Difference between revisions of "Theory of Stochastic Signals/Further Distributions"

From LNTwww
 
(53 intermediate revisions by 10 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Kontinuierliche Zufallsgrößen
+
|Untermenü=Continuous Random Variables
|Vorherige Seite=Exponentialverteilte Zufallsgrößen
+
|Vorherige Seite=Exponentially Distributed Random Variables
|Nächste Seite=Zweidimensionale Zufallsgrößen
+
|Nächste Seite=Two-Dimensional Random Variables
 
}}
 
}}
==Rayleighverteilung==
+
==Rayleigh PDF==
Diese Verteilung spielt für die Beschreibung zeitvarianter Kanäle – wie sie beispielweise im Mobilfunk vorliegen – eine zentrale Rolle. So weist nichtfrequenzselektives Fading eine solche Verteilung auf, wenn zwischen der festen Basisstation und dem mobilen Teilnehmer keine Sichtverbindung besteht.  
+
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; A continuous-valued random variable&nbsp; $x$&nbsp; is called&nbsp; &raquo;'''Rayleigh distributed'''&laquo;&nbsp; if it cannot take negative values and the probability density function&nbsp; $\rm (PDF)$&nbsp; for&nbsp; $x \ge 0$&nbsp;  has the following shape with the distribution parameter&nbsp; $λ$:
 +
:$$f_{x}(x)=\frac{x}{\lambda^2}\cdot {\rm e}^{-x^2 / ( 2 \hspace{0.05cm}\cdot \hspace{0.05cm}\lambda^2) } .$$}}
  
Die Rayleighverteilung besitzt folgende charakteristische Eigenschaften:  
+
 
*Eine rayleighverteilte Zufallsgröße $x$ kann keine negativen Werte annehmen und der theoretisch mögliche Wert $x =$ 0 tritt auch nur mit der Wahrscheinlichkeit 0 auf.  
+
The name goes back to the English physicist&nbsp; [https://en.wikipedia.org/wiki/John_William_Strutt,_3rd_Baron_Rayleigh $\text{John William Strutt}$]&nbsp; the&nbsp; "third Baron Rayleigh".&nbsp; In 1904 he received the Physics Nobel Prize.
*Für $x$ ≥ 0 hat die WDF mit dem Verteilungsparameter $λ$ den folgenden Verlauf:
+
 
$$f_{\rm x}(x)=\frac{x}{\lambda^2}\cdot\rm e^{-{\it x^{\rm 2}} /{(\rm 2  \it \lambda^{\rm 2})}}.$$
+
*The Rayleigh distribution plays a central role in the description of time-varying channels.&nbsp; Such channels are described in the book&nbsp; [[Mobile_Communications/Probability_Density_of_Rayleigh_Fading|"Mobile Communications"]].
*Das $k$-te Moment einer rayleighverteilten Zufallsgröße $x$ ergibt sich allgemein zu
+
*For example,&nbsp; "non-frequency selective fading"&nbsp; exhibits such a distribution when there is no&nbsp; "line-of-sight"&nbsp; between the base station and the mobile user.
$$m_k=(2\cdot \lambda^{\rm 2})^{\it k/\rm 2}\cdot {\rm \Gamma}( 1+ \frac{\it k}{\rm 2}) \hspace{0.3cm}{\rm mit }\hspace{0.3cm}{\rm \Gamma}(x)= \int_{0}^{\infty} t^{x-1} \cdot  
+
 
 +
 
 +
'''Characteristic properties of Rayleigh distribution''':
 +
*A Rayleigh distributed random variable&nbsp; $x$&nbsp; cannot take negative values.  
 +
*The theoretically possible value&nbsp; $x = 0$&nbsp; also occurs only with probability "zero".  
 +
*The&nbsp; $k$-th moment of a Rayleigh distributed random variable&nbsp; $x$&nbsp; results in general to
 +
:$$m_k=(2\cdot \lambda^{\rm 2})^{\it k/\rm 2}\cdot {\rm \Gamma}( 1+ {\it k}/{\rm 2}) \hspace{0.3cm}{\rm with }\hspace{0.3cm}{\rm \Gamma}(x)= \int_{0}^{\infty} t^{x-1} \cdot  
 
