Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.6Z: Interpretation of the Frequency Response"

From LNTwww
 
(50 intermediate revisions by 8 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
  
[[File:P_ID862__LZI_Z_1_6.png|right|Impulsantwort und Eingangssignale (Aufgabe Z1.6)]] Mit dieser Aufgabe soll der Einfluss eines Tiefpasses H(f) auf cosinusförmige Signale der Form
+
[[File:P_ID862__LZI_Z_1_6.png|right|frame|Impulse response and input signals]]  
xi(t)=Axcos(2πfit)
+
The task is meant to investigate the influence of a low-pass filter  H(f)  on cosinusoidal signals of the form
veranschaulicht werden. In der Grafik sehen Sie die Signale xi(t), wobei der Index i die Frequenz in kHz angibt. So beschreibt x2(t) ein 2 kHz–Signal.
+
:$$x_i(t) = A_x \cdot {\rm cos}(2\pi  f_i  t ).$$  
 +
In the graph you can see the signals  xi(t) where the index i  indicates the frequency in $\rm kHz$ . So,  x2(t)  describes a  $2 \hspace{0.09cm} \rm  kHz$–signal.
  
Die Signalamplitude beträgt jeweils $A_x =$ 1 V. Das Gleichsignal x0(t) ist als Grenzfall eines Cosinussignals mit der Frequenz f0= 0 zu interpretieren.
+
The signal amplitude in each case is $A_x = 1 \hspace{0.05cm} \rm  V$. The direct (DC) signal  x0(t)  is to be interpreted as a limiting case of a cosine signal with frequeny  $f_0 =0$.
  
Die obere Skizze zeigt die rechteckige Impulsantwort h(t) des Tiefpasses. Der dazugehörige Frequenzgang lautet:
+
The upper sketch shows the rectangular impulse response  h(t)  of the low-pass filter. Its frequency response is:
$$H(f) = {\rm si}(\pi \frac{f}{ {\rm \Delta}f}) .$$
+
:$$H(f) = {\rm si}(\pi {f}/{ {\rm \Delta}f}) .$$
Aufgrund der Linearität und der Tatsache, dass H(f) reell und gerade ist, sind die Ausgangssignale ebenfalls cosinusförmig:
+
Due to linearity and the fact that H(f)  is real and even the output signals are also cosine-shaped:
yi(t)=Aicos(2πfit).
+
:yi(t)=Aicos(2πfit).
Gesucht werden die Signalamplituden Ai am Ausgang für die verschiedenen Eingangsfrequenzen fi, wobei die Lösung ausschließlich im Zeitbereich gefunden werden soll. Dieser etwas umständliche Lösungsweg soll dazu dienen, den Zusammenhang zwischen Zeit– und Frquenzbereich deutlich zu machen.
+
*The signal amplitudes Ai  at the output for different frequencies  fi are searched-for and the solution is to be found in the time domain only.  
  
'''Hinweis:''' Die Aufgabe bezieht sich auf die theoretischen Grundlagen von [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen|Kapitel 1.3]]. Entgegen der sonst üblichen Definition einer Amplitude können die „A_i” durchaus negativ sein. Dies entspricht dann der Funktion „Minus-Cosinus”.
+
*This somewhat circuitous solution is intended to make the basic relationship between the time and frequency domains clear.
  
  
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
''Please note:''
 +
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].
 +
*Contrary to the usual definition of the amplitude, the "A_i" may well be negative. Then, this corresponds to the function "minus-cosine".
 +
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Tiefpass liegt hier vor?
+
{Which low-pass filter is at hand here?
 
|type="[]"}
 
|type="[]"}
- Idealer Tiefpass.
+
- Ideal low-pass filter,
+ Spalttiefpass.
+
+ slit low-pass filter,
- Gaußtiefpass.
+
- Gaussian low-pass filter.
  
