Difference between revisions of "Theory of Stochastic Signals/Two-Dimensional Gaussian Random Variables"

From LNTwww
 
(49 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Zufallsgrößen mit statistischen Bindungen
+
|Untermenü=Random Variables with Statistical Dependence
|Vorherige Seite=Zweidimensionale Zufallsgrößen
+
|Vorherige Seite=Two-Dimensional Random Variables
|Nächste Seite=Linearkombinationen von Zufallsgrößen
+
|Nächste Seite=Linear Combinations of Random Variables
 
}}
 
}}
==Wahrscheinlichkeitsdichte- und Verteilungsfunktion (1)==
+
==Probability density function and cumulative distribution function==
Alle bisherigen Aussagen von Kapitel 4 gelten allgemein. Für den Sonderfall Gaußscher Zufallsgrößen – der Name geht auf den Wissenschaftler Carl Friedrich Gauß  zurück – können wir weiterhin vermerken:
+
<br>
*Die Verbundwahrscheinlichkeitsdichtefunktion einer Gaußschen 2D-Zufallsgröße $(x, y)$ mit den Mittelwerten $m_x =$ 0 und $m_y =$ 0 sowie dem Korrelationskoeffizienten $ρ_{xy}$ lautet:
+
All previous statements of the fourth main chapter&nbsp; "Random Variables with Statistical Dependence"&nbsp; apply in general.  
$$f_{\rm xy}(x,y)=\frac{\rm 1}{\rm 2\it\pi \sigma_x \sigma_y \sqrt{\rm 1-\rho_{\it xy}^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2 (1-\it\rho_{xy}^{\rm 2} {\rm)}}\cdot(\frac {\it x^{\rm 2}}{\sigma_x^{\rm 2}}+\frac {\it y^{\rm 2}}{\sigma_y^{\rm 2}}-\rm 2\it\rho_{xy}\cdot\frac{x \cdot y}{\sigma_x \cdot \sigma_y}\rm ) \rm \Bigg].$$
 
*Ersetzt man in dieser Gleichung $x$ durch $(x – m_x)$ sowie $y$ durch $(y – m_y)$, so ergibt sich die allgemeinere WDF einer zweidimensionalen Gaußschen Zufallsgröße mit Mittelwert.
 
*Die beiden Randwahrscheinlichkeitsdichtefunktionen $f_{\rm x}(x)$ und $f_{\rm y}(y)$ sind in diesem Fall ebenfalls gaußförmig und weisen die Streuungen $σ_x$ bzw. $σ_y$ auf.
 
*Bei unkorrelierten Komponenten $x$ und $y$ muss in obiger Gleichung $ρ_{xy} =$ 0 eingesetzt werden, und man erhält dann das Ergebnis:
 
$$f_{\rm xy}(x,y)=\frac{1}{\sqrt{2\pi}\cdot\sigma_{x}} \cdot\rm e^{-\it {x^{\rm 2}}/{\rm (}{\rm 2\it\sigma_{x}^{\rm 2}} {\rm )}} \cdot\frac{1}{\sqrt{2\pi}\cdot\sigma_{\it y}}\cdot e^{-\it {y^{\rm 2}}/{\rm (}{\rm 2\it\sigma_{y}^{\rm 2}} {\rm )}} = \it  f_{\rm x} \rm (  \it  x \rm ) \cdot \it  f_{\rm y} \rm (  \it  y \rm ) .$$
 
  
 +
For the special case&nbsp; &raquo;'''Gaussian random variables'''&laquo;&nbsp; &ndash; the name goes back to the scientist&nbsp; [https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss $\text{Carl Friedrich Gauss}$]&nbsp; &ndash; we can further note:
 +
*The joint probability density function of a two-dimensional Gaussian random variable&nbsp; $(x, y)$&nbsp; with mean values&nbsp; $m_x = 0$,&nbsp; $m_y = 0$&nbsp; and correlation coefficient&nbsp; $ρ_{xy}$&nbsp; is:
 +
: $$f_{xy}(x, y)=\frac{\rm 1}{\rm 2\it\pi \cdot \sigma_x \cdot \sigma_y \sqrt{\rm 1-\rho_{\it xy}^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2\cdot (1- \it\rho_{xy}^{\rm 2} {\rm)}}\cdot(\frac {\it x^{\rm 2}}{\sigma_x^{\rm 2}}+\frac {\it y^{\rm 2}}{\sigma_y^{\rm 2}}-\rm 2\it\rho_{xy}\cdot\frac{x \cdot y}{\sigma_x \cdot \sigma_y}\rm ) \rm \Bigg].$$
 +
*Replacing&nbsp; $x$&nbsp; by&nbsp; $(x - m_x)$&nbsp; and&nbsp; $y$&nbsp; by&nbsp; $(y- m_y)$,&nbsp; we obtain the more general PDF of a two-dimensional Gaussian random variable with mean.
 +
*The two marginal probability density functions $f_{x}(x)$&nbsp; and $f_{y}(y)$&nbsp; of a two-dimensional Gaussian random variable are also Gaussian with standard deviations&nbsp; $σ_x$&nbsp; and $σ_y$, resp.
 +
*For uncorrelated components&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; in the above equation&nbsp; $ρ_{xy} = 0$&nbsp; must be substituted,&nbsp; and then the result is obtained:
 +
:$$f_{xy}(x,y)=\frac{1}{\sqrt{2\pi}\cdot\sigma_{x}} \cdot\rm e^{-\it {x^{\rm 2}}\hspace{-0.08cm}/{\rm (}{\rm 2\it\sigma_{x}^{\rm 2}} {\rm )}} \cdot\frac{1}{\sqrt{2\pi}\cdot\sigma_{\it y}}\cdot e^{-\it {y^{\rm 2}}\hspace{-0.08cm}/{\rm (}{\rm 2\it\sigma_{y}^{\rm 2}} {\rm )}} = \it f_{x} \rm ( \it x \rm ) \cdot \it f_{y} \rm ( \it y \rm ) .$$
  