{\rm e}^{-t} \hspace{0.1cm}{\rm d}t.$$
 
{\rm e}^{-t} \hspace{0.1cm}{\rm d}t.$$
*Daraus lassen sich Mittelwert und Streuung folgendermaßen berechnen:
+
*From this,&nbsp; the mean&nbsp; $m_1$&nbsp; and the standard deviation&nbsp; $\sigma$&nbsp; can be calculated as follows:
$$m_1=\sqrt{2}\cdot \lambda\cdot {\rm \Gamma}(1.5) =  
+
:$$m_1=\sqrt{2}\cdot \lambda\cdot {\rm \Gamma}(1.5) =  
\sqrt{2}\cdot \lambda\cdot {\sqrt{\pi}}/{2} =\lambda\cdot\sqrt{{\pi}/{2}},$$
+
\sqrt{2}\cdot \lambda\cdot {\sqrt{\pi}}/{2} =\lambda\cdot\sqrt{{\pi}/{2}},$$
$$m_2=2 \lambda^2 \cdot {\rm \Gamma}(2) =  
+
:$$m_2=2 \lambda^2 \cdot {\rm \Gamma}(2) =  
 
2 \lambda^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma
 
2 \lambda^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma
 
= \sqrt{m_2 - m_1^2}
 
= \sqrt{m_2 - m_1^2}
 
=\lambda\cdot\sqrt{2-{\pi}/{2}}.$$
 
=\lambda\cdot\sqrt{2-{\pi}/{2}}.$$
*Zur Modellierung einer rayleighverteilten Zufallsgröße $x$ verwendet man zum Beispiel zwei gaußverteilte, mittelwertfreie und statistisch unabhängige Zufallsgrößen $u$ und $υ$, die beide die Streuung $σ = λ$ aufweisen. Die Größen $u$ und $υ$ werden dann wie folgt verknüpft:  
+
*To model a Rayleigh distributed random variable&nbsp; $x$&nbsp; one uses,&nbsp; for example,&nbsp; two Gaussian distributed zero mean and statistically independent random variables&nbsp; $u$&nbsp; and&nbsp; $v$,&nbsp; both of which have rms&nbsp; $σ = λ$.&nbsp; The variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are then linked as follows:  
$$x=\sqrt{u^2+\upsilon^2}.$$
+
:$$x=\sqrt{u^2+v^2}.$$
 
 
 
 
{{Beispiel}}
 
Die Grafik zeigt den Zeitverlauf $x(t)$ einer rayleighverteilten Zufallsgröße sowie die zugehörige Dichtefunktion $f_{\rm x}(x)$. Man erkennt aus dieser Darstellung:
 
*Die Rayleigh-WDF ist stets unsymmetrisch.
 
*Der Mittelwert $m_1$ liegt etwa 25% oberhalb des WDF-Maximums, das bei $x = λ$ auftritt.
 
 
 
  
[[File:P_ID62__Sto_T_3_7_S1_neu.png | Mustersignal und WDF einer rayleighverteilten Zufallsgröße]]
+
{{GraueBox|TEXT=
 +
[[File:P_ID62__Sto_T_3_7_S1_neu.png |right|frame|Sample signal and PDF of a Rayleigh distributed random variable|class=fit]]
 +
$\text{Example 1:}$&nbsp; The graph shows:
 +
*the time course&nbsp; $x(t)$&nbsp; of a Rayleigh distributed random variable,&nbsp; as well as,
 +
*the associated probability  density function&nbsp; $f_{x}(x)$.
  
{{end}}
 
  
==Riceverteilung==
+
One can see from this representation:
Auch diese Verteilung spielt für die Beschreibung zeitvarianter Kanäle eine wichtige Rolle, unter Anderem auch deshalb, weil ''nichtfrequenzselektives Fading'' dann riceverteilt ist, wenn zwischen der Basisstation und dem Mobilteilnehmer eine ''Sichtverbindung'' besteht.  
+
*The Rayleigh PDF is always asymmetric.
 +
*The mean&nbsp; $m_1$&nbsp; lies about&nbsp; $25\%$&nbsp; above the PDF maximum.
 +
*The PDF maximum occurs at&nbsp; $x = λ$.  
  
Für die Riceverteilung gelten folgende Aussagen:
 
*Die Wahrscheinlichkeitsdichtefunkion hat für $x$ > 0 den nachfolgend angegebenen Verlauf, wobei $I_0$( ... ) die modifizierte Besselfunktion nullter Ordnung bezeichnet:
 
$$f_x(x)=\frac{x}{\lambda^2}\cdot{\rm e}^{-({C^2+\it x^{\rm 2}})/ ({\rm 2 \it \lambda^{\rm 2}})}\cdot {\rm I_0}(\frac{\it x\cdot C}{\lambda^{\rm 2}}) \hspace{0.4cm}{\rm mit} \hspace{0.4cm} {\rm I_0}(x) = \sum_{k=0}^{\infty}\frac{(x/2)^{2k}}{k! \cdot {\rm \Gamma (k+1)}}.$$
 
*Der gegenüber der Rayleighverteilung zusätzliche Parameter $C$ ist ein Maß für die „Stärke” der Direktkomponente. Je größer der Quotient $C/λ$ ist, desto mehr nähert sich der Ricekanal dem Gauß-Kanal an. Für $C =$ 0 geht die Riceverteilung in die Rayleighverteilung über.
 
