Difference between revisions of "Aufgaben:Exercise 1.5Z: Sinc-shaped Impulse Response"

From LNTwww
 
(49 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
  
[[File:P_ID857__LZI_Z_1_5.png|right|si–förmige Impulsantwort (Aufgabe Z1.5)]]
+
[[File:P_ID857__LZI_Z_1_5.png|right|frame|$\rm sinc$–shaped impulse response]]
Die Impulsantwort eines linearen zeitinvarianten (und akausalen) Systems wurde wie folgt ermittelt (siehe Grafik):
+
The impulse response of a linear time-invariant (and non-causal) system was determined as follows (see graph):
$$h(t) = 500\hspace{0.05cm}\frac{1}{ {\rm s}}\cdot{\rm si}(\pi
+
:$$h(t) = 500\hspace{0.1cm}{ {\rm s}}^{-1}\cdot{\rm sinc}\big[{t}/({ 1\hspace{0.1cm}{\rm ms}})\big] .$$
\cdot \frac{t}{ 1\hspace{0.1cm}{\rm ms}}) .$$
+
The output signals  $y(t)$ should be computed if various cosine oscillations of different frequency  $f_0$  are applied to the input:
Berechnet werden sollen die Ausgangssignale $y(t)$, wenn am Eingang verschiedene Cosinusschwingungen unterschiedlicher Frequenz $f_0$ angelegt werden:
+
:$$x(t) = 4\hspace{0.05cm}{\rm V}\cdot {\rm cos}(2\pi \cdot  f_0
$$x(t) = 4\hspace{0.05cm}{\rm V}\cdot {\rm cos}(2\pi \cdot  f_0
 
 
\cdot t ) .$$
 
\cdot t ) .$$
Die Lösung kann entweder im Zeitbereich oder auch im Frequenzbereich gefunden werden. In der Musterlösung werden jeweils beide Lösungswege angegeben.
+
 
'''Hinweis:''' Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen|Kapitel 1.3]]. Gegeben ist dazu das folgende bestimmte Integral:
+
 
$$\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Please note:''  
 +
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].
 +
*The solution can be found in the time domain or in the frequency domain. In the sample solution you will find both approaches.
 +
*The following definite integral is given:
 +
:$$\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm
 
  d}u = \left\{ \begin{array}{c} \pi/2 \\  \pi/4 \\ 0 \\  \end{array} \right.\quad \quad
 
  d}u = \left\{ \begin{array}{c} \pi/2 \\  \pi/4 \\ 0 \\  \end{array} \right.\quad \quad
 
\begin{array}{c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
 
\begin{array}{c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
 
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}{ |a|  < 1,}  \\{ |a|  = 1,}  \\
 
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}{ |a|  < 1,}  \\{ |a|  = 1,}  \\
 
{ |a|  > 1.}  \\ \end{array}$$
 
{ |a|  > 1.}  \\ \end{array}$$
 +
  
  
===Fragebogen===
+
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie den Frequenzgang $H(f)$ des LZI-Systems. Wie groß sind die äquivalente Bandbreite und der Gleichsignalübertragungsfaktor?
+
{Compute the frequency response&nbsp; $H(f)$&nbsp; of the LTI system. What is the equivalent bandwidth and the direct signal (DC) transmission factor?
 
|type="{}"}
 
|type="{}"}
$\Delta f =$ { 1 } kHz
+
$\Delta f \ =\ $ { 1 3% } $\ \rm kHz$
$H(f = 0) =$ { 0.5 }
+
$H(f = 0) \ =\ $ { 0.5 3% }
  
  
{Berechnen Sie das Ausgangssignal $y(t)$ bei cosinusförmigem Eingang mit der Frequenz $f_0 =$ 1 kHz. Wie groß ist der Signalwert zur Zeit $t =$ 0?
+
{What is the signal value of the output signal&nbsp; $y(t)$&nbsp; at time&nbsp; $t = 0$&nbsp; if the input is cosine-shaped and of frequency&nbsp; $\underline{f_0 = 1\ \rm  kHz}$?
 