'''Resümee:'''
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; In the special case of a 2D random variable with Gaussian PDF&nbsp; $f_{xy}(x, y)$,&nbsp;
 +
"statistical independence"&nbsp; follows directly from&nbsp; "uncorrelatedness":
 +
:$$f_{xy}(x,y)= f_{x}(x) \cdot f_{y}(y) . $$
  
Im Sonderfall einer 2D-Zufallsgröße mit Gaußscher WDF $f_{\rm xy}(x, y)$ folgt aus der ''Unkorreliertheit'' auch direkt die ''statistische Unabhängigkeit:''
+
Please note:
$$f_{\rm xy}(x,y)= f_{\rm x}(x) \cdot f_{\rm y}(y) . $$
+
*In no other PDF can&nbsp; "uncorrelatedness"&nbsp; be used to infer&nbsp; "statistical independence".
 +
*However,&nbsp; one can always &nbsp; ⇒ &nbsp; for any two-dimensional PDF&nbsp; $f_{xy}(x, y)$&nbsp; infer "uncorrelatedness" from "statistical independence"&nbsp;  because:  
 +
::If two random variables&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are completely&nbsp; (statistically)&nbsp; independent of each other,&nbsp; <br>then of course there are no&nbsp; "linear dependencies"&nbsp; between them &nbsp; ⇒ &nbsp; they are also uncorrelated. }}
  
Bei keiner anderen WDF kann aus der ''Unkorreliertheit'' auf die ''statistische Unabhängigkeit'' geschlossen werden. Man kann aber stets  ⇒  für jede beliebige 2D–WDF $f_{\rm xy}(x, y)$ von der ''statistischen Unabhängigkeit'' auf die ''Unkorreliertheit'' schließen, weil:
 
*Sind zwei Zufallsgrößen $x$ und $y$ völlig voneinander (statistisch) unabhängig, so gibt es zwischen ihnen natürlich auch keine ''linearen'' Abhängigkeiten.
 
  
==Wahrscheinlichkeitsdichte- und Verteilungsfunktion (2)==
+
The interactive HTML5/JavaScript applet&nbsp; [[Applets:Two-dimensional_Gaussian_Random_Variables|"Two-dimensional Gaussian Random Variables"]]&nbsp; plots the 2D functions PDF and CDF for arbitrary values of&nbsp; $σ_x, \ σ_y$&nbsp; and&nbsp; $ρ_{xy}$.
{{Beispiel}}
 
Das Bild zeigt
 
*die Wahrscheinlichkeitsdichtefunktion (links) und
 
*Verteilungsfunktion (rechts)
 
  
 +
{{GraueBox|TEXT=
 +
[[File:EN_Sto_T_4_2_S1.png |right|frame|Two-dimensional Gaussian PDF and CDF]]
 +
$\text{Example 1:}$&nbsp; The graphic shows
 +
*the probability density function&nbsp; (left),
 +
*cumulative distribution function&nbsp; (right)
  
einer zweidimensionalen Gaußschen Zufallsgröße $(x, y)$ mit relativ starker positiver Korrelation der Einzelkomponenten: $ρ_{xy} =$ 0.8. Wie bei den bisherigen Bildern in diesem Kapitel ist die 2D–Zufallsgröße in $x$–Richtung weiter ausgedehnt als in $y$–Richtung: $σ_x = 2 · σ_y$.
 
  
 +
of a two-dimensional Gaussian random variable&nbsp; $(x, y)$&nbsp; with relatively strong positive correlation of the individual components: &nbsp;
 +
:$$ρ_{xy} = 0.8.$$
  
[[File:P_ID630__Sto_T_4_2_S1_neu.png | Gaußsche 2D-WDF und 2D-VTF]]
+
As in the&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#Correlation_coefficient|$\text{previous examples}$]],&nbsp; the random variable is more extended in&nbsp; $x$&nbsp; direction than in&nbsp; $y$&nbsp; direction: &nbsp; $σ_x = 2 \cdot σ_y$.
 +
<br clear=all>
 +
These representations can be interpreted as follows:  
 +
*The PDF here is comparable to a mountain ridge extending from the lower left to the upper right.
 +
*The maximum is at&nbsp; $m_x = 0$&nbsp; and&nbsp; $m_y = 0$.&nbsp; This means that the the two-dimensional random variable is mean-free.  
 +
*The 2D&ndash;CDF as the integral in two directions over the 2D&ndash;PDF increases continuously from lower left to upper right from&nbsp; $0$&nbsp; to&nbsp; $1$. }}
  
  
Diese Darstellungen können wie folgt interpretiert werden:
 
*Die WDF ist vergleichbar mit einem Bergkamm, der sich von links unten nach rechts oben erstreckt.
 
*Das Maximum liegt bei $m_x =$ 0 und $m_y =$ 0. Das bedeutet, dass die die 2D–Zufallsgröße mittelwertfrei ist.
 
*Die zweidimensionale VTF als das Integral in zwei Richtungen über die WDF steigt von links unten nach rechts oben von 0 auf 1 kontinuierlich an.
 