*Bei der Riceverteilung ist der Ausdruck für das Moment $m_k$ deutlich komplizierter und nur mit Hilfe hypergeometrischer Funktionen angebbar. Ist jedoch $λ$ sehr viel kleiner als $C$, so gilt $m_1 ≈ C$ und $σ ≈ λ$. Unter diesen Voraussetzungen kann die Riceverteilung durch eine Gaußverteilung mit Mittelwert $C$ und Streuung $λ$ angenähert werden.
 
*Zur Modellierung einer riceverteilten Zufallsgröße $x$ verwenden wir ein ähnliches Modell wie für die Rayleighverteilung, nur muss nun zumindest eine der beiden gaußverteilten und statistisch voneinander unabhängigen Zufallsgrößen $(u$ und/oder $υ$) einen Mittelwert ungleich 0 aufweisen.
 
  
 +
With the HTML 5/JavaScript applet&nbsp; [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|"PDF, CDF and Moments of Special Distributions"]]&nbsp; you can display,&nbsp; among others,&nbsp; the characteristics of the&nbsp; Rayleigh distribution.}}
  
{{Beispiel}}
 
Die Grafik zeigt den zeitlichen Verlauf einer riceverteilten Zufallsgröße $x$ sowie deren Dichtefunktion $f_{\rm x}(x)$, wobei $C/λ =$ 2 gilt. Der Mittelwert $m_1$ ist hier etwas größer als $C$.
 
  
[[File:P_ID63__Sto_T_3_7_S2_neu.png | Mustersignal und WDF einer riceverteilten Zufallsgröße]]
+
==Rice PDF==
 +
<br>
 +
Rice distribution also plays an important role in the description of time-varying channels,
 +
*because "non-frequency selective fading"&nbsp; is Rice distributed,
 +
*if there is&nbsp; "line-of-sight"&nbsp; between the base station and the mobile subscriber.  
  
Etwas salopp ausgedrückt: Die Riceverteilung ist ein Kompromiss zwischen der Rayleigh- und der Gaußverteilung.
 
{{end}}
 
  
 +
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp; A continuous-valued random variable&nbsp; $x$&nbsp; is called&nbsp; &raquo;'''Rice distributed'''&laquo;&nbsp;  if it cannot take negative values and the probability density function&nbsp;  $\rm (PDF)$&nbsp; for&nbsp; $x > 0$&nbsp; has the following shape:
 +
:$$f_{\rm x}(x)=\frac{x}{\lambda^2}\cdot{\rm e}^{-({C^2+\it x^{\rm 2} })/ ({\rm 2 \it \lambda^{\rm 2} })}\cdot {\rm I_0}(\frac{\it x\cdot C}{\lambda^{\rm 2} }) \hspace{0.4cm}{\rm with} \hspace{0.4cm} {\rm I_0}(x) = \sum_{k=0}^{\infty}\frac{(x/2)^{2k} }{k! \cdot {\rm \gamma ({\it k}+1)} }.$$
 +
${\rm I_0}( ... )$ denotes the&nbsp; [https://en.wikipedia.org/wiki/Bessel_function $\text{modified zero-order Bessel function}$].}}
  
Mit dem folgenden Berechnungstool können Sie sich unter Anderem die Kenngrößen (WDF, VTF, Momente) der Rayleigh- und der Riceverteilung anzeigen lassen:
 
WDF, VTF und Momente spezieller Verteilungen
 
  
==Cauchyverteilung==
+
The name is due to the mathematician and logician&nbsp; [https://en.wikipedia.org/wiki/Henry_Gordon_Rice $\text{Henry Gordon Rice}$].&nbsp; He taught as a mathematics professor at the University of New Hampshire.  
Mathematisch sehr interessant (allerdings weniger von praktischer Bedeutung) ist die sogenannte Cauchyverteilung mit folgenden Eigenschaften:  
 
*Wahrscheinlichkeitsdichtefunkion und Verteilungsfunktion lauten mit dem Parameter $λ$:
 
$$f_{\rm }x(x)=\frac{\rm 1}{\it\pi}\cdot\frac{\lambda}{\lambda^2+x^2}, \hspace{2cm} F_{\rm x}(r)=\frac{\rm 1}{2}+{\rm arctan}(\frac{r}{\lambda}).$$
 
*Bei der Cauchyverteilung besitzen alle Momente mit Ausnahme des linearen Mittelwertes $m_1$ einen unendlich großen Wert, und zwar unabhängig vom Parameter $λ$.  
 
