Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.09: Recursive Systematic Convolutional Codes"

From LNTwww
 
(5 intermediate revisions by the same user not shown)
Line 34: Line 34:
 
   
 
   
 
* The following vectorial quantities are used in the questions for this exercise:
 
* The following vectorial quantities are used in the questions for this exercise:
** the information sequence:  u_=(u1,u2,...),
 
  
** the parity-check sequence:  p_=(p1,p2,...),
+
:* the information sequence:  u_=(u1,u2,...),
 
+
:* the parity-check sequence:  p_=(p1,p2,...),
** the impulse response:  g_=(g1,g2,...); this is equal to the parity sequence p_  for  u_=(1,0,0,...).
+
:* the impulse response:  g_=(g1,g2,...); this is equal to the parity sequence  p_  for  u_=(1,0,0,...).
  
  
Line 46: Line 45:
 
{What is the impulse response  g_ ?
 
{What is the impulse response  g_ ?
 
|type="()"}
 
|type="()"}
+   g_=(1,1,1,0,1,1,0,1,1,...) holds.
+
+   g_=(1,1,1,0,1,1,0,1,1,...).
-   g_=(1,0,1,0,0,0,0,0,0,...) holds.
+
-   g_=(1,0,1,0,0,0,0,0,0,...).
  
{It holds  u_=(1,1,0,1). Which statements hold for the parity sequence  p_ ?
+
{It holds   u_=(1,1,0,1).  Which statements hold for the parity sequence  p_ ?
 
|type="[]"}
 
|type="[]"}
-   p_=(1,0,1,0,0,0,0,0,0,0,0,0,...) holds.
+
-   p_=(1,0,1,0,0,0,0,0,0,0,0,0,...).
+   p_=(1,0,0,0,0,1,1,0,1,1,0,1,...) holds.
+
+   p_=(1,0,0,0,0,1,1,0,1,1,0,1,...).
- With limited information sequence  u_  is always also  p_  limited.
+
- With limited information sequence  u_   ⇒   p_  is also limited.
  
 
{What is the  D–transfer function  G(D)?
 
{What is the  D–transfer function  G(D)?
 
|type="[]"}
 
|type="[]"}
+   G(D)=1+D+D2+D4+D5+D7+D8+... holds.
+
+   G(D)=1+D+D2+D4+D5+D7+D8+....
+   G(D)=(1+D2)/(1+D+D2) holds.
+
+   G(D)=(1+D2)/(1+D+D2).
-   G(D)=(1+D+D2)/(1+D2) holds.
+
-   G(D)=(1+D+D2)/(1+D2).
  
{Now let  u_=(1,1,1) hold. Which statements hold for the parity sequence  p_?
+
{Now let  u_=(1,1,1).  Which statements hold for the parity sequence  p_?
 
|type="[]"}
 
|type="[]"}
+   p_=(1,0,1,0,0,0,0,0,0,0,0,0,...) holds.
+
+   p_=(1,0,1,0,0,0,0,0,0,0,0,0,...).
-   p_=(1,0,0,0,0,1,1,0,1,1,0,1,...) holds.
+
-   p_=(1,0,0,0,0,1,1,0,1,1,0,1,...).
- With unlimited impulse response  $\underline{g}$  is always also  p_  unlimited.
+
- With limited information sequence  $\underline{u}$   ⇒   p_  is also limited.
  
 
{What is the free distance  dF  of this RSC encoder?
 
{What is the free distance  dF  of this RSC encoder?
Line 74: Line 73:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Tracing the transitions in the state diagram for the sequence   u_=(1,0,0,0,0,0,0,0,0)   at the input, we get the path
+
'''(1)'''  Tracing the transitions in the state diagram for the sequence    u_=(1,0,0,0,0,0,0,0,0)    at the input,  we get the path
 
:S_0 → S_1 → S_3 → S_2 → S_1 → S_3 → S_2 → S_1 → S_3 → \hspace{0.05cm}\text{...}  \hspace{0.05cm}
 