  
  
{{end}}
+
==Contour lines for uncorrelated random variables==
 +
<br>
 +
[[File:P_ID318__Sto_T_4_2_S2_ganz_neu.png |frame| Contour lines of 2D&ndash;PDF with uncorrelated variables | right]]
 +
From the conditional equation&nbsp; $f_{xy}(x, y) = \rm const.$&nbsp; the contour lines of the PDF can be calculated.
  
 +
If the components&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are uncorrelated&nbsp; $(ρ_{xy} = 0)$,&nbsp; the equation obtained for the contour lines is:
  
Das nachfolgende Interaktionsmodul erlaubt die Darstellung der zweidimensionalen WDF und der zweidimensionalen VTF für beliebige Werte von $σ_x, σ_y$ und $ρ_{xy}$:
+
:$$\frac{x^{\rm 2}}{\sigma_{x}^{\rm 2}}+\frac{y^{\rm 2}}{\sigma_{y}^{\rm 2}} =\rm const.$$
WDF/VTF bei 2D-Gaußgrößen
+
In this case,&nbsp; the contour lines describe the following figures:
 +
*"Circles"&nbsp; $($for&nbsp; $σ_x = σ_y$, &nbsp; green curve$)$, or
 +
*"Ellipses"&nbsp; $($for&nbsp; $σ_x ≠ σ_y$, &nbsp; blue curve$)$ in alignment of the two axes.
  
==Höhenlinien bei unkorrelierten Zufallsgrößen==
 
Aus der Bedingungsgleichung $f_{\rm xy}(x, y) =$ const. können die Höhenlinien der WDF berechnet werden. Sind die Komponenten $x$ und $y$ unkorreliert $(ρ_{xy} =$ 0), so erhält man:
 
  
 +
More information on this topic with signal examples is provided in the first part&nbsp; "Gaussian random variables without statistical bindings"&nbsp; of the&nbsp; (German language)&nbsp; learning video
 +
::[[Gaußsche_2D-Zufallsgrößen_(Lernvideo)|"Gaußsche 2D-Zufallsgrößen"]] &nbsp; &rArr; &nbsp; "Two-dimensional Gaussian random variables".
 +
<br clear=all>
 +
{{GraueBox|TEXT=
 +
[[File:P_ID2911__Sto_T_4_2_S2_unten.png |right|frame| Screen capture of the video "2D Gaussian random variables"]] 
 +
$\text{Example 2:}$&nbsp;
 +
<br><br><br>
 +
*The graphic shows a snapshot of the first part video&nbsp; "Gaussian random variables without statistical bindings".
  
[[File:P_ID318__Sto_T_4_2_S2_ganz_neu.png | Höhenlinien der 2D-WDF bei unkorrelierten Größen | rechts]]
+
*The second video part covers&nbsp; "Gaussian random variables with statistical bindings"&nbsp; according to the following section.
$$\frac{x^{\rm 2}}{\sigma_{x}^{\rm 2}}+\frac{y^{\rm 2}}{\sigma_{y}^{\rm 2}} =\rm const.$$
+
}}  
Die Höhenlinien beschreiben in diesem Fall folgende Figuren:
 
*Kreise (falls $σ_x = σ_y$, grüne Kurve), oder
 
*Ellipsen (für $σ_x ≠ σ_y$, blaue Kurve) in Ausrichtung der beiden Achsen.
 
  
  
 +
==Contour lines for correlated random variables==
 +
<br>
 +
For correlated components&nbsp; $(ρ_{xy} ≠ 0)$&nbsp; the PDF contour lines are always elliptic,&nbsp; thus also for the special case&nbsp; $σ_x = σ_y$:&nbsp; 
 +
:$$f_{xy}(x, y) = {\rm const.} \hspace{0.5cm} \rightarrow \hspace{0.5cm} \frac{x^{\rm 2} }{\sigma_{x}^{\rm 2}}+\frac{y^{\rm 2} }{\sigma_{y}^{\rm 2} }-{\rm 2}\cdot\rho_{xy}\cdot\frac{x\cdot y}{\sigma_x\cdot \sigma_y}={\rm const.}$$
 +
The following graph shows in lighter blue two contour lines for different parameter sets,&nbsp; each with&nbsp; $ρ_{xy} ≠ 0$.
 +
[[File:EN_Sto_T_4_2_S3_neu1.png|right|frame|Contour lines of the 2D&ndash;PDF at correlated quantities]]
 +
*The ellipse major axis is dashed in dark blue.
 +
*The correlation line or&nbsp; "regression line" &nbsp; $(RL)$&nbsp; is drawn in solid red.
  
  
 +
Based on this plot,&nbsp; the following statements can be made:
 +
*The ellipse shape depends not only on the correlation coefficient&nbsp; $ρ_{xy}$&nbsp; but also on the ratio of the two standard deviations&nbsp; $σ_x$&nbsp; and&nbsp; $σ_y$. 
 +
*The angle of inclination&nbsp; $α$&nbsp; of the ellipse major axis&nbsp; (blue dashed straight line)&nbsp; with respect to the&nbsp; $x$&ndash;axis also depends on&nbsp; $σ_x$,&nbsp; $σ_y$&nbsp; and&nbsp; $ρ_{xy}$:
 +
:$$\alpha = {1}/{2} \cdot {\rm arctan } \ ( 2 \cdot \rho_{xy} \cdot \frac {\sigma_x \cdot \sigma_y}{\sigma_x^2 - \sigma_y^2}).$$
 +
*The&nbsp; (red solid)&nbsp; correlation line&nbsp; $y = K(x)$&nbsp; of a Gaussian random variable always lies below the&nbsp; (blue dashed)&nbsp; ellipse major axis.
 +
* $K(x)$&nbsp; can also be constructed geometrically from the intersection of the contour lines and their vertical tangents,&nbsp; as indicated in green in the sketches above.
  