*Damit besitzt diese Verteilung auch eine unendlich große Varianz  ⇒  Leistung. Deshalb ist es offensichtlich, dass keine physikalische Größe cauchyverteilt sein kann.
 
*Eine cauchyverteilte Zufallsgröße $x$ lässt sich aus einer zwischen –1 und +1 gleichverteilten Größe erzeugen, wenn man die folgende nichtlineare Transformation durchführt:
 
$$x=\lambda\cdot {\rm tan}( {\pi}/{\rm 2}\cdot u).$$
 
  
  
{{Beispiel}}
+
'''Characteristic properties of the Rice distribution''':
Der Quotient $u/υ$ zweier unabhängiger gaußverteilter mittelwertfreier Größen $u$ und $υ$ ist mit dem Verteilungsparameter $λ = σ_u/σ_υ$ cauchyverteilt.
+
*The additional parameter&nbsp; $C$&nbsp; compared to the Rayleigh distribution is a measure of the&nbsp; "strength"&nbsp; of the direct component.&nbsp; The larger the quotient&nbsp; $C/λ$,&nbsp;  the more the&nbsp; Rice channel approximates the Gaussian channel.&nbsp; For&nbsp; $C = 0$&nbsp; the Rice distribution transitions to the&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rayleigh_PDF|$\text{Rayleigh distribution}$]].
 +
*In the Rice distribution,&nbsp; the expression for the moment&nbsp; $m_k$&nbsp; is much more complicated and can only be specified using hypergeometric functions.&nbsp;
 +
*However,&nbsp; if&nbsp; $λ \ll C$,&nbsp; then&nbsp; $m_1 ≈ C$&nbsp; and&nbsp; $σ ≈ λ$&nbsp; holds.
 +
*Under these conditions,&nbsp; the Rice distribution can be approximated by a&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|$\text{Gaussian distribution}$]]&nbsp; with mean&nbsp; $C$&nbsp; and rms&nbsp; $λ$.
 +
*To model a Rice distributed random variable&nbsp; $x$&nbsp; we use a similar model as for the Rayleigh distribution,&nbsp; except that now at least one of the two Gaussian distributed and statistically independent random variables&nbsp; $(u$&nbsp; and/or &nbsp;$v$&nbsp;)&nbsp; must have a non-zero mean.
 +
:$$x=\sqrt{u^2+v^2}\hspace{0.5cm}{\rm with}\hspace{0.5cm}|m_u| + |m_v| > 0 .$$  
  
[[File:P_ID64__Sto_T_3_7_S3_neu.png | WDF einer cauchyverteilten Zufallsgröße]]
+
{{GraueBox|TEXT=
 +
[[File:P_ID63__Sto_T_3_7_S2_neu.png |right|frame|Sample signal and PDF of a Rice distributed random variable]]
 +
$\text{Example 2:}$&nbsp; The graph shows the time course of a Rice distributed random variable&nbsp; $x$&nbsp; and its probability density function&nbsp; $f_{\rm x}(x)$,&nbsp; where&nbsp; $C/λ = 2$&nbsp; holds.
  
Die Grafik zeigt die Cauchy-WDF. Zu erkennen ist der langsame Abfall dieser Funktion zu den Rändern hin. Da dieser asymptotisch mit $1/x^2$ erfolgt, sind die Varianz und die Momente höherer Ordnung (mit geradzahligem Index) unendlich groß.
+
*Somewhat casually put: &nbsp; The Rice distribution is a compromise between the Rayleigh and the Gaussian distributions.  
{{end}}
+
*Here the mean&nbsp; $m_1$&nbsp; is slightly larger than&nbsp; $C$.  
  
==Tschebyscheffsche Ungleichung==
 
Bei einer Zufallsgröße $x$ mit bekannter WDF $f_{\rm x}(x)$ und VTF $F_{\rm x}(r)$ kann die Wahrscheinlichkeit, dass die Zufallsgröße $x$ betragsmäßig um mehr als einen Wert $ε$ von ihrem Mittelwert $m_{\rm x}$ abweicht, entsprechend der in diesem Kapitel allgemein beschriebenen Weise berechnet werden.
 