  
{Geben Sie die äquivalente Bandbreite von H(f) an.
+
{State the equivalent bandwidth of&nbsp; H(f)&nbsp;.
 
|type="{}"}
 
|type="{}"}
\Delta f = { 2 } kHz
+
$\Delta f \ =\ $ { 2 3% } $\ \rm kHz$
  
  
{Berechnen Sie allgemein die Amplitude A_i in Abhängigkeit von x_i(t) und h(t). Welche der nachfolgenden Punkte sind bei der Berechnung zu berücksichtigen?
+
{In general, compute the amplitude&nbsp; A_i&nbsp; as a function of&nbsp; x_i(t)&nbsp; and&nbsp; h(t). Which of the following should be considered in the calculations?
 
|type="[]"}
 
|type="[]"}
+ Beim Cosinussignal gilt A_i = y_i(t = 0).
+
+ For the cosine signal, &nbsp;A_i = y_i(t = 0) holds.
- Es gilt y_i(t) = x_i(t) · h(t).
+
- The following holds: &nbsp;y_i(t) = x_i(t) · h(t).
+ Es gilt y_i(t) = x_i(t) ∗ h(t).
+
+ The following holds: &nbsp;y_i(t) = x_i(t) ∗ h(t).
  
  
{Welche der nachfolgenden Ergebnisse treffen für A_0, A_2 und A_4 zu?
+
{Which of the following results are true for&nbsp; A_0, A_2&nbsp; and&nbsp; A_4&nbsp;? &nbsp; The following still holds: &nbsp; A_i = y_i(t = 0).
 
|type="[]"}
 
|type="[]"}
- A_0 = 0.
+
- $A_0 = 0$.
+ $A_0 =$ 1 V.
+
+ $A_0 = 1 \hspace{0.05cm} \rm V $.
+ A_2 = 0.
+
+ $A_2 = 0$.
- $A_2 =$ 1 V.
+
- $A_2 = 1 \hspace{0.05cm} \rm V $.
+ A_4 = 0.
+
+ $A_4 = 0$.
- $A_4 =$ 1 V.
+
- $A_4 =1 \hspace{0.05cm} \rm V $.
  
  
{Berechnen Sie die Amplituden A_1 und A_3 für ein 1 kHz- bzw. 3 kHz-Signal. Interpretieren Sie die Ergebnisse anhand der Spektralfunktion.
+
{Compute the amplitudes&nbsp; A_1&nbsp; and&nbsp; A_3&nbsp; for a&nbsp; $1 \ \rm kHz&ndash; and&nbsp; 3 \ \rm kHz$&ndash;signal. <br>Interpret the results using the spectral functions.
 
|type="{}"}
 
|type="{}"}
A_1 = { 0.637 5%  } V
+
$A_1 \ = \ $ { 0.637 5%  } $\ \rm V$
A_3 = {-0.215- -0.205   } V
+
$A_3 \ = \ $ { -0.215--0.205 } $\ \rm V$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:'''a)'''
+
'''(1)'''&nbsp; <u>Approach 2</u> is correct: &nbsp; It is a <u>slit low-pass filter</u>.
:'''b)'''
+
 
:'''c)'''
+
 
:'''d)'''
+
'''(2)'''&nbsp; The (equivalent) time duration of the impulse response is&nbsp; Δt = 0.5 \ \rm ms. &nbsp; The equivalent bandwidth is equal to the reciprocal:
:'''e)'''
+
:Δf = 1/Δt \ \rm \underline{= \ 2 \ kHz}.
:'''f)'''
+
 