Weitere Informationen zu dieser Thematik mit Signalbeispielen bietet das folgende Lernvideo:
 
Gaußsche Zufallsgrößen ohne statistische Bindungen  (Dauer 2:35).
 
  
Sie sehen hier einen Bildschirmabzug dieses Multimedia–Moduls.  
+
More information on this topic is provided in the&nbsp; (German language)&nbsp; learning video
 +
::[[Gaußsche_2D-Zufallsgrößen_(Lernvideo)|"Gaußsche 2D-Zufallsgrößen"]] &nbsp; &rArr; &nbsp; "Two-dimensional Gaussian random variables".
  
 +
*Part 1: &nbsp; Gaussian random variables without statistical bindings, 
 +
*Part 2: &nbsp; Gaussian random variables with statistical bindings.
  
[[File:P_ID2911__Sto_T_4_2_S2_unten.png | Bildschirmabzug des hier zitierten Lernvideos]]
+
==Rotation of the coordinate system==
 +
<br>
 +
For some tasks it is advantageous to rotate the coordinate system,&nbsp; as indicated in the following graphic:  
  
==Höhenlinien bei korrelierten Zufallsgrößen==
+
[[File:EN_Sto_T_4_2_S4.png |frame| To rotate the coordinate system | right]]
Bei korrelierten Komponenten $(ρ_{xy}$ ≠ 0) sind die Höhenlinien der WDF stets elliptisch, also auch für den Sonderfall $σ_x = σ_y$. Hier lautet die Bedingungsgleichung $f_{\rm xy}(x, y) =$ const.:
+
*The&nbsp; $(ξ, η)$&nbsp; coordinate system is rotated with respect to the original&nbsp; $(x, y)$&nbsp; system by the angle&nbsp; $β$.  
$$\frac{x^{\rm 2}}{\sigma_{x}^{\rm 2}}+\frac{y^{\rm 2}}{\sigma_{y}^{\rm 2}}-\rm 2\cdot\rho_{xy}\cdot\frac{x\cdot y}{\sigma_x\cdot \sigma_y}=\rm const.$$
+
*In contrast,&nbsp; $α$&nbsp; denotes the angle between the ellipse major axis and the&nbsp; $x$&ndash;axis.  
Das folgende Bild zeigt in hellerem Blau zwei Höhenlinien für unterschiedliche Parametersätze, jeweils mit $ρ_{xy}$ ≠ 0. Die Ellipsenhauptachse ist dunkelblau gestrichelt, und die Korrelationsachse $K(x)$ durchgehend rot eingezeichnet.  
 
  
  
[[File:P_ID408__Sto_T_4_2_S3_neu.png | Höhenlinien der 2D-WDF bei korrelierten Größen]]
+
The following relationships exist between the coordinates of the two reference frames:  
 +
:$$\xi = \hspace{0.4cm} \cos (\beta) \cdot x + \sin (\beta) \cdot y \hspace{0.55cm}{\rm resp. }\hspace{0.5cm} x = \cos (\beta) \cdot \xi - \sin (\beta) \cdot \eta ,$$
 +
:$$\eta = - \sin (\beta) \cdot x + \cos (\beta) \cdot y \hspace{0.5cm}{\rm resp. }\hspace{0.5cm} y = \sin (\beta) \cdot \xi + \cos (\beta) \cdot \eta .$$
  
  
Anhand dieses Bildes sind folgende Aussagen möglich:
+
If&nbsp; $(x, y)$&nbsp; is a Gaussian random variable,&nbsp; then the random variable&nbsp; $(ξ, η)$&nbsp; is also Gaussian distributed.  
*Die Ellipsenform hängt außer vom Korrelationskoeffizienten $ρ_{xy}$ auch vom Verhältnis der beiden Streuungen $σ_x$ und $σ_y$ ab. 
 
*Auch der Neigungswinkel α der Ellipsenhauptachse (gestrichelte Gerade) gegenüber der $x$-Achse hängt von diesen drei Parametern ab:
 
$$\alpha = \frac {1}{2} \cdot {\rm arctan }  ( 2 \cdot \rho_{xy} \cdot \frac {\sigma_x \cdot \sigma_y}{\sigma_x^2 - \sigma_y^2}).$$
 
*Die Korrelationsgerade $y = K(x)$ einer Gaußschen 2D–Zufallsgröße liegt stets unterhalb der Ellipsenhauptachse.
 
* $K(x)$ kann auch aus dem Schnittpunkt der Höhenlinien und ihrer vertikalen Tangenten geometrisch konstruiert werden, wie in den obigen Skizzen in grüner Farbe angedeutet ist.  
 