  
Ist neben dem Mittelwert $m_{\rm x}$ zwar noch die Streuung $σ_{\rm x}$ bekannt, nicht jedoch der exakte WDF-Verlauf, so lässt sich für diese Wahrscheinlichkeit zumindest eine obere Schranke angeben:
 
[[File:P_ID623__Sto_T_3_7_S4_ganz_neu.png | Tschebyscheffsche Ungleichung | rechts]]
 
  
  
  
 +
With the HTML 5/JavaScript applet&nbsp; [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|"PDF, CDF and Moments of Special Distributions"]]&nbsp; you can display,&nbsp; among others,&nbsp; the characteristics of the&nbsp; Rice distribution.}}
 +
  
 +
  
 +
==Cauchy PDF==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; A continuous-valued random variable&nbsp; $x$&nbsp; is called&nbsp; &raquo;'''Cauchy distributed'''&laquo;&nbsp; if the probability density function&nbsp; $\rm (PDF)$&nbsp; and the cumulative distribution function&nbsp; $\rm  (CDF)$&nbsp; with parameter&nbsp; $λ$&nbsp; have the following form:
 +
:$$f_{x}(x)=\frac{1}{\pi}\cdot\frac{\lambda}{\lambda^2+x^2},$$
 +
:$$F_{x}(r)={\rm 1}/{2}+{\rm arctan}({r}/{\lambda}).$$
 +
Sometimes in the literature,&nbsp; a mean&nbsp; $m_1$&nbsp; is also considered. }}
  
  
$${\rm Pr}(|x - m_{\rm x}|\ge\varepsilon)\le\frac{\sigma_{x}^{\rm 2}}{\varepsilon^{\rm 2}}. $$
+
The name derives from the French mathematician&nbsp; [https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy $\text{Augustin-Louis Cauchy}$],&nbsp; a pioneer of calculus who further developed the foundations established by&nbsp; [https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz $\text{Gottfried Wilhelm Leibniz}$]&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/Isaac_Newton $\text{Sir Isaac Newton}$]&nbsp; and formally proved fundamental propositions.&nbsp; In particular,&nbsp; many central theorems of&nbsp; "Function Theory"&nbsp; derive from Cauchy.
  
 +
The Cauchy distribution has less practical significance for communications engineering,&nbsp; but is mathematically very interesting.&nbsp; It has the following properties in the symmetric form&nbsp; $($with mean&nbsp; $m_1 = 0)$:
 +
*For the Cauchy distribution, all moments&nbsp; $m_k$&nbsp; for even&nbsp; $k$&nbsp; have an infinitely large value, and this is independent of the parameter&nbsp; $λ$.
 +
*Thus,&nbsp; this distribution also has an infinitely large variance&nbsp; $\sigma^2 = m_2$ &nbsp; ⇒ &nbsp; "power" &nbsp; &rArr; &nbsp; it is obvious that no physical variable can be Cauchy distributed.
 +
*The quotient&nbsp; $u/v$&nbsp; of two independent Gaussian distributed zero mean variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; is Cauchy distributed with the distribution parameter&nbsp; $λ = σ_u/σ_v$&nbsp; . 
 +
*A Cauchy distributed random variable&nbsp; $x$&nbsp; can be generated from a random variable&nbsp; $\pm1$&nbsp; uniformly distributed between&nbsp; $u$&nbsp; by the following&nbsp; [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|$\text{nonlinear transformation}$]]:
 +
:$$x=\lambda \cdot {\tan}( {\pi}/{2}\cdot u).$$
 +
*Because of symmetry,&nbsp; for odd&nbsp; $k$&nbsp; all moments&nbsp; $m_k = 0$,&nbsp; assuming the&nbsp; "Cauchy Principal Value".
 +
*So the mean value&nbsp; $m_X = 0$&nbsp; and the Charlier skewness&nbsp; $S_X = 0$&nbsp; also hold.
  
  
 +
{{GraueBox|TEXT=
 +
[[File:EN_Sto_T_3_7_S3.png |right|frame| PDF of a Cauchy distributed random variable]]
 +
$\text{Example 3:}$&nbsp; The graph shows the typical course of the Cauchy PDF.
  
 +
*The slow decline of this function towards the edges can be seen.
 +
*As this occurs asymptotically with&nbsp; $1/x^2$&nbsp; the variance and all higher order moments (with even index) are infinite.
  
  
Line 99: Line 122:
  
  
Diese von Pafnuti L. Tschebyscheff  angegebene Schranke – bekannt als „Tschebyscheffsche Ungleichung” – ist im Allgemeinen allerdings nur eine sehr grobe Näherung für die tatsächliche Überschreitungswahrscheinlichkeit. Sie sollte deshalb nur bei unbekanntem Verlauf der WDF $f_{\rm x}(x)$ angewandt werden.
 
  
{{Beispiel}}
+
With the HTML 5/JavaScript applet&nbsp; [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|"PDF, CDF and Moments of Special Distributions"]]&nbsp; you can display,&nbsp; among others,&nbsp; the characteristics of the&nbsp; Cauchy distribution.}}
Wir gehen von einer gaußverteilten und mittelwertfreien Zufallsgröße $x$ aus.
 
