Difference between revisions of "Aufgaben:Exercise 3.2: Laplace Transform"

From LNTwww
 
(31 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Laplace–Transformation und p–Übertragungsfunktion
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function
 
}}
 
}}
  
[[File:P_ID1763__LZI_A_3_2.png|right|]]
+
[[File:P_ID1763__LZI_A_3_2.png|right|frame|Three causal time functions]]
:Kausale Signale und Systeme beschreibt man meist mittels der Laplace&ndash;Transformation. Ist <i>x</i>(<i>t</i>) für alle Zeiten <i>t</i> < 0 identisch 0, so lautet die Laplace&ndash;Transformierte:
+
Causal signals and systems are usually described by means of the Laplace transformation.&nbsp; If&nbsp; $x(t)$&nbsp; is identical to zero for all times&nbsp; $t < 0$,&nbsp; then the Laplace transform is:
:$$X_{\rm L}(p) =    \int\limits_{0}^{
+
:$$X_{\rm L}(p) =    \int_{0}^{
 
\infty}
 
\infty}
 
  { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm
 
  { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm
 
  d}t\hspace{0.05cm}\hspace{0.05cm} .$$
 
  d}t\hspace{0.05cm}\hspace{0.05cm} .$$
  
:In dieser Aufgabe sollen die Laplace&ndash;Transformierten der in der Grafik dargestellten kausalen Signale ermittelt werden. Die nachfolgenden Gleichungen gelten nur für <i>t</i> &#8805; 0. Für negative Zeiten sind alle Signale identisch 0.
+
In this exercise, the Laplace transforms of the causal signals shown in the graph are to be determined.&nbsp; The following equations are valid in each case only for&nbsp; $t \ge 0$.&nbsp; For negative times, all signals are identical to zero.
  
:Cosinussignal mit der Periodendauer <i>T</i><sub>0</sub>:
+
*Cosine signal with period&nbsp; $T_0$:
:$$x(t) = {\rm cos} (2\pi \cdot \frac{t}{T_0})= {\rm cos} (\omega_0 \cdot t) \hspace{0.05cm},$$
+
:$$x(t) = {\rm cos} (2\pi \cdot {t}/{T_0})= {\rm cos} (\omega_0 \cdot t) \hspace{0.05cm},$$
  
:Sinussignal mit Periodendauer <i>T</i><sub>0</sub>:
+
*sine signal with period&nbsp; $T_0$:
:$$y(t) = {\rm sin} (2\pi \cdot \frac{t}{T_0})= {\rm sin} (\omega_0 \cdot t) \hspace{0.05cm},$$
+
:$$y(t) = {\rm sin} (2\pi \cdot {t}/{T_0})= {\rm sin} (\omega_0 \cdot t) \hspace{0.05cm},$$
  
:sin(<i>t</i>)/<i>t</i>&ndash;Signal mit äquivalenten Nulldurchgängen im Abstand <i>T</i>:
+
*$\sin(t)/t$&ndash;signal with equivalent zero-crossings at a distance of&nbsp; $T$:
:$$z(t) =  {\rm si} (\pi \cdot \frac{t}{T})\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si}(x)= {\rm sin}(x)/x
+
:$$z(t) =  {\rm si} (\pi \cdot {t}/{T})=  {\rm sinc} ({t}/{T})\hspace{0.4cm}{\rm with}\hspace{0.4cm}{\rm si}(x)= {\rm sin}(x)/x ={\rm sinc}(x)/\pi \hspace{0.05cm}.$$
\hspace{0.05cm}.$$
 
  
:Da <i>z</i>(<i>t</i>) ebenso wie die anderen hier betrachteten Signale <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) nicht energiebegrenzt ist, kann zur Berechnung der Spektralfunktion nicht die Gleichung
+
The following equation can'''<u>not</u>''' be used to calculate the spectral function since&nbsp; $z(t)$&nbsp; is not energy-limited just as the signals&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp;:
 