  
 +
Substituting the above equations into the 2D&ndash;PDF $f_{xy}(x, y)$&nbsp; and comparing the coefficients,&nbsp; we obtain the following governing equations for&nbsp; $σ_x$,&nbsp; $σ_y$&nbsp; and&nbsp; $ρ_{xy}$&nbsp; respectively&nbsp; $σ_ξ,&nbsp; σ_η$ &nbsp; and&nbsp; $ρ_{ξη}$:
  
Die folgenden Lernvideos beschreiben die Eigenschaften Gaußscher Zufallsgrößen:
+
:$$\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi^2} = \frac {1}{(1 - \rho_{xy}^2) }  \left[ \frac {\cos^2 (\beta)}{\sigma_{x}^2 } + \frac {\sin^2 (\beta)}{\sigma_{y}^2 } - 2 \rho_{xy} \cdot \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x} \cdot \sigma_{y}}\right ] ,$$
Gaußsche Zufallsgrößen ohne statistische Bindungen (Dauer 2:35),
+
:$$\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\eta^2} = \frac {1}{(1 - \rho_{xy}^2) } \left[ \frac {\sin^2 (\beta)}{\sigma_{x}^2 } + \frac {\cos^2 (\beta)}{\sigma_{y}^2 } + 2 \rho_{xy} \cdot \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x} \cdot \sigma_{y}}\right ] ,$$
Gaußsche Zufallsgrößen mit statistischen Bindungen (Dauer 3:05).  
+
:$$\frac {\rho_{\xi \eta}}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi\cdot \sigma_\eta}= \frac {1}{(1 - \rho_{xy}^2) } \left[ \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x}^2 } - \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{y}^2 } + \frac {\rho_{xy}}{\sigma_{x} \cdot \sigma_{y}} \cdot ( \cos^2( \beta) -\sin^2( \beta)) \right ] .$$
  
==Drehung des Koordinatensystems (1)==
+
With these three equations,&nbsp; in each case three parameters of the two coordinate systems can be converted directly,&nbsp; which is possible however only in special cases without substantial computational expenditure.&nbsp; Following an example with justifiable computational expenditure.
Bei manchen Aufgabenstellungen ist es vorteilhaft, das Koordinatensystem zu drehen, wie in der nachfolgenden Grafik angedeutet:
 
  
  
[[File:P_ID430__Sto_T_4_2_S4_Ganz_neu.png | Drehung des Koordinatensystems | rechts]]
 
*Das $(ξ, η)$-Koordinatensystem ist gegenüber dem ursprünglichen $(x, y)$-System um den Winkel $β$ gedreht.
 
*Dagegen bezeichnet $α$ den Winkel zwischen der Ellipsenhauptachse und der $x$–Achse.
 
  
 +
{{GraueBox|TEXT=
 +
[[File: EN_Sto_T_4_2_S4.png|right|frame|To rotate the coordinate system]]
 +
$\text{Example 3:}$&nbsp; We consider a two-dimensional Gaussian PDF with the following properties:
  
 +
#The variances of the two components are equal: &nbsp; $σ_x^2 = σ_y^2 = 1$.
 +
#The correlation coefficient between&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; is&nbsp; $ρ_{xy} = 0.5$.
 +
#The angle of the ellipse major axis with respect to the&nbsp; $x$&ndash;axis is thus&nbsp; $α = 45^\circ$.
  
  
 +
Notes:
 +
*If the coordinate system were also rotated by&nbsp; $β =45^\circ$,&nbsp; there would be uncorrelated components because of&nbsp; $σ_x = σ_y$&nbsp; and because of&nbsp; $\sin(β) = \cos(β) = 1/\sqrt{2}$&nbsp; for the new correlation coefficient &nbsp; &rArr; &nbsp;  $ρ_{ξη} = 0$ .
  
 +
*The two standard deviations&nbsp; &ndash; related to the new coordinate system &ndash;&nbsp; would then result according to the first two equations to&nbsp; $σ_ξ = \sqrt{1.5}$&nbsp; and&nbsp; $σ_η = \sqrt{0.5}$.
  
  
 +
However,&nbsp; the above sketch is not based on&nbsp; $β = α$&nbsp; but on&nbsp; $β = α/2$.
  
 +
With the parameters and equations
 +
# $σ_x = σ_y = 1$,&nbsp; $ρ_{xy} = 0.5$,
 +
#$α = 45^\circ$,&nbsp; $\sin(β) - \cos(β) = \sin(2β)/2 = \sin(α)/2$,&nbsp; and
 +
#$\cos^2(β) - \sin^2(β) = \cos(2β)= \cos(α)$
  
  
 +
the system of equations can be represented as follows:
  
 +
:$${\rm (I)}\hspace{0.8cm}\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi^2} = \frac {4}{3}  \left[ 1 - \frac {1}{2}\cdot {\sin (\alpha) }\right ] = 0.862 ,$$
 +
:$${\rm (II)}\hspace{0.68cm}\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\eta^2} = \frac {4}{3}  \left[ 1 + \frac {1}{2}\cdot {\sin (\alpha) }\right ] = 1.805 ,\hspace{0.28cm}\frac {\rm (I)}{\rm (II)}: \frac
 +
{\sigma_\eta}{\sigma_\xi} = \sqrt{\frac{0.862}{1.805} }= 0.691,$$
 +
:$${\rm (III)}\hspace{0.54cm}\frac {\rho_{\xi \eta} }{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi\cdot \sigma_\eta}= \frac {\rho_{\xi \eta} }{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi^2 \cdot 0.691}=\frac {2}{3}\cdot \cos( \alpha) = 0.471.$$
  
 +
Dividing now the equation&nbsp; $\rm (III)$&nbsp; by the equation&nbsp; $\rm (I)$,&nbsp; we get:
 +
:$$ \frac {\rho_{\xi \eta} }{0.691}=\frac {0.471}{0.862}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{\rho_{\xi \eta} }= 0.378.$$
  