:S_0 → S_1 → S_3 → S_2 → S_1 → S_3 → S_2 → S_1 → S_3 → \hspace{0.05cm}\text{...}  \hspace{0.05cm}
  
*For each transition, the first code symbol x(1)i is equal to the information bit ui and the code symbol x(2)i indicates the parity-check bit pi.  
+
*For each transition,  the first code symbol  x(1)i  is equal to the information bit  ui  and the code symbol  x(2)i  indicates the parity-check bit  pi.
 +
 
*This gives the result corresponding to <u>solution proposition 1</u>:
 
*This gives the result corresponding to <u>solution proposition 1</u>:
 
:$$\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},
 
:$$\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},
Line 90: Line 90:
 
= \underline{g}\hspace{0.05cm}.$$
 
= \underline{g}\hspace{0.05cm}.$$
  
*For any RSC code, the impulse response g_ is infinite in length and becomes periodic at some point, in this example with period&nbsp; P=3&nbsp; and&nbsp; "0,1,1".
+
*For any RSC code,&nbsp; the impulse response&nbsp; g_&nbsp; is infinite in length and becomes periodic at some point,&nbsp; in this example with period&nbsp; P=3&nbsp; and&nbsp; "0,1,1".
  
  
  
[[File:P_ID3054__KC_A_4_9b_v1.png|right|frame|Clarification of&nbsp;  p_=(1,1,0,1)TG]]
+
[[File:EN_KC_A_4_9b_v1.png|right|frame|Clarification of&nbsp;  p_=(1,1,0,1)TG]]
 
'''(2)'''&nbsp; The graph shows the solution of this exercise according to the equation&nbsp; p_=u_TG.
 
'''(2)'''&nbsp; The graph shows the solution of this exercise according to the equation&nbsp; p_=u_TG.
* Here the generator matrix&nbsp; G&nbsp; is infinitely extended downward and to the right.  
+
* Here the generator matrix&nbsp; G&nbsp; is infinitely extended downward and to the right.
*The correct solution is <u>proposal 2</u>.
+
<br clear=all>
+
*The correct solution is&nbsp; <u>proposal 2</u>.
'''(3)'''&nbsp; Correct are <u>the proposed solutions 1 and 2</u>:
+
 
*Between the impulse response g_ and the D&ndash;transfer function G(D) there is the relation according to the first proposed solution:  
+
 
 +
 
 +
'''(3)'''&nbsp; Correct are&nbsp; <u>the proposed solutions 1 and 2</u>:
 +
*Between the impulse response&nbsp; g_&nbsp; and the&nbsp; D&ndash;transfer function&nbsp; G(D)&nbsp; there is the relation according to the first proposed solution:  
 
:$$\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm},
 
:$$\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm},
\hspace{-0.05cm}1\hspace{-0.05cm},
+
\hspace{-0.07cm}1\hspace{-0.07cm},
\hspace{-0.05cm}1\hspace{-0.05cm},
+
\hspace{-0.07cm}1\hspace{-0.07cm},
\hspace{-0.05cm}0\hspace{-0.05cm},
+
\hspace{-0.07cm}0\hspace{-0.07cm},
\hspace{-0.05cm}1\hspace{-0.05cm},
+
\hspace{-0.07cm}1\hspace{-0.07cm},
\hspace{-0.05cm}1\hspace{-0.05cm},
+
\hspace{-0.07cm}1\hspace{-0.07cm},
\hspace{-0.05cm}0\hspace{-0.05cm},
+
\hspace{-0.07cm}0\hspace{-0.07cm},
\hspace{-0.05cm}1\hspace{-0.05cm},
+
\hspace{-0.07cm}1\hspace{-0.07cm},
\hspace{-0.05cm}1\hspace{-0.05cm},
+
\hspace{-0.07cm}1\hspace{-0.07cm},
... ) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad
+
... ) \hspace{0.3cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet \hspace{0.3cm}
G(D) =  1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 + \hspace{0.05cm} \text{...} \hspace{0.05cm}.$$
+
G(D) =  1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 +   \text{...} .$$
  
 
*Let us now examine the second proposal:
 
*Let us now examine the second proposal:
Line 125: Line 128:
 
cm}+ D^2} \hspace{0.05cm}.$$
 
cm}+ D^2} \hspace{0.05cm}.$$
  
*But since equation (2) is true, the last equation must be false.
+
*But since equation&nbsp; '''(2)'''&nbsp; is true,&nbsp; the last equation must be false.
  