:$$Z(f) =  Z_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it
 
:$$Z(f) =  Z_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it
 
  f}} .$$
 
  f}} .$$
  
:herangezogen werden. Vielmehr ist zu berücksichtigen, dass
+
Rather, the fact that&nbsp; $z(t) =  s(t) \cdot \gamma(t)$&nbsp; holds is to be considered where&nbsp; $s(t)$&nbsp; denotes the conventional symmetric&nbsp; $\rm si$&ndash;function here:
:$$z(t) =  s(t) \cdot \gamma(t)$$
+
:$$s(t) =  {\rm si} (\pi \cdot {t}/{T}) \quad
 +
\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad S(f).$$
  
:gilt, wobei <i>s</i>(<i>t</i>) die herkömmliche symmetrische si&ndash;Funktion bezeichnet:
+
$S(f)$&nbsp; is a rectangular function symmetric about&nbsp; $f  = 0$&nbsp; with height&nbsp; $T$&nbsp; and width&nbsp; $1/T$.
:$$s(t) =  {\rm si} (\pi \cdot \frac{t}{T}) \quad
 
\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad S(f)$$
 
  
:Die Fouriertansformierte der Sprungfunktion <i>&gamma;</i>(<i>t</i>) lautet:
+
The Fourier transform of the step function&nbsp; $\gamma(t)$&nbsp; is:
 
:$$\gamma(t) \quad
 
:$$\gamma(t) \quad
\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad \Gamma(f) = \frac{1}{2}
+
\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad {\it \Gamma}(f) = {1}/{2}
 
\cdot \delta (f) + \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm}.$$
 
\cdot \delta (f) + \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm}.$$
  
:<i>S</i>(<i>f</i>) ist eine um <i>f</i> = 0 symmetrische Rechteckfunktion mit der Höhe <i>T</i> und der Breite 1/<i>T</i>.
 
  
:<b>Hinweis:</b> Die Aufgabe gehört zu Kapitel 3.2. Gegeben sind folgende bestimmte Integrale:
+
 
:$$\int\limits_{0}^{
+
 
 +
''Please note:''
 +
*The exercise belongs to the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|Laplace Transform and p-Transfer Function]].
 +
* In the sample solution,&nbsp; we use of the two comparable functions&nbsp; ${\rm si}(x)$&nbsp; and&nbsp; ${\rm sinc}(x)$&nbsp; the former.  
 +
*The following definite integrals are given:
 +
:$$\int_{0}^{
 
\infty}
 
\infty}
 
  {  {\rm e}^{-p x} \cdot \cos(qx)}\hspace{0.1cm}{\rm
 
  {  {\rm e}^{-p x} \cdot \cos(qx)}\hspace{0.1cm}{\rm
  d}x = \frac{p}{p^2 + q^2}\hspace{0.05cm} , \hspace{1.0cm}\int\limits_{0}^{
+
  d}x = \frac{p}{p^2 + q^2}\hspace{0.05cm} , \hspace{1.0cm}\int_{0}^{
 
\infty}
 
\infty}
 
  {  {\rm e}^{-p x} \cdot \sin(qx)}\hspace{0.1cm}{\rm
 
  {  {\rm e}^{-p x} \cdot \sin(qx)}\hspace{0.1cm}{\rm
 
  d}x = \frac{q}{p^2 + q^2}\hspace{0.05cm} , $$
 
  d}x = \frac{q}{p^2 + q^2}\hspace{0.05cm} , $$
:$$\int\limits_{0}^{
+
:$$\int_{0}^{
 
\infty}
 
\infty}
 
  {  {\rm e}^{-p x} \cdot \frac{\sin(qx)}{x}}\hspace{0.1cm}{\rm
 
  {  {\rm e}^{-p x} \cdot \frac{\sin(qx)}{x}}\hspace{0.1cm}{\rm
 
  d}x = {\rm arctan}\hspace{0.15cm}\frac{q}{p}\hspace{0.05cm} ,  \hspace{0.6cm}
 
  d}x = {\rm arctan}\hspace{0.15cm}\frac{q}{p}\hspace{0.05cm} ,  \hspace{0.6cm}
\int\limits_{A}^{
+
\int_{A}^{
 
B}
 
B}
 
  {  \frac{1}{x}}\hspace{0.1cm}{\rm
 
  {  \frac{1}{x}}\hspace{0.1cm}{\rm
Line 58: Line 60:
  