Zwischen den Koordinaten der beiden Bezugssysteme bestehen folgende Zusammenhänge:
+
The other two parameters of the new coordinate system now result in&nbsp; $σ_ξ ≈ 1$&nbsp; and&nbsp; $σ_η ≈ 0.7$.}}
$$\xi = \hspace{0.4cm} \cos (\beta) \cdot x + \sin (\beta) \cdot y \hspace{0.55cm}{\rm bzw. }\hspace{0.5cm} x = \cos (\beta) \cdot \xi - \sin (\beta) \cdot \eta ,$$
+
==Exercises for the chapter==
$$\eta = - \sin (\beta) \cdot x + \cos (\beta) \cdot y \hspace{0.5cm}{\rm bzw. }\hspace{0.5cm} y = \sin (\beta) \cdot \xi + \cos (\beta) \cdot \eta .$$
+
<br>
 
+
[[Aufgaben:Exercise_4.4:_Two-dimensional_Gaussian_PDF|Exercise 4.4: Two-dimensional Gaussian PDF]]
Ist $(x, y)$ eine Gaußsche 2D-Zufallsgröße, so ist die neue Zufallsgröße $(ξ, η)$ ebenfalls gaußverteilt.  
 
 
 
Setzt man die obigen Gleichungen in die 2D-WDF $f_{\rm xy}(x, y)$ ein und vergleicht die Koeffizienten, so erhält man folgende Bestimmungsgleichungen für $σ_x, σ_y$ und $ρ_{xy}$ bzw. für $σ_ξ, σ_η$ und $ρ_{ξη}$:
 
 
 
$$\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi^2} = \frac {1}{(1 - \rho_{xy}^2) }  \left[ \frac {\cos^2 (\beta)}{\sigma_{x}^2 } + \frac {\sin^2 (\beta)}{\sigma_{y}^2 } - 2 \rho_{xy} \cdot \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x} \cdot  \sigma_{y}}\right ] ,$$
 
$$\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\eta^2} = \frac {1}{(1 - \rho_{xy}^2) }  \left[ \frac {\sin^2 (\beta)}{\sigma_{x}^2 } + \frac {\cos^2 (\beta)}{\sigma_{y}^2 } + 2 \rho_{xy} \cdot \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x} \cdot  \sigma_{y}}\right ] ,$$
 
$$\frac {\rho_{\xi \eta}}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi\cdot \sigma_\eta}= \hspace{11cm}\\ = \frac {1}{(1 - \rho_{xy}^2) }  \left[ \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x}^2 } - \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{y}^2 } + \frac {\rho_{xy}}{\sigma_{x} \cdot  \sigma_{y}} \cdot  ( \cos^2( \beta) -\sin^2( \beta)) \right ] .$$
 
 
 
Mit diesen drei Gleichungen können die jeweils drei Parameter der beiden Koordinatensysteme direkt umgerechnet werden, was allerdings nur in Sonderfällen ohne erheblichen Rechenaufwand möglich ist. Ein solches Beispiel folgt nachfolgend.
 
 
 
 
 
 
 
 
 
 
 
  
 +
[[Aufgaben:Exercise_4.4Z:_Contour_Lines_of_the_"2D-PDF"|Exercise 4.4Z: Contour Lines of the "2D-PDF"]]
  
 +
[[Aufgaben:Exercise_4.5:_Two-dimensional_Examination_Evaluation|Exercise 4.5: Two-dimensional Examination Evaluation]]
  
 +
[[Aufgaben:Exercise_4.6:_Coordinate_Rotation|Exercise 4.6: Coordinate Rotation]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 14:44, 21 December 2022

Probability density function and cumulative distribution function


All previous statements of the fourth main chapter  "Random Variables with Statistical Dependence"  apply in general.

For the special case  »Gaussian random variables«  – the name goes back to the scientist  $\text{Carl Friedrich Gauss}$  – we can further note:

  • The joint probability density function of a two-dimensional Gaussian random variable  $(x, y)$  with mean values  $m_x = 0$,  $m_y = 0$  and correlation coefficient  $ρ_{xy}$  is:
$$f_{xy}(x, y)=\frac{\rm 1}{\rm 2\it\pi \cdot \sigma_x \cdot \sigma_y \sqrt{\rm 1-\rho_{\it xy}^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2\cdot (1- \it\rho_{xy}^{\rm 2} {\rm)}}\cdot(\frac {\it x^{\rm 2}}{\sigma_x^{\rm 2}}+\frac {\it y^{\rm 2}}{\sigma_y^{\rm 2}}-\rm 2\it\rho_{xy}\cdot\frac{x \cdot y}{\sigma_x \cdot \sigma_y}\rm ) \rm \Bigg].$$
  • Replacing  $x$  by  $(x - m_x)$  and  $y$  by  $(y- m_y)$,  we obtain the more general PDF of a two-dimensional Gaussian random variable with mean.
  • The two marginal probability density functions $f_{x}(x)$  and $f_{y}(y)$  of a two-dimensional Gaussian random variable are also Gaussian with standard deviations  $σ_x$  and $σ_y$, resp.
  • For uncorrelated components  $x$  and  $y$  in the above equation  $ρ_{xy} = 0$  must be substituted,  and then the result is obtained:
$$f_{xy}(x,y)=\frac{1}{\sqrt{2\pi}\cdot\sigma_{x}} \cdot\rm e^{-\it {x^{\rm 2}}\hspace{-0.08cm}/{\rm (}{\rm 2\it\sigma_{x}^{\rm 2}} {\rm )}} \cdot\frac{1}{\sqrt{2\pi}\cdot\sigma_{\it y}}\cdot e^{-\it {y^{\rm 2}}\hspace{-0.08cm}/{\rm (}{\rm 2\it\sigma_{y}^{\rm 2}} {\rm )}} = \it f_{x} \rm ( \it x \rm ) \cdot \it f_{y} \rm ( \it y \rm ) .$$