  
  
'''(4)'''&nbsp; Correct is only the <u>proposed solution 1</u>:
+
'''(4)'''&nbsp; Correct is only the&nbsp; <u>proposed solution 1</u>:
*From u_=(1,1,1) follows U(D)=1+D+D2. Thus also holds:
+
*From &nbsp; u_=(1,1,1) &nbsp; follows &nbsp; U(D)=1+D+D2.&nbsp; Thus also holds:
 
:$$P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm}  
 
:$$P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm}  
 
\Rightarrow\hspace{0.3cm}  \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}. $$
 
\Rightarrow\hspace{0.3cm}  \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}. $$
* If the variables&nbsp; ui&nbsp; and&nbsp; gi&nbsp; were real-valued, the (discrete) convolution&nbsp; p_=u_g_&nbsp;  would always lead to a broadening&nbsp; &#8658; &nbsp; p_&nbsp; in this case would be broader than&nbsp; u_&nbsp; and also broader than&nbsp; g_.
+
* If the variables &nbsp; ui &nbsp; and &nbsp; gi &nbsp; were real-valued,&nbsp; the&nbsp; $($discrete$)$&nbsp; convolution &nbsp; p_=u_g_&nbsp;  would always lead to a broadening.
* On the other hand, for&nbsp; u_i &#8712; {\rm GF}(2)&nbsp; and&nbsp; g_i &#8712; {\rm GF}(2)&nbsp; it may (but need not) happen that even with unbounded&nbsp;  u_&nbsp; or for unbounded&nbsp; g_&nbsp; the convolution product&nbsp; p_=u_g_&nbsp; is bounded.
+
[[File:EN_KC_A_4_9d_v1.png|right|frame|Clarification of&nbsp; p_=(1,1,1,0,...)TG]]
[[File:EN_KC_A_4_9d_v1.png|right|frame|Verdeutlichung von&nbsp;  p_=(1,1,1,0,...)TG]]
+
*In this case &nbsp; p_&nbsp; would be broader than &nbsp; u_ &nbsp; and also broader than &nbsp; g_.
*The result is finally checked according to the equation p_=u_TG is checked.
+
 
 +
* On the other hand,&nbsp;  for &nbsp; u_i &#8712; {\rm GF}(2) &nbsp; and &nbsp; g_i &#8712; {\rm GF}(2) &nbsp; it may&nbsp; $($but need not$)$&nbsp; happen that even with unlimited &nbsp;  u_ &nbsp; or for unlimited &nbsp; g_ &nbsp; the convolution product &nbsp; p_=u_g_&nbsp; is limited.
 +
 
 +
*The result is finally checked according to the equation&nbsp; p_=u_TG&nbsp; is checked.&nbsp; See graph on the right.
  
  
  
'''(5)'''&nbsp; Following a similar procedure as in [[Aufgaben:Exercise_4.08:_Repetition_to_the_Convolutional_Codes|"Exercise A4.8, (4)"]], one can see:
+
'''(5)'''&nbsp; Following a similar procedure as in&nbsp; [[Aufgaben:Exercise_4.08:_Repetition_to_the_Convolutional_Codes|$\text{Exercise A4.8}$,&nbsp; (4)]],&nbsp; one can see:
*The free distance is again determined by the path&nbsp; S_0 &#8594; S_0 &#8594; S_1 &#8594; S_2 &#8594; S_0 &#8594; S_0 &#8594; \hspace{0.05cm}\text{...}\hspace{0.05cm}.
+
*The free distance is again determined by the path&nbsp;  
*But the associated code sequence&nbsp; x_&nbsp; is now &nbsp;" 00 11 10 11 00 ...".  
+
:$$S_0 &#8594; S_0 &#8594; S_1 &#8594; S_2 &#8594; S_0 &#8594; S_0 &#8594; \hspace{0.05cm}\text{...}\hspace{0.05cm}.$$  
*This gives the free distance to&nbsp; dF =5_.  
+
*But the associated encoded sequence&nbsp; x_&nbsp; is now &nbsp;" 00 11 10 11 00 ...".
*In contrast, in the non-recursive code (exercise 4.8), the free distance was&nbsp; dF=3.
+
 +
*This gives the free distance to&nbsp; dF =5_.
 +
 +
*In contrast,&nbsp; in the non-recursive code&nbsp; $($Exercise 4.8$)$,&nbsp; the free distance was&nbsp; dF=3.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 18:06, 13 March 2023