*Damit ist die Wahrscheinlichkeit, dass deren Betrag $|x|$ größer als die 3-fache Streuung (3 · $σ_{\rm x}$) ist, einfach berechenbar und ergibt den Wert ${\rm 2 · Q(3) ≈ 2.7 · 10^{–3}}.$
 
*Die Tschebyscheffsche Ungleichung liefert hier als eine obere Schranke den deutlich zu großen Wert 1/9 ≈ 0.111, die aber für jede beliebige WDF–Form ebenfalls gelten würde.
 
  
  
{{end}}
 
  
 +
==Chebyshev's inequality==
 +
<br>
 +
[[File:EN_Sto_T_3_7_S4_neu.png |frame| Chebyshev's inequality | right]]
 +
Given a random variable&nbsp; $x$&nbsp; with known probability density function&nbsp; $f_{x}(x)$&nbsp; the probability that the random variable&nbsp; $x$&nbsp; deviates in magnitude by more than the value&nbsp; $ε$&nbsp; from its mean&nbsp; $m_{x}$&nbsp; can be calculated exactly according to the way generally described in this chapter.
  
 +
*If besides the mean&nbsp; $m_{x}$&nbsp; the standard deviation&nbsp; $σ_{x}$&nbsp; is known,&nbsp; but not the exact&nbsp; $\rm PDF$&nbsp; course&nbsp; $f_{x}(x)$,&nbsp; at least an upper bound can be given for this probability:
 +
:$${\rm Pr}(|x - m_{\rm x}|\ge\varepsilon)\le\frac{\sigma_{x}^{\rm 2}}{\varepsilon^{\rm 2}}. $$
 +
*This bound given by&nbsp; [https://en.wikipedia.org/wiki/Pafnuty_Chebyshev $\text{Pafnuti L. Chebyshev}$]&nbsp; - known as&nbsp; "Chebyshev's inequality"&nbsp; - is in general only a very rough approximation for the actual exceeding probability.&nbsp; It should therefore be applied only in the case of an unknown course of the PDF&nbsp; $f_{x}(x)$.
 +
<br clear=all>
 +
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$&nbsp; We assume a Gaussian distributed and zero mean random variable&nbsp; $x$.
 +
*Thus,&nbsp; the probability that its absolute value&nbsp; $\vert x \vert $&nbsp; is greater than three times the rms&nbsp; $(3 \cdot σ_{x})$&nbsp; is easily computable.&nbsp; Result:&nbsp; ${\rm 2 - Q(3) ≈ 2.7 \cdot 10^{-3} }.$
 +
*Chebyshev's inequality yields here as an upper bound the clearly too large value&nbsp; $1/9 ≈ 0.111$.
 +
*This Chebyshev bound would hold for any PDF form.}}
  
 +
==Exercises for the chapter==
  
 +
[[Aufgaben:Exercise_3.10:_Rayleigh_Fading|Exercise 3.10: Rayleigh Fading]]
  
 +
[[Aufgaben:Exercise_3.10Z:_Rayleigh%3F_Or_Rice%3F|Exercise 3.10Z: Rayleigh? Or Rice?]]
  
 +
[[Aufgaben:Exercise_3.11:_Chebyshev%27s_Inequality|Exercise 3.11: Chebyshev's Inequality]]
  
 +
[[Aufgaben:Exercise_3.12:_Cauchy_Distribution|Exercise 3.12: Cauchy Distribution]]
  
 
{{Display}}
 
{{Display}}

Latest revision as of 10:03, 22 December 2022

Rayleigh PDF


$\text{Definition:}$  A continuous-valued random variable  $x$  is called  »Rayleigh distributed«  if it cannot take negative values and the probability density function  $\rm (PDF)$  for  $x \ge 0$  has the following shape with the distribution parameter  $λ$:

$$f_{x}(x)=\frac{x}{\lambda^2}\cdot {\rm e}^{-x^2 / ( 2 \hspace{0.05cm}\cdot \hspace{0.05cm}\lambda^2) } .$$


The name goes back to the English physicist  $\text{John William Strutt}$  the  "third Baron Rayleigh".  In 1904 he received the Physics Nobel Prize.

  • The Rayleigh distribution plays a central role in the description of time-varying channels.  Such channels are described in the book  "Mobile Communications".
  • For example,  "non-frequency selective fading"  exhibits such a distribution when there is no  "line-of-sight"  between the base station and the mobile user.