$\text{Conclusion:}$  In the special case of a 2D random variable with Gaussian PDF  $f_{xy}(x, y)$,  "statistical independence"  follows directly from  "uncorrelatedness":

$$f_{xy}(x,y)= f_{x}(x) \cdot f_{y}(y) . $$

Please note:

  • In no other PDF can  "uncorrelatedness"  be used to infer  "statistical independence".
  • However,  one can always   ⇒   for any two-dimensional PDF  $f_{xy}(x, y)$  infer "uncorrelatedness" from "statistical independence"  because:
If two random variables  $x$  and  $y$  are completely  (statistically)  independent of each other, 
then of course there are no  "linear dependencies"  between them   ⇒   they are also uncorrelated.


The interactive HTML5/JavaScript applet  "Two-dimensional Gaussian Random Variables"  plots the 2D functions PDF and CDF for arbitrary values of  $σ_x, \ σ_y$  and  $ρ_{xy}$.

Two-dimensional Gaussian PDF and CDF

$\text{Example 1:}$  The graphic shows

  • the probability density function  (left),
  • cumulative distribution function  (right)


of a two-dimensional Gaussian random variable  $(x, y)$  with relatively strong positive correlation of the individual components:  

$$ρ_{xy} = 0.8.$$

As in the  $\text{previous examples}$,  the random variable is more extended in  $x$  direction than in  $y$  direction:   $σ_x = 2 \cdot σ_y$.
These representations can be interpreted as follows:

  • The PDF here is comparable to a mountain ridge extending from the lower left to the upper right.
  • The maximum is at  $m_x = 0$  and  $m_y = 0$.  This means that the the two-dimensional random variable is mean-free.
  • The 2D–CDF as the integral in two directions over the 2D–PDF increases continuously from lower left to upper right from  $0$  to  $1$.



Contour lines for uncorrelated random variables


Contour lines of 2D–PDF with uncorrelated variables

From the conditional equation  $f_{xy}(x, y) = \rm const.$  the contour lines of the PDF can be calculated.

If the components  $x$  and  $y$  are uncorrelated  $(ρ_{xy} = 0)$,  the equation obtained for the contour lines is:

$$\frac{x^{\rm 2}}{\sigma_{x}^{\rm 2}}+\frac{y^{\rm 2}}{\sigma_{y}^{\rm 2}} =\rm const.$$

In this case,  the contour lines describe the following figures:

  • "Circles"  $($for  $σ_x = σ_y$,   green curve$)$, or
  • "Ellipses"  $($for  $σ_x ≠ σ_y$,   blue curve$)$ in alignment of the two axes.


More information on this topic with signal examples is provided in the first part  "Gaussian random variables without statistical bindings"  of the  (German language)  learning video

"Gaußsche 2D-Zufallsgrößen"   ⇒   "Two-dimensional Gaussian random variables".


Screen capture of the video "2D Gaussian random variables"

$\text{Example 2:}$ 


  • The graphic shows a snapshot of the first part video  "Gaussian random variables without statistical bindings".
  • The second video part covers  "Gaussian random variables with statistical bindings"  according to the following section.


Contour lines for correlated random variables


For correlated components  $(ρ_{xy} ≠ 0)$  the PDF contour lines are always elliptic,  thus also for the special case  $σ_x = σ_y$: 

$$f_{xy}(x, y) = {\rm const.} \hspace{0.5cm} \rightarrow \hspace{0.5cm} \frac{x^{\rm 2} }{\sigma_{x}^{\rm 2}}+\frac{y^{\rm 2} }{\sigma_{y}^{\rm 2} }-{\rm 2}\cdot\rho_{xy}\cdot\frac{x\cdot y}{\sigma_x\cdot \sigma_y}={\rm const.}$$

The following graph shows in lighter blue two contour lines for different parameter sets,  each with  $ρ_{xy} ≠ 0$.

Contour lines of the 2D–PDF at correlated quantities
  • The ellipse major axis is dashed in dark blue.
  • The correlation line or  "regression line"   $(RL)$  is drawn in solid red.


Based on this plot,  the following statements can be made:

  • The ellipse shape depends not only on the correlation coefficient  $ρ_{xy}$  but also on the ratio of the two standard deviations  $σ_x$  and  $σ_y$.
  • The angle of inclination  $α$  of the ellipse major axis  (blue dashed straight line)  with respect to the  $x$–axis also depends on  $σ_x$,  $σ_y$  and  $ρ_{xy}$:
$$\alpha = {1}/{2} \cdot {\rm arctan } \ ( 2 \cdot \rho_{xy} \cdot \frac {\sigma_x \cdot \sigma_y}{\sigma_x^2 - \sigma_y^2}).$$
  • The  (red solid)  correlation line  $y = K(x)$  of a Gaussian random variable always lies below the  (blue dashed)  ellipse major axis.
  • $K(x)$  can also be constructed geometrically from the intersection of the contour lines and their vertical tangents,  as indicated in green in the sketches above.


More information on this topic is provided in the  (German language)  learning video

"Gaußsche 2D-Zufallsgrößen"   ⇒   "Two-dimensional Gaussian random variables".
  • Part 1:   Gaussian random variables without statistical bindings,
  • Part 2:   Gaussian random variables with statistical bindings.

Rotation of the coordinate system


For some tasks it is advantageous to rotate the coordinate system,  as indicated in the following graphic:

To rotate the coordinate system
  • The  $(ξ, η)$  coordinate system is rotated with respect to the original  $(x, y)$  system by the angle  $β$.
  • In contrast,  $α$  denotes the angle between the ellipse major axis and the  $x$–axis.


The following relationships exist between the coordinates of the two reference frames:

$$\xi = \hspace{0.4cm} \cos (\beta) \cdot x + \sin (\beta) \cdot y \hspace{0.55cm}{\rm resp. }\hspace{0.5cm} x = \cos (\beta) \cdot \xi - \sin (\beta) \cdot \eta ,$$
$$\eta = - \sin (\beta) \cdot x + \cos (\beta) \cdot y \hspace{0.5cm}{\rm resp. }\hspace{0.5cm} y = \sin (\beta) \cdot \xi + \cos (\beta) \cdot \eta .$$


If  $(x, y)$  is a Gaussian random variable,  then the random variable  $(ξ, η)$  is also Gaussian distributed.

Substituting the above equations into the 2D–PDF $f_{xy}(x, y)$  and comparing the coefficients,  we obtain the following governing equations for  $σ_x$,  $σ_y$  and  $ρ_{xy}$  respectively  $σ_ξ,  σ_η$   and  $ρ_{ξη}$:

$$\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi^2} = \frac {1}{(1 - \rho_{xy}^2) } \left[ \frac {\cos^2 (\beta)}{\sigma_{x}^2 } + \frac {\sin^2 (\beta)}{\sigma_{y}^2 } - 2 \rho_{xy} \cdot \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x} \cdot \sigma_{y}}\right ] ,$$
$$\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\eta^2} = \frac {1}{(1 - \rho_{xy}^2) } \left[ \frac {\sin^2 (\beta)}{\sigma_{x}^2 } + \frac {\cos^2 (\beta)}{\sigma_{y}^2 } + 2 \rho_{xy} \cdot \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x} \cdot \sigma_{y}}\right ] ,$$
$$\frac {\rho_{\xi \eta}}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi\cdot \sigma_\eta}= \frac {1}{(1 - \rho_{xy}^2) } \left[ \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{x}^2 } - \frac {\sin (\beta) \cdot \cos (\beta)}{\sigma_{y}^2 } + \frac {\rho_{xy}}{\sigma_{x} \cdot \sigma_{y}} \cdot ( \cos^2( \beta) -\sin^2( \beta)) \right ] .$$

With these three equations,  in each case three parameters of the two coordinate systems can be converted directly,  which is possible however only in special cases without substantial computational expenditure.  Following an example with justifiable computational expenditure.


To rotate the coordinate system

$\text{Example 3:}$  We consider a two-dimensional Gaussian PDF with the following properties:

  1. The variances of the two components are equal:   $σ_x^2 = σ_y^2 = 1$.
  2. The correlation coefficient between  $x$  and  $y$  is  $ρ_{xy} = 0.5$.
  3. The angle of the ellipse major axis with respect to the  $x$–axis is thus  $α = 45^\circ$.


Notes:

  • If the coordinate system were also rotated by  $β =45^\circ$,  there would be uncorrelated components because of  $σ_x = σ_y$  and because of  $\sin(β) = \cos(β) = 1/\sqrt{2}$  for the new correlation coefficient   ⇒   $ρ_{ξη} = 0$ .
  • The two standard deviations  – related to the new coordinate system –  would then result according to the first two equations to  $σ_ξ = \sqrt{1.5}$  and  $σ_η = \sqrt{0.5}$.


However,  the above sketch is not based on  $β = α$  but on  $β = α/2$.

With the parameters and equations

  1. $σ_x = σ_y = 1$,  $ρ_{xy} = 0.5$,
  2. $α = 45^\circ$,  $\sin(β) - \cos(β) = \sin(2β)/2 = \sin(α)/2$,  and
  3. $\cos^2(β) - \sin^2(β) = \cos(2β)= \cos(α)$


the system of equations can be represented as follows:

$${\rm (I)}\hspace{0.8cm}\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi^2} = \frac {4}{3} \left[ 1 - \frac {1}{2}\cdot {\sin (\alpha) }\right ] = 0.862 ,$$
$${\rm (II)}\hspace{0.68cm}\frac {1}{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\eta^2} = \frac {4}{3} \left[ 1 + \frac {1}{2}\cdot {\sin (\alpha) }\right ] = 1.805 ,\hspace{0.28cm}\frac {\rm (I)}{\rm (II)}: \frac {\sigma_\eta}{\sigma_\xi} = \sqrt{\frac{0.862}{1.805} }= 0.691,$$
$${\rm (III)}\hspace{0.54cm}\frac {\rho_{\xi \eta} }{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi\cdot \sigma_\eta}= \frac {\rho_{\xi \eta} }{(1 - \rho_{\xi \eta}^2) \cdot \sigma_\xi^2 \cdot 0.691}=\frac {2}{3}\cdot \cos( \alpha) = 0.471.$$

Dividing now the equation  $\rm (III)$  by the equation  $\rm (I)$,  we get:

$$ \frac {\rho_{\xi \eta} }{0.691}=\frac {0.471}{0.862}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{\rho_{\xi \eta} }= 0.378.$$

The other two parameters of the new coordinate system now result in  $σ_ξ ≈ 1$  and  $σ_η ≈ 0.7$.

Exercises for the chapter


Exercise 4.4: Two-dimensional Gaussian PDF

Exercise 4.4Z: Contour Lines of the "2D-PDF"

Exercise 4.5: Two-dimensional Examination Evaluation

Exercise 4.6: Coordinate Rotation