|type="{}"}
 
|type="{}"}
$f_0 = 1 {\rm kHz}:  y(t = 0)  =$ { 0 } V
+
$y(t = 0) \ = \ $ { 0. } $\ \rm V$
  
  
{Berechnen Sie das Ausgangssignal $y(t)$ bei cosinusförmigem Eingang mit der Frequenz $f_0 =$ 0.1 kHz. Wie groß ist der Signalwert zur Zeit $t =$ 0?
+
{What is the signal value of the output signal&nbsp; $y(t)$&nbsp; at time&nbsp; $t = 0$&nbsp; if the input is cosine-shaped and of frequency&nbsp; $\underline{f_0 = 0.1\ \rm  kHz}$?
 
|type="{}"}
 
|type="{}"}
$f_0 = 0.1 {\rm kHz}:  y(t = 0)  =$ { 2 } V
+
$y(t = 0) \ =\ $ { 2 3% } $\ \rm V$
  
  
{Berechnen Sie das Ausgangssignal $y(t)$ bei cosinusförmigem Eingang mit der Frequenz $f_0 =$ 0.5 kHz. Wie groß ist der Signalwert zur Zeit $t =$ 0?
+
{What is the signal value of the output signal&nbsp; $y(t)$&nbsp; at timee&nbsp; $t = 0$&nbsp; if the input is cosine-shaped and of frequency&nbsp; $\underline{f_0 = 0.5\ \rm  kHz}$?
 
|type="{}"}
 
|type="{}"}
$f_0 = 0.5 {\rm kHz}:  y(t = 0)  =$ { 1 } V
+
$y(t = 0) \ = \ $ { 1 3% } $\ \rm V$
 
 
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Ein Vergleich mit den Gleichungen in Abschnitt 2 von Kapitel 1.3 – oder auch die Anwendung der Fourierrücktransformation – zeigt, dass $H(f)$ ein idealer Tiefpass ist:
+
'''(1)'''&nbsp; A comparison with the equations on the page&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Ideal_low-pass_filter_–_Rectangular-in-frequency|Ideal low-pass filter]] or applying the&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_second_Fourier_integral |inverse Fourier transformation]]&nbsp; shows that&nbsp; $H(f)$&nbsp; is an ideal low-pass filter:
$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}K  \\  K/2 \\ 0 \\  \end{array} \right.\quad \quad \begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
+
:$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}K  \\  K/2 \\ 0 \\  \end{array} \right.\quad \quad \begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
 
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
 
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
 
{\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,}  \\
 
{\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,}  \\
Line 53: Line 64:
 
{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.}  \\
 
{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.}  \\
 
\end{array}$$
 
\end{array}$$
Die äquidistanten Nulldurchgänge der Impulsantwort treten im Abstand $Δt =$ 1 ms auf. Daraus folgt die äquivalente Bandbreite $Δf \rm \underline{ = 1 kHz}$. Wäre $K =$ 1, so müsste $h(0) = Δf =$ 1000 1/s gelten. Wegen der Angabe $h(0) = 500 1/s = Δf/2$ ist somit der Gleichsignalübertragungsfaktor $K = H(f = 0) \rm \underline{= 0.5}$.
+
*The equidistant zero-crossings of the impulse response occur at an interval of&nbsp; $Δt = 1 \ \rm ms$&nbsp;.  
 +
*From this it follows that the equivalent bandwidth is&nbsp; $Δf \rm \underline{ = 1 \ \rm kHz}$.&nbsp;
 +
*If&nbsp; $K = 1$ was true, then&nbsp; $h(0) = Δf = 1000 \cdot \rm 1/s$&nbsp; should hold.  
 +
*Because of the given&nbsp; $h(0) = 500 \cdot{\rm 1/s} = Δf/2$&nbsp; the direct signal (DC) transmission factor thus is&nbsp; $K = H(f = 0) \; \rm \underline{= 0.5}$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; This problem is most easily solved in the spectral domain.
 +
*For the output spectrum the following holds: &nbsp; $Y(f) =  X(f)\cdot H(f) .$
 +
*$X(f)$&nbsp; consists of two Dirac functions at&nbsp; $± f_0$ each with weight&nbsp; $A_x/2 =2 \hspace{0.08cm}\rm V$.
 +
*For&nbsp; $f = f_0 = 1 \ {\rm kHz} > Δf/2$&nbsp;, however&nbsp; $H(f) = 0$ holds, such that&nbsp; $Y(f) = 0$&nbsp; and hence also &nbsp; $y(t) = 0$&nbsp; &nbsp;  ⇒  &nbsp;  $\underline{y(t = 0) = 0}$.
 +
 