Characteristic properties of Rayleigh distribution:

  • A Rayleigh distributed random variable  $x$  cannot take negative values.
  • The theoretically possible value  $x = 0$  also occurs only with probability "zero".
  • The  $k$-th moment of a Rayleigh distributed random variable  $x$  results in general to
$$m_k=(2\cdot \lambda^{\rm 2})^{\it k/\rm 2}\cdot {\rm \Gamma}( 1+ {\it k}/{\rm 2}) \hspace{0.3cm}{\rm with }\hspace{0.3cm}{\rm \Gamma}(x)= \int_{0}^{\infty} t^{x-1} \cdot {\rm e}^{-t} \hspace{0.1cm}{\rm d}t.$$
  • From this,  the mean  $m_1$  and the standard deviation  $\sigma$  can be calculated as follows:
$$m_1=\sqrt{2}\cdot \lambda\cdot {\rm \Gamma}(1.5) = \sqrt{2}\cdot \lambda\cdot {\sqrt{\pi}}/{2} =\lambda\cdot\sqrt{{\pi}/{2}},$$
$$m_2=2 \lambda^2 \cdot {\rm \Gamma}(2) = 2 \lambda^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma = \sqrt{m_2 - m_1^2} =\lambda\cdot\sqrt{2-{\pi}/{2}}.$$
  • To model a Rayleigh distributed random variable  $x$  one uses,  for example,  two Gaussian distributed zero mean and statistically independent random variables  $u$  and  $v$,  both of which have rms  $σ = λ$.  The variables  $u$  and  $v$  are then linked as follows:
$$x=\sqrt{u^2+v^2}.$$
Sample signal and PDF of a Rayleigh distributed random variable

$\text{Example 1:}$  The graph shows:

  • the time course  $x(t)$  of a Rayleigh distributed random variable,  as well as,
  • the associated probability density function  $f_{x}(x)$.


One can see from this representation:

  • The Rayleigh PDF is always asymmetric.
  • The mean  $m_1$  lies about  $25\%$  above the PDF maximum.
  • The PDF maximum occurs at  $x = λ$.


With the HTML 5/JavaScript applet  "PDF, CDF and Moments of Special Distributions"  you can display,  among others,  the characteristics of the  Rayleigh distribution.


Rice PDF


Rice distribution also plays an important role in the description of time-varying channels,

  • because "non-frequency selective fading"  is Rice distributed,
  • if there is  "line-of-sight"  between the base station and the mobile subscriber.


$\text{Definition:}$  A continuous-valued random variable  $x$  is called  »Rice distributed«  if it cannot take negative values and the probability density function  $\rm (PDF)$  for  $x > 0$  has the following shape:

$$f_{\rm x}(x)=\frac{x}{\lambda^2}\cdot{\rm e}^{-({C^2+\it x^{\rm 2} })/ ({\rm 2 \it \lambda^{\rm 2} })}\cdot {\rm I_0}(\frac{\it x\cdot C}{\lambda^{\rm 2} }) \hspace{0.4cm}{\rm with} \hspace{0.4cm} {\rm I_0}(x) = \sum_{k=0}^{\infty}\frac{(x/2)^{2k} }{k! \cdot {\rm \gamma ({\it k}+1)} }.$$

${\rm I_0}( ... )$ denotes the  $\text{modified zero-order Bessel function}$.


The name is due to the mathematician and logician  $\text{Henry Gordon Rice}$.  He taught as a mathematics professor at the University of New Hampshire.


Characteristic properties of the Rice distribution:

  • The additional parameter  $C$  compared to the Rayleigh distribution is a measure of the  "strength"  of the direct component.  The larger the quotient  $C/λ$,  the more the  Rice channel approximates the Gaussian channel.  For  $C = 0$  the Rice distribution transitions to the  $\text{Rayleigh distribution}$.
  • In the Rice distribution,  the expression for the moment  $m_k$  is much more complicated and can only be specified using hypergeometric functions. 
  • However,  if  $λ \ll C$,  then  $m_1 ≈ C$  and  $σ ≈ λ$  holds.
  • Under these conditions,  the Rice distribution can be approximated by a  $\text{Gaussian distribution}$  with mean  $C$  and rms  $λ$.
  • To model a Rice distributed random variable  $x$  we use a similar model as for the Rayleigh distribution,  except that now at least one of the two Gaussian distributed and statistically independent random variables  $(u$  and/or  $v$ )  must have a non-zero mean.
$$x=\sqrt{u^2+v^2}\hspace{0.5cm}{\rm with}\hspace{0.5cm}|m_u| + |m_v| > 0 .$$
Sample signal and PDF of a Rice distributed random variable

$\text{Example 2:}$  The graph shows the time course of a Rice distributed random variable  $x$  and its probability density function  $f_{\rm x}(x)$,  where  $C/λ = 2$  holds.