:'''g)'''
+
 
 +
'''(3)'''&nbsp; <u>Approaches 1 and 3</u> are correct:
 +
*The amplitude is&nbsp; A_i = y_i(t = 0) since&nbsp; y_i(t)&nbsp; is cosine-shaped. The output signal is calculated by convolution for this purpose:
 +
:$$A_i = y_i (t=0) = \int\limits_{ - \infty }^{ + \infty } {x_i ( \tau  )}  \cdot h ( {0 - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 +
*Considering the symmetry and the time limitation of&nbsp; $h(t)$ the following result is obtained:
 +
:A_i = \frac{A_x}{\Delta t} \cdot \int\limits_{ - \Delta t /2 }^{ + \Delta t /2 } {\rm cos}(2\pi  f_i  \tau )\hspace{0.1cm}{\rm d}\tau.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; <u>Approaches 2, 3 and 5</u> are correct:
 +
*For the direct (DC) signal  &nbsp;x_0(t) = A_x&nbsp;, set &nbsp;f_i = 0&nbsp; and one obtains &nbsp;A_0 = A_x \ \rm \underline{ = \ 1 \hspace{0.05cm} V}.
 +
*In contrast to this, for the cosine frequencies &nbsp;f_2 = 2 \ \rm kHz&nbsp; and &nbsp;f_4 = 4 \ \rm kHz&nbsp; the integral vanishes in each case because then it is integrated over one and two periods, respectively: &nbsp; A_2 \ \rm \underline{ = \hspace{0.05cm} 0}&nbsp; und&nbsp; A_4 \hspace{0.05cm} \rm \underline{ = \ 0}.
 +
*In the frequency domain, the cases which are dealt with here correspond to:
 +
:H(f=0) = 1, \hspace{0.3cm}H(f=\Delta f) = 0, \hspace{0.3cm}H(f=2\Delta f) = 0.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; The result of subtask&nbsp; '''(3)'''&nbsp; – considering the symmetry – is for&nbsp; f_i = f_1:
 +
:$$A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{  \Delta t /2 } {\rm cos}(2\pi  f_1  \tau )\hspace{0.1cm}{\rm
 +
d}\tau =  \frac{2A_x}{2\pi  f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi  f_1  \frac{\Delta t}{2}
 +
)= A_x \cdot {\rm si}(\pi  f_1  \Delta t ).$$
 +
*Taking &nbsp; f_1 · Δt = 0.5&nbsp;into account the result is:
 +
:A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.
 +
*Correspondingly, the following is obtained using&nbsp; f_3 · Δt = 1.5:
 +
:A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.
 +
*The exact same results are obtained – but much faster – by applying the equation:
 +
:A_i = A_x · H(f = f_i).
 +
 
 +
*From the graphs on the information page it is already obvious that the integral over&nbsp; x_1(t)&nbsp; is positive in the marked area and the integral over&nbsp; x_3(t)&nbsp; is negative.
 +
*However, it should be noted that in general amplitude is usually referred to as the magnitude (See notice on the information page).
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^Kapitelx^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^1.3 Some Low-Pass Functions in Systems Theory^]]

Latest revision as of 19:33, 7 September 2021

Impulse response and input signals

The task is meant to investigate the influence of a low-pass filter  H(f)  on cosinusoidal signals of the form

x_i(t) = A_x \cdot {\rm cos}(2\pi f_i t ).

In the graph you can see the signals  x_i(t) where the index i  indicates the frequency in \rm kHz . So,  x_2(t)  describes a  2 \hspace{0.09cm} \rm kHz–signal.

The signal amplitude in each case is A_x = 1 \hspace{0.05cm} \rm V. The direct (DC) signal  x_0(t)  is to be interpreted as a limiting case of a cosine signal with frequeny  f_0 =0.

The upper sketch shows the rectangular impulse response  h(t)  of the low-pass filter. Its frequency response is:

H(f) = {\rm si}(\pi {f}/{ {\rm \Delta}f}) .

Due to linearity and the fact that H(f)  is real and even the output signals are also cosine-shaped:

y_i(t) = A_i \cdot {\rm cos}(2\pi f_i t ) .
  • The signal amplitudes A_i  at the output for different frequencies  f_i are searched-for and the solution is to be found in the time domain only.
  • This somewhat circuitous solution is intended to make the basic relationship between the time and frequency domains clear.





Please note:

  • The exercise belongs to the chapter  Some Low-Pass Functions in Systems Theory.
  • Contrary to the usual definition of the amplitude, the "A_i" may well be negative. Then, this corresponds to the function "minus-cosine".