 +
 
 +
The solution in the time domain is based on convolution:
 +
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau  )}  \cdot
 +
x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 +
*At time&nbsp; $t = 0$&nbsp; the following is obtained considering the symmetry of the cosine function:
 +
:$$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau  )  \cdot
 +
{\rm cos}(2\pi \cdot  f_0
 +
\cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$
 +
*With the substitution&nbsp; $u = π · Δf · τ$&nbsp;, this can also be formulated as follows:
 +
:$$y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm d}u .$$
 +
*Here, the constant is&nbsp; $a = 2f_0/Δf = 2$. With this value, the given integral yields zero: &nbsp; $y(t = 0 ) = {A_y } = 0.$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The frequency response has the value&nbsp; $K = 0.5$ at&nbsp; $f = f_0 = 100 \ \rm Hz$&nbsp; according to the calculations for subtask&nbsp; '''(1)'''&nbsp;. Therefore,
 +
:$$A_y = A_x/2 = 2\ \rm  V$$ is obtained.
 +
*The same result is obtained by convolution according to the above equation.
 +
*For&nbsp; $a = 2f_0/Δf = 0.2$&nbsp; the integral is equal to&nbsp; $π/2$&nbsp; and one obtains
 +
:$$y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.$$
  
  
'''2.'''
+
'''(4)'''&nbsp; The transition from the band-pass to the band-stop is exactly at&nbsp; $f = 0.5  \ \rm kHz$&nbsp; and for this singular location the following holds:
'''3.'''
+
:$$H(f = f_0) = K/2.$$
'''4.'''
+
*Thus, the amplitude of the output signal is only half as large as calculated in subtask&nbsp; '''(3)'''&nbsp;, namely&nbsp; $A_y \;  \underline{= 1  \, \rm V}$.  
'''5.'''
+
*The same result is obtained with&nbsp;$a = 2f_0/Δf = 1$&nbsp; by convolution.
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^Kapitelx^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^1.3 Some Low-Pass Functions in Systems Theory^]]

Latest revision as of 13:54, 7 September 2021

$\rm sinc$–shaped impulse response

The impulse response of a linear time-invariant (and non-causal) system was determined as follows (see graph):

$$h(t) = 500\hspace{0.1cm}{ {\rm s}}^{-1}\cdot{\rm sinc}\big[{t}/({ 1\hspace{0.1cm}{\rm ms}})\big] .$$

The output signals  $y(t)$ should be computed if various cosine oscillations of different frequency  $f_0$  are applied to the input:

$$x(t) = 4\hspace{0.05cm}{\rm V}\cdot {\rm cos}(2\pi \cdot f_0 \cdot t ) .$$





Please note:

  • The exercise belongs to the chapter  Some Low-Pass Functions in Systems Theory.
  • The solution can be found in the time domain or in the frequency domain. In the sample solution you will find both approaches.
  • The following definite integral is given:
$$\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u = \left\{ \begin{array}{c} \pi/2 \\ \pi/4 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}{ |a| < 1,} \\{ |a| = 1,} \\ { |a| > 1.} \\ \end{array}$$



Questions

1

Compute the frequency response  $H(f)$  of the LTI system. What is the equivalent bandwidth and the direct signal (DC) transmission factor?