State transition diagram
of an RSC code

In  Exercise 4.8  important properties of convolutional codes have already been derived from the state transition diagram,  assuming a non-recursive filter structure.

Now a rate  1/2  RSC code is treated in a similar manner.  Here  RSC  stands for  "recursive systematic convolutional".

The transfer function matrix of an RSC convolutional code can be specified as follows:

{\boldsymbol{\rm G}}(D) = \left [ 1\hspace{0.05cm},\hspace{0.3cm} G^{(2)}(D)/G^{(1)}(D) \right ] \hspace{0.05cm}.

Otherwise,  exactly the same conditions apply here as in Exercise 4.8.  We refer again to the following theory pages:

  1. "Systematic convolutional codes"
  2. "Representation in the state transition diagram"
  3. "Definition of the free distance"
  4. "GF(2) description forms of a digital filter"
  5. "Application of the  D–transform to rate  1/n  convolution encoders"
  6. "Filter structure with fractional–rational transfer function"


In the state transition diagram,  two arrows go from each state.  The label is  "u_i \hspace{0.05cm}| \hspace{0.05cm} x_i^{(1)}x_i^{(2)}".  For a systematic code,  this involves:

  • The first code bit is identical to the information bit:   \hspace{0.2cm} x_i^{(1)} = u_i ∈ \{0, \, 1\}.
  • The second code bit is the parity-check bit:   \hspace{0.2cm} x_i^{(2)} = p_i ∈ \{0, \, 1\}.




Hints:

  • The following vectorial quantities are used in the questions for this exercise:
  • the information sequence:  \hspace{0.2cm} \underline{u} = (u_1, \, u_2, \text{...} \hspace{0.05cm} ),
  • the parity-check sequence:  \hspace{0.2cm} \underline{p} = (p_1, \, p_2, \text{...} \hspace{0.05cm}),
  • the impulse response:  \hspace{0.2cm} \underline{g} = (g_1, \, g_2, \text{...} \hspace{0.05cm} ); \hspace{0.2cm} this is equal to the parity sequence  \underline{p}  for  \underline{u} = (1, \, 0, \, 0, \text{...} \hspace{0.05cm} ).


Questions

1

What is the impulse response  \underline{g} ?

  \underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{...} \hspace{0.05cm}).
  \underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm}).

2

It holds   \underline{u} = (1, \, 1, \, 0, \, 1).  Which statements hold for the parity sequence  \underline{p} ?

  \underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm}).
  \underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm}).
With limited information sequence  \underline{u}   ⇒   \underline{p}  is also limited.

3

What is the  D–transfer function  G(D)?

  G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \text{...} \hspace{0.05cm}.
  G(D) = (1 + D^2)/(1 + D + D^2).
  G(D) = (1 + D + D^2)/(1 + D^2).

4

Now let  \underline{u} = (1, \, 1, \, 1).  Which statements hold for the parity sequence  \underline{p}?

  \underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm}).
  \underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm}).
With limited information sequence  \underline{u}   ⇒   \underline{p}  is also limited.