Questions

1

Which low-pass filter is at hand here?

Ideal low-pass filter,
slit low-pass filter,
Gaussian low-pass filter.

2

State the equivalent bandwidth of  H(f) .

\Delta f \ =\

\ \rm kHz

3

In general, compute the amplitude  A_i  as a function of  x_i(t)  and  h(t). Which of the following should be considered in the calculations?

For the cosine signal,  A_i = y_i(t = 0) holds.
The following holds:  y_i(t) = x_i(t) · h(t).
The following holds:  y_i(t) = x_i(t) ∗ h(t).

4

Which of the following results are true for  A_0, A_2  and  A_4 ?   The following still holds:   A_i = y_i(t = 0).

A_0 = 0.
A_0 = 1 \hspace{0.05cm} \rm V .
A_2 = 0.
A_2 = 1 \hspace{0.05cm} \rm V .
A_4 = 0.
A_4 =1 \hspace{0.05cm} \rm V .

5

Compute the amplitudes  A_1  and  A_3  for a  1 \ \rm kHz– and  3 \ \rm kHz–signal.
Interpret the results using the spectral functions.

A_1 \ = \

\ \rm V
A_3 \ = \

\ \rm V


Solution

(1)  Approach 2 is correct:   It is a slit low-pass filter.


(2)  The (equivalent) time duration of the impulse response is  Δt = 0.5 \ \rm ms.   The equivalent bandwidth is equal to the reciprocal:

Δf = 1/Δt \ \rm \underline{= \ 2 \ kHz}.


(3)  Approaches 1 and 3 are correct:

  • The amplitude is  A_i = y_i(t = 0) since  y_i(t)  is cosine-shaped. The output signal is calculated by convolution for this purpose:
A_i = y_i (t=0) = \int\limits_{ - \infty }^{ + \infty } {x_i ( \tau )} \cdot h ( {0 - \tau } ) \hspace{0.1cm}{\rm d}\tau.
  • Considering the symmetry and the time limitation of  h(t) the following result is obtained:
A_i = \frac{A_x}{\Delta t} \cdot \int\limits_{ - \Delta t /2 }^{ + \Delta t /2 } {\rm cos}(2\pi f_i \tau )\hspace{0.1cm}{\rm d}\tau.


(4)  Approaches 2, 3 and 5 are correct:

  • For the direct (DC) signal  x_0(t) = A_x , set  f_i = 0  and one obtains  A_0 = A_x \ \rm \underline{ = \ 1 \hspace{0.05cm} V}.
  • In contrast to this, for the cosine frequencies  f_2 = 2 \ \rm kHz  and  f_4 = 4 \ \rm kHz  the integral vanishes in each case because then it is integrated over one and two periods, respectively:   A_2 \ \rm \underline{ = \hspace{0.05cm} 0}  und  A_4 \hspace{0.05cm} \rm \underline{ = \ 0}.
  • In the frequency domain, the cases which are dealt with here correspond to:
H(f=0) = 1, \hspace{0.3cm}H(f=\Delta f) = 0, \hspace{0.3cm}H(f=2\Delta f) = 0.


(5)  The result of subtask  (3)  – considering the symmetry – is for  f_i = f_1:

A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{ \Delta t /2 } {\rm cos}(2\pi f_1 \tau )\hspace{0.1cm}{\rm d}\tau = \frac{2A_x}{2\pi f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi f_1 \frac{\Delta t}{2} )= A_x \cdot {\rm si}(\pi f_1 \Delta t ).
  • Taking   f_1 · Δt = 0.5 into account the result is:
A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.
  • Correspondingly, the following is obtained using  f_3 · Δt = 1.5:
A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.
  • The exact same results are obtained – but much faster – by applying the equation:
A_i = A_x · H(f = f_i).
  • From the graphs on the information page it is already obvious that the integral over  x_1(t)  is positive in the marked area and the integral over  x_3(t)  is negative.
  • However, it should be noted that in general amplitude is usually referred to as the magnitude (See notice on the information page).