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Laplace&ndash;Transformierte <i>X</i><sub>L</sub>(<i>p</i>) der kausalen Cosinusfunktion  <i>x</i>(<i>t</i>). Wie lautet die richtige Lösung?
+
{Compute the Laplace transform&nbsp; $X_{\rm L}(p)$&nbsp; of the causal cosine function&nbsp; $x(t)$.&nbsp; What is the correct solution?
|type="[]"}
+
|type="()"}
- <i>X</i><sub>L</sub>(<i>p</i>) = <i>&omega;</i><sub>0</sub>/(<i>p</i><sup>2</sup> + <i>&omega;</i><sub>0</sub><sup>2</sup>).
+
- $X_{\rm L}(p) = \omega_0/(p^2 + \omega_0^2)$.
+ <i>X</i><sub>L</sub>(<i>p</i>) = <i>p</i>/(<i>p</i><sup>2</sup> + <i>&omega;</i><sub>0</sub><sup>2</sup>).
+
+ $X_{\rm L}(p) = p/(p^2 + \omega_0^2)$.
- <i>X</i><sub>L</sub>(<i>p</i>) = 1/(<i>p</i><sup>2</sup> + <i>&omega;</i><sub>0</sub><sup>2</sup>).
+
- $X_{\rm L}(p) = 1/(p^2 + \omega_0^2)$.
 +
 
 +
{Compute the Laplace transform&nbsp; $Y_{\rm L}(p)$&nbsp; of the causal sine function&nbsp; $y(t)$.&nbsp; What is the correct solution?
 +
|type="()"}
 +
+ $Y_{\rm L}(p) = \omega_0/(p^2 + \omega_0^2)$. 
 +
- $Y_{\rm L}(p) = p/(p^2 + \omega_0^2)$.
 +
- $Y_{\rm L}(p) = 1/(p^2 + \omega_0^2)$.
  
  
{Berechnen Sie die Laplace&ndash;Transformierte <i>Y</i><sub>L</sub>(<i>p</i>) der kausalen Sinusfunktion <i>y</i>(<i>t</i>). Wie lautet die richtige Lösung?
+
{Compute the Laplace transform&nbsp; $Z_{\rm L}(p)$&nbsp; of the causal&nbsp; $\rm si$&ndash;function&nbsp; $z(t)$.&nbsp; What is the correct solution?
|type="[]"}
+
|type="()"}
+ <i>Y</i><sub>L</sub>(<i>p</i>) = <i>&omega;</i><sub>0</sub>/(<i>p</i><sup>2</sup> + <i>&omega;</i><sub>0</sub><sup>2</sup>).
+
- $Z_{\rm L}(p)$&nbsp; has a rectangular shape.
- <i>Y</i><sub>L</sub>(<i>p</i>) = <i>p</i>/(<i>p</i><sup>2</sup> + <i>&omega;</i><sub>0</sub><sup>2</sup>).
+
- $Z_{\rm L}(p) = \arctan (1/p)$.
- <i>Y</i><sub>L</sub>(<i>p</i>) = 1/(<i>p</i><sup>2</sup> + <i>&omega;</i><sub>0</sub><sup>2</sup>).
+
+ $Z_{\rm L}(p) = T/\pi \cdot \arctan (\pi/(pT))$.
  
  
{Berechnen Sie die Laplace&ndash;Transformierte <i>Z</i><sub>L</sub>(<i>p</i>) der kausalen si&ndash;Funktion  <i>z</i>(<i>t</i>). Wie lautet die richtige Lösung?
+
{Compute the real part of the spectrum&nbsp; $Z(f)$.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
- <i>Z</i><sub>L</sub>(<i>p</i>) hat einen rechteckförmigen Verlauf.
+
+ ${\rm Re}\big[Z(f)\big]$&nbsp; has a rectangular shape.
- <i>Z</i><sub>L</sub>(<i>p</i>) = arctan (1/<i>p</i>).
+
- ${\rm Re}\big[Z(f)\big]$&nbsp; is proportional to $\ln\; \big|(f \cdot T -0.5)/(f \cdot T +0.5)\big|.$
+ <i>Z</i><sub>L</sub>(<i>p</i>) = <i>T</i>/&pi; &middot; arctan (&pi;/(<i>p</i><i>T</i>)).
 