5

What is the free distance  d_{\rm F}  of this RSC encoder?

d_{\rm F} \ = \


Solution

(1)  Tracing the transitions in the state diagram for the sequence   \underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0)   at the input,  we get the path

S_0 → S_1 → S_3 → S_2 → S_1 → S_3 → S_2 → S_1 → S_3 → \hspace{0.05cm}\text{...} \hspace{0.05cm}
  • For each transition,  the first code symbol  x_i^{(1)}  is equal to the information bit  u_i  and the code symbol  x_i^{(2)}  indicates the parity-check bit  p_i.
  • This gives the result corresponding to solution proposition 1:
\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{...} \hspace{0.05cm}) = \underline{g}\hspace{0.05cm}.
  • For any RSC code,  the impulse response  \underline{g}  is infinite in length and becomes periodic at some point,  in this example with period  P = 3  and  "0, \, 1, \, 1".


Clarification of  \underline{p} = (1, \, 1, \, 0, \, 1)^{\rm T} \cdot \mathbf{G}

(2)  The graph shows the solution of this exercise according to the equation  \underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}.

  • Here the generator matrix  \mathbf{G}  is infinitely extended downward and to the right.
  • The correct solution is  proposal 2.


(3)  Correct are  the proposed solutions 1 and 2:

  • Between the impulse response  \underline{g}  and the  D–transfer function  \mathbf{G}(D)  there is the relation according to the first proposed solution:
\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}0\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}0\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, ... ) \hspace{0.3cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet \hspace{0.3cm} G(D) = 1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 + \text{...} .
  • Let us now examine the second proposal:
G(D) = \frac{1+ D^2}{1+ D + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G(D) \cdot [1+ D + D^2] = 1+ D^2 \hspace{0.05cm}.
  • The following calculation shows that this equation is indeed true:
(1+ D+ D^2+ D^4 +D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}) \cdot (1+ D+ D^2 ) =
=1+ D+ D^2\hspace{1.05cm} +D^4 + D^5 \hspace{1.05cm} +D^7 + D^8 \hspace{1.05cm} + D^{10}+ \hspace{0.05cm} \text{...}
+ \hspace{0.8cm}D+ D^2+D^3 \hspace{1.05cm}+ D^5 + D^6 \hspace{1.05cm} +D^8 + D^9 \hspace{1.25cm} +\hspace{0.05cm} \text{...}
+ \hspace{1.63cm} D^2+D^3+ D^4 \hspace{1.05cm}+ D^6 +D^7 \hspace{1.05cm}+ D^9 + D^{10} \hspace{0.12cm}+ \hspace{0.05cm} \text{...}
=\underline{1\hspace{0.72 cm}+ D^2} \hspace{0.05cm}.
  • But since equation  (2)  is true,  the last equation must be false.


(4)  Correct is only the  proposed solution 1:

  • From   \underline{u} = (1, \, 1, \, 1)   follows   U(D) = 1 + D + D^2.  Thus also holds:
P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}.
  • If the variables   u_i   and   g_i   were real-valued,  the  (discrete)  convolution   \underline{p} = \underline{u} * \underline{g}   would always lead to a broadening.
Clarification of  \underline{p} = (1, \, 1, \, 1, \, 0, \, ...)^{\rm T} \cdot \mathbf{G}
  • In this case   \underline{p}  would be broader than   \underline{u}   and also broader than   \underline{g}.
  • On the other hand,  for   u_i ∈ {\rm GF}(2)   and   g_i ∈ {\rm GF}(2)   it may  (but need not)  happen that even with unlimited   \underline{u}   or for unlimited   \underline{g}   the convolution product   \underline{p} = \underline{u} * \underline{g}  is limited.
  • The result is finally checked according to the equation  \underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}  is checked.  See graph on the right.


(5)  Following a similar procedure as in  \text{Exercise A4.8},  (4),  one can see:

  • The free distance is again determined by the path 
S_0 → S_0 → S_1 → S_2 → S_0 → S_0 → \hspace{0.05cm}\text{...}\hspace{0.05cm}.
  • But the associated encoded sequence  \underline{x}  is now  " 00 \ 11 \ 10 \ 11 \ 00 \ ... ".
  • This gives the free distance to  d_{\rm F} \ \underline{= 5}.
  • In contrast,  in the non-recursive code  (Exercise 4.8),  the free distance was  d_{\rm F} = 3.