  • Somewhat casually put:   The Rice distribution is a compromise between the Rayleigh and the Gaussian distributions.
  • Here the mean  $m_1$  is slightly larger than  $C$.



With the HTML 5/JavaScript applet  "PDF, CDF and Moments of Special Distributions"  you can display,  among others,  the characteristics of the  Rice distribution.



Cauchy PDF


$\text{Definition:}$  A continuous-valued random variable  $x$  is called  »Cauchy distributed«  if the probability density function  $\rm (PDF)$  and the cumulative distribution function  $\rm (CDF)$  with parameter  $λ$  have the following form:

$$f_{x}(x)=\frac{1}{\pi}\cdot\frac{\lambda}{\lambda^2+x^2},$$
$$F_{x}(r)={\rm 1}/{2}+{\rm arctan}({r}/{\lambda}).$$

Sometimes in the literature,  a mean  $m_1$  is also considered.


The name derives from the French mathematician  $\text{Augustin-Louis Cauchy}$,  a pioneer of calculus who further developed the foundations established by  $\text{Gottfried Wilhelm Leibniz}$  and  $\text{Sir Isaac Newton}$  and formally proved fundamental propositions.  In particular,  many central theorems of  "Function Theory"  derive from Cauchy.

The Cauchy distribution has less practical significance for communications engineering,  but is mathematically very interesting.  It has the following properties in the symmetric form  $($with mean  $m_1 = 0)$:

  • For the Cauchy distribution, all moments  $m_k$  for even  $k$  have an infinitely large value, and this is independent of the parameter  $λ$.
  • Thus,  this distribution also has an infinitely large variance  $\sigma^2 = m_2$   ⇒   "power"   ⇒   it is obvious that no physical variable can be Cauchy distributed.
  • The quotient  $u/v$  of two independent Gaussian distributed zero mean variables  $u$  and  $v$  is Cauchy distributed with the distribution parameter  $λ = σ_u/σ_v$  .
  • A Cauchy distributed random variable  $x$  can be generated from a random variable  $\pm1$  uniformly distributed between  $u$  by the following  $\text{nonlinear transformation}$:
$$x=\lambda \cdot {\tan}( {\pi}/{2}\cdot u).$$
  • Because of symmetry,  for odd  $k$  all moments  $m_k = 0$,  assuming the  "Cauchy Principal Value".
  • So the mean value  $m_X = 0$  and the Charlier skewness  $S_X = 0$  also hold.


PDF of a Cauchy distributed random variable

$\text{Example 3:}$  The graph shows the typical course of the Cauchy PDF.

  • The slow decline of this function towards the edges can be seen.
  • As this occurs asymptotically with  $1/x^2$  the variance and all higher order moments (with even index) are infinite.




With the HTML 5/JavaScript applet  "PDF, CDF and Moments of Special Distributions"  you can display,  among others,  the characteristics of the  Cauchy distribution.


Chebyshev's inequality


Chebyshev's inequality

Given a random variable  $x$  with known probability density function  $f_{x}(x)$  the probability that the random variable  $x$  deviates in magnitude by more than the value  $ε$  from its mean  $m_{x}$  can be calculated exactly according to the way generally described in this chapter.

  • If besides the mean  $m_{x}$  the standard deviation  $σ_{x}$  is known,  but not the exact  $\rm PDF$  course  $f_{x}(x)$,  at least an upper bound can be given for this probability:
$${\rm Pr}(|x - m_{\rm x}|\ge\varepsilon)\le\frac{\sigma_{x}^{\rm 2}}{\varepsilon^{\rm 2}}. $$
  • This bound given by  $\text{Pafnuti L. Chebyshev}$  - known as  "Chebyshev's inequality"  - is in general only a very rough approximation for the actual exceeding probability.  It should therefore be applied only in the case of an unknown course of the PDF  $f_{x}(x)$.


$\text{Example 4:}$  We assume a Gaussian distributed and zero mean random variable  $x$.

  • Thus,  the probability that its absolute value  $\vert x \vert $  is greater than three times the rms  $(3 \cdot σ_{x})$  is easily computable.  Result:  ${\rm 2 - Q(3) ≈ 2.7 \cdot 10^{-3} }.$
  • Chebyshev's inequality yields here as an upper bound the clearly too large value  $1/9 ≈ 0.111$.
  • This Chebyshev bound would hold for any PDF form.

Exercises for the chapter

Exercise 3.10: Rayleigh Fading

Exercise 3.10Z: Rayleigh? Or Rice?

Exercise 3.11: Chebyshev's Inequality

Exercise 3.12: Cauchy Distribution