  
  
{Berechnen Sie den Realteil des Spektrums <i>Z</i>(<i>f</i>). Welche Aussagen treffen zu?
+
{Compute the imaginary part of&nbsp; $Z(f)$.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ Re{<i>Z</i>(<i>f</i>)} hat einen rechteckförmigen Verlauf.
+
- ${\rm Im}\big[Z(f)\big]$&nbsp; has a rectangular shape.
- Re{<i>Z</i>(<i>f</i>)} ist proportional zu ln |(<i>f</i> &middot; <i>T</i> &ndash; 0.5) / (<i>f</i> &middot; <i>T</i> + 0.5)|.
+
+ ${\rm Im}\big[Z(f)\big]$&nbsp; is proportional to&nbsp; $\ln\; \big|(f \cdot T -0.5)/(f \cdot T +0.5)\big|.$
 
 
  
{Berechnen Sie den Imaginärteil von <i>Z</i>(<i>f</i>). Welche Aussagen treffen zu?
 
|type="[]"}
 
- Im{<i>Z</i>(<i>f</i>)} hat einen rechteckförmigen Verlauf.
 
+ Im{<i>Z</i>(<i>f</i>)} ist proportional zu ln |(<i>f</i> &middot; <i>T</i> &ndash; 0.5) / (<i>f</i> &middot; <i>T</i> + 0.5)|.
 
  
  
Line 97: Line 101:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Entsprechend der Laplace&ndash;Definition gilt mit den vorgegebenen Gleichungen:
+
'''(1)'''&nbsp; <u>Suggested solution 2</u>&nbsp; is correct:
:$$X_{\rm L}(p) =    \int\limits_{0}^{
+
*According to the Laplace definition, the following holds with the given equations:
 +
:$$X_{\rm L}(p) =    \int_{0}^{
 
\infty}
 
\infty}
 
  { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm
 
  { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm
Line 108: Line 113:
 
  d}t = \frac{p}{p^2 + \omega_0^2}
 
  d}t = \frac{p}{p^2 + \omega_0^2}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
 +
*Suggestion 3 is ruled out since&nbsp; $X_{\rm L}(p)$&nbsp; must have the unit "second" (integral over time) while&nbsp; $p$&nbsp; and&nbsp; $\omega_0$&nbsp; each have the unit "1/s".
 +
  
:Richtig ist somit der <u>Vorschlag 2</u>. Der Vorschlag 3 scheitert von vorneherein aus, da <i>X</i><sub>L</sub>(<i>p</i>) die Einheit &bdquo;Sekunde&rdquo; aufweisen muss (Integral über die Zeit), während <i>p</i> und <i>&omega;</i><sub>0</sub> jeweils die Einheit 1/s besitzen.
 
  
:<b>2.</b>&nbsp;&nbsp;Hier gilt bei gleicher Vorgehensweise wie in der Teilaufgabe 1):
+
'''(2)'''&nbsp; <u>Suggested solution 1</u>&nbsp; is correct:
:$$Y_{\rm L}(p) =    \int\limits_{0}^{
+
*Here, the following holds using the same approach as in the subtask&nbsp; '''(1)''':
 +
:$$Y_{\rm L}(p) =    \int_{0}^{
 
\infty}
 
\infty}
 
  { {\rm sin} (\omega_0 \cdot T) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm
 
  { {\rm sin} (\omega_0 \cdot T) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm
Line 118: Line 125:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
:Richtig ist hier somit der <u>Lösungsvorschlag 1</u>.
 
