\rm code \ \mathcal{C}_3} \text{:} \hspace{0.4cm} R_3 \ = \ $

${\rm matrix \ P_4} \ \Rightarrow \ {\rm code \ \mathcal{C}_4} \text{:} \hspace{0.4cm} R_4 \ = \ $

3

Which statements are valid for the matrix elements  $P_{ij}^{(l)}$?

From  $P_{ij}^{(l)} = 1$  follows  $P_{ij}^{(\lambda)} = 1$  for all  $\lambda < l$.
From  $P_{ij}^{(l)} = 1$  follows  $P_{ij}^{(\lambda)} = 1$  for all  $\lambda > l$.
From  $P_{ij}^{(l)} = 0$  follows  $P_{ij}^{(\lambda)} = 0$  for all  $\lambda < l$.
From  $P_{ij}^{(l)} = 0$  follows  $P_{ij}^{(\lambda)} = 0$  for all  $\lambda > l$.


Solution

(1)  Correct are the  solutions 1 and 2:

  • The number of rows of the puncturing matrices gives the parameter  $n$  of the  $(n, \ k = 1)$  RCPC mother code.
  • From this,  its rate is  $R_0 = 1/3$.  The column number is equal to the puncturing period  $p$.  For the class of codes under consideration:  $p = 8$.
  • In contrast,  the puncturing matrices do not provide any information about the memory of the code.


(2)  For the rate of code  $\mathcal{C}_l = p/N_l$,  where  $N_l$  denotes the number of all ones in the puncturing matrix  $\mathbf{P}_l$  and  $p$  denotes the puncturing period.

Starting from the rate  $R_0 = 1/3$  of the mother code  $\mathcal{C}_0$,  we obtain:

  • $R_1 = 8/20 = 2/5 = \underline{0.400}$,
  • $R_2 = 8/16 = 1/2 = \underline{0.500}$,
  • $R_3 = 8/12 = 2/3 = \underline{0.667}$,
  • $R_4 = 8/9 = \underline{0.889}$.


(3)  Correct are the  solutions 1 and  4:

  • All ones in the matrix  $\mathbf{P}_4$  are also in the matrices  $\mathbf{P}_3, \hspace{0.05cm}\text{ ...} \hspace{0.05cm}, \ \mathbf{P}_0$.
  • In the matrix  $\mathbf{P}_3$  three ones are added compared to  $\mathbf{P}_4$,  in the matrix $\mathbf{P}_2$  compared to $\mathbf{P}_3$ again four, etc.