$\Delta f \ =\ $

$\ \rm kHz$
$H(f = 0) \ =\ $

2

What is the signal value of the output signal  $y(t)$  at time  $t = 0$  if the input is cosine-shaped and of frequency  $\underline{f_0 = 1\ \rm kHz}$?

$y(t = 0) \ = \ $

$\ \rm V$

3

What is the signal value of the output signal  $y(t)$  at time  $t = 0$  if the input is cosine-shaped and of frequency  $\underline{f_0 = 0.1\ \rm kHz}$?

$y(t = 0) \ =\ $

$\ \rm V$

4

What is the signal value of the output signal  $y(t)$  at timee  $t = 0$  if the input is cosine-shaped and of frequency  $\underline{f_0 = 0.5\ \rm kHz}$?

$y(t = 0) \ = \ $

$\ \rm V$


Solution

(1)  A comparison with the equations on the page  Ideal low-pass filter or applying the  inverse Fourier transformation  shows that  $H(f)$  is an ideal low-pass filter:

$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}K \\ K/2 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.005cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}$$
  • The equidistant zero-crossings of the impulse response occur at an interval of  $Δt = 1 \ \rm ms$ .
  • From this it follows that the equivalent bandwidth is  $Δf \rm \underline{ = 1 \ \rm kHz}$. 
  • If  $K = 1$ was true, then  $h(0) = Δf = 1000 \cdot \rm 1/s$  should hold.
  • Because of the given  $h(0) = 500 \cdot{\rm 1/s} = Δf/2$  the direct signal (DC) transmission factor thus is  $K = H(f = 0) \; \rm \underline{= 0.5}$.


(2)  This problem is most easily solved in the spectral domain.

  • For the output spectrum the following holds:   $Y(f) = X(f)\cdot H(f) .$
  • $X(f)$  consists of two Dirac functions at  $± f_0$ each with weight  $A_x/2 =2 \hspace{0.08cm}\rm V$.
  • For  $f = f_0 = 1 \ {\rm kHz} > Δf/2$ , however  $H(f) = 0$ holds, such that  $Y(f) = 0$  and hence also   $y(t) = 0$    ⇒   $\underline{y(t = 0) = 0}$.


The solution in the time domain is based on convolution:

$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau )} \cdot x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
  • At time  $t = 0$  the following is obtained considering the symmetry of the cosine function:
$$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau ) \cdot {\rm cos}(2\pi \cdot f_0 \cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$
  • With the substitution  $u = π · Δf · τ$ , this can also be formulated as follows:
$$y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u .$$
  • Here, the constant is  $a = 2f_0/Δf = 2$. With this value, the given integral yields zero:   $y(t = 0 ) = {A_y } = 0.$


(3)  The frequency response has the value  $K = 0.5$ at  $f = f_0 = 100 \ \rm Hz$  according to the calculations for subtask  (1) . Therefore,

$$A_y = A_x/2 = 2\ \rm V$$ is obtained.
  • The same result is obtained by convolution according to the above equation.
  • For  $a = 2f_0/Δf = 0.2$  the integral is equal to  $π/2$  and one obtains
$$y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.$$


(4)  The transition from the band-pass to the band-stop is exactly at  $f = 0.5 \ \rm kHz$  and for this singular location the following holds:

$$H(f = f_0) = K/2.$$
  • Thus, the amplitude of the output signal is only half as large as calculated in subtask  (3) , namely  $A_y \; \underline{= 1 \, \rm V}$.
  • The same result is obtained with $a = 2f_0/Δf = 1$  by convolution.