  
:<b>3.</b>&nbsp;&nbsp;Die <i>p</i>&ndash;Übertragungsfunktion der kausalen si&ndash;Funktion lautet mit dem vorne angegebenen Integral:
+
 
:$$Z_{\rm L}(p) =    \int\limits_{0}^{
+
'''(3)'''&nbsp; <u>Suggested solution 3</u>&nbsp; is correct:
 +
*The&nbsp; $p$&ndash;transfer function of the causal&nbsp; $\rm si$&ndash;function is as follows considering the integral given above:
 +
:$$Z_{\rm L}(p) =    \int_{0}^{
 
\infty}
 
\infty}
 
  { \frac{\sin(\pi \cdot t/T)}{\pi \cdot t/T} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm
 
  { \frac{\sin(\pi \cdot t/T)}{\pi \cdot t/T} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm
  d}t = \frac{T}{\pi} \cdot {\rm arctan}\hspace{0.15cm}\frac{\pi}{p \cdot T}
+
  d}t = \frac{T}{\pi} \cdot {\rm arctan} \; \frac{\pi}{p\cdot T}
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{{\rm Vorschlag \hspace{0.15cm} 3}}
 
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
 +
*Suggestion 1 only applies to the Fourier transform of the non-causal&nbsp; $\rm si$&ndash;function.
 +
*Since here the argument of the&nbsp; $\rm arctan$&nbsp; function is dimensional, suggestion 2 cannot be true for this reason alone.
 +
  
:Vorschlag 1 gilt nur für die Fouriertransformierte der akausalen si&ndash;Funktion. Vorschlag 2 kann schon allein deshalb nicht stimmen, da hier das Argument der Arcustangens&ndash;Funktion dimensionsbehaftet ist.
 
  
:<b>4.</b>&nbsp;&nbsp;Aus <i>z</i>(<i>t</i>) = <i>s</i>(<i>t</i>) &middot; <i>&gamma;</i>(<i>t</i>) folgt mit dem Faltungssatz:
+
'''(4)'''&nbsp; <u>Suggested solution 1</u>&nbsp; is correct:
:$$Z(f) = S(f) \star \Gamma(f) = \frac{1}{2}
+
*The following arises as a result from&nbsp; $z(t) = s(t) \cdot \gamma(t)$&nbsp; with the convolution theorem:
 +
:$$Z(f) = S(f) \star {\it \Gamma}(f) = {1}/{2}
 
\cdot S(f) \star \delta (f) + S(f) \star \frac{1}{{\rm j} \cdot
 
\cdot S(f) \star \delta (f) + S(f) \star \frac{1}{{\rm j} \cdot
 
2\pi f}\hspace{0.05cm}.$$
 
2\pi f}\hspace{0.05cm}.$$
 
+
*Since&nbsp; $S(f)$&nbsp; is real, the real part of&nbsp; $Z(f)$&nbsp; is obtained as the first term of this equation:
:Da <i>S</i>(<i>f</i>) reell ist, ergibt sich der Realteil von <i>Z</i>(<i>f</i>) als der erste Term dieser Gleichung:
+
:$${\rm Re}[ Z(f)] =  {1}/{2}
:$${\rm Re}\{ Z(f)\} \frac{1}{2}
+
\cdot S(f) \star \delta (f) = {1}/{2} \cdot S(f)
\cdot S(f) \star \delta (f) = \frac{1}{2} \cdot S(f)
 
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
:Der Realteil von <i>Z</i>(<i>f</i>) hat somit die gleiche Rechteckform wie <i>S</i>(<i>f</i>), ist aber nur halb so hoch:
+
*The real part of&nbsp; $Z(f)$&nbsp; thus has the same rectangular shape as&nbsp; $S(f)$,&nbsp; but it is only half as high:
 
:$${\rm Re}\{ Z(f)\}= \left\{ \begin{array}{c} T/2 \\
 
:$${\rm Re}\{ Z(f)\}= \left\{ \begin{array}{c} T/2 \\
 
  0  \end{array} \right.
 
  0  \end{array} \right.
Line 147: Line 156:
 
\begin{array}{*{20}c}
 
\begin{array}{*{20}c}
 
{  |f|< 1/(2T)\hspace{0.05cm},}  \\
 
{  |f|< 1/(2T)\hspace{0.05cm},}  \\
{ |f|> 1/(2T)\hspace{0.05cm}.}
+
{ |f|> 1/(2T)\hspace{0.05cm},}
 
\end{array}
 
\end{array}
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{{\rm Vorschlag \hspace{0.15cm} 1}}.$$
+
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{{\rm suggestion \hspace{0.15cm} 1}}.$$
 +
 
 +
 
  
:<b>5.</b>&nbsp;&nbsp;Mit dem Ergebnis aus d) folgt für den Imaginärteil:
+
'''(5)'''&nbsp; <u>Suggested solution 2</u>&nbsp; is correct:
 +
*With the result of the last subtask,&nbsp; it follows for the imaginary part:
 
:$${\rm Im}\{ Z(f)\} = S(f) \star \frac{(-1)}{{\rm j} \cdot
 
:$${\rm Im}\{ Z(f)\} = S(f) \star \frac{(-1)}{{\rm j} \cdot
 
2\pi f} \hspace{0.05cm}.$$
 
2\pi f} \hspace{0.05cm}.$$
  
:Für hinreichend große Frequenzen (<i>f</i> &#8805; 1/(2 <i>T</i>)) liefert dieses Faltungsintegral:
+
*This convolution integral yields the following for sufficiently large frequencies&nbsp; $f \ge 1/(2T)$:
:$${\rm Im}\{ Z(f)\} = -T \cdot \int\limits_{f- 1/(2T)}^{
+
:$${\rm Im}\{ Z(f)\} = -T \cdot \int_{f- 1/(2T)}^{
 
f+ 1/(2T)} {  \frac{1}{2\pi x}}\hspace{0.1cm}{\rm
 
f+ 1/(2T)} {  \frac{1}{2\pi x}}\hspace{0.1cm}{\rm
 
  d}x =  \frac{T}{2\pi } \cdot {\rm ln}\hspace{0.15cm}\left |\frac{f- 1/(2T)}{f+ 1/(2T)}\right |
 
  d}x =  \frac{T}{2\pi } \cdot {\rm ln}\hspace{0.15cm}\left |\frac{f- 1/(2T)}{f+ 1/(2T)}\right |
  \hspace{0.05cm}.$$
+
  \hspace{0.05cm}
 +
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{{\rm suggestion \hspace{0.15cm} 2}}.$$
 +
 
  
:Richtig ist somit <u>der zweite Vorschlag</u>.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^3.2 Laplace–Transformation und p–Übertragungsfunktion^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^3.2 Laplace Transform and p-Transfer Function^]]

Latest revision as of 12:44, 13 October 2021

Three causal time functions

Causal signals and systems are usually described by means of the Laplace transformation.  If  $x(t)$  is identical to zero for all times  $t < 0$,  then the Laplace transform is:

$$X_{\rm L}(p) = \int_{0}^{ \infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}\hspace{0.05cm} .$$

In this exercise, the Laplace transforms of the causal signals shown in the graph are to be determined.  The following equations are valid in each case only for  $t \ge 0$.  For negative times, all signals are identical to zero.

  • Cosine signal with period  $T_0$:
$$x(t) = {\rm cos} (2\pi \cdot {t}/{T_0})= {\rm cos} (\omega_0 \cdot t) \hspace{0.05cm},$$
  • sine signal with period  $T_0$:
$$y(t) = {\rm sin} (2\pi \cdot {t}/{T_0})= {\rm sin} (\omega_0 \cdot t) \hspace{0.05cm},$$
  • $\sin(t)/t$–signal with equivalent zero-crossings at a distance of  $T$:
$$z(t) = {\rm si} (\pi \cdot {t}/{T})= {\rm sinc} ({t}/{T})\hspace{0.4cm}{\rm with}\hspace{0.4cm}{\rm si}(x)= {\rm sin}(x)/x ={\rm sinc}(x)/\pi \hspace{0.05cm}.$$

The following equation cannot be used to calculate the spectral function since  $z(t)$  is not energy-limited just as the signals  $x(t)$  and  $y(t)$ :

$$Z(f) = Z_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it f}} .$$

Rather, the fact that  $z(t) = s(t) \cdot \gamma(t)$  holds is to be considered where  $s(t)$  denotes the conventional symmetric  $\rm si$–function here:

$$s(t) = {\rm si} (\pi \cdot {t}/{T}) \quad \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad S(f).$$

$S(f)$  is a rectangular function symmetric about  $f = 0$  with height  $T$  and width  $1/T$.

The Fourier transform of the step function  $\gamma(t)$  is:

$$\gamma(t) \quad \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad {\it \Gamma}(f) = {1}/{2} \cdot \delta (f) + \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm}.$$



Please note:

  • The exercise belongs to the chapter  Laplace Transform and p-Transfer Function.
  • In the sample solution,  we use of the two comparable functions  ${\rm si}(x)$  and  ${\rm sinc}(x)$  the former.
  • The following definite integrals are given:
$$\int_{0}^{ \infty} { {\rm e}^{-p x} \cdot \cos(qx)}\hspace{0.1cm}{\rm d}x = \frac{p}{p^2 + q^2}\hspace{0.05cm} , \hspace{1.0cm}\int_{0}^{ \infty} { {\rm e}^{-p x} \cdot \sin(qx)}\hspace{0.1cm}{\rm d}x = \frac{q}{p^2 + q^2}\hspace{0.05cm} , $$
$$\int_{0}^{ \infty} { {\rm e}^{-p x} \cdot \frac{\sin(qx)}{x}}\hspace{0.1cm}{\rm d}x = {\rm arctan}\hspace{0.15cm}\frac{q}{p}\hspace{0.05cm} , \hspace{0.6cm} \int_{A}^{ B} { \frac{1}{x}}\hspace{0.1cm}{\rm d}x = {\rm ln}\hspace{0.15cm}\frac{B}{A}\hspace{0.05cm} .$$



Questions

1

Compute the Laplace transform  $X_{\rm L}(p)$  of the causal cosine function  $x(t)$.  What is the correct solution?

$X_{\rm L}(p) = \omega_0/(p^2 + \omega_0^2)$.
$X_{\rm L}(p) = p/(p^2 + \omega_0^2)$.
$X_{\rm L}(p) = 1/(p^2 + \omega_0^2)$.

2

Compute the Laplace transform  $Y_{\rm L}(p)$  of the causal sine function  $y(t)$.  What is the correct solution?

$Y_{\rm L}(p) = \omega_0/(p^2 + \omega_0^2)$.
$Y_{\rm L}(p) = p/(p^2 + \omega_0^2)$.
$Y_{\rm L}(p) = 1/(p^2 + \omega_0^2)$.

3

Compute the Laplace transform  $Z_{\rm L}(p)$  of the causal  $\rm si$–function  $z(t)$.  What is the correct solution?

$Z_{\rm L}(p)$  has a rectangular shape.
$Z_{\rm L}(p) = \arctan (1/p)$.
$Z_{\rm L}(p) = T/\pi \cdot \arctan (\pi/(pT))$.

4

Compute the real part of the spectrum  $Z(f)$.  Which statements are true?

${\rm Re}\big[Z(f)\big]$  has a rectangular shape.
${\rm Re}\big[Z(f)\big]$  is proportional to $\ln\; \big|(f \cdot T -0.5)/(f \cdot T +0.5)\big|.$

5

Compute the imaginary part of  $Z(f)$.  Which statements are true?

${\rm Im}\big[Z(f)\big]$  has a rectangular shape.
${\rm Im}\big[Z(f)\big]$  is proportional to  $\ln\; \big|(f \cdot T -0.5)/(f \cdot T +0.5)\big|.$


Solution

(1)  Suggested solution 2  is correct:

  • According to the Laplace definition, the following holds with the given equations:
$$X_{\rm L}(p) = \int_{0}^{ \infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t = \int\limits_{0}^{ \infty} { {\rm cos} (\omega_0 \cdot T) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t = \frac{p}{p^2 + \omega_0^2} \hspace{0.05cm} .$$
  • Suggestion 3 is ruled out since  $X_{\rm L}(p)$  must have the unit "second" (integral over time) while  $p$  and  $\omega_0$  each have the unit "1/s".


(2)  Suggested solution 1  is correct:

  • Here, the following holds using the same approach as in the subtask  (1):
$$Y_{\rm L}(p) = \int_{0}^{ \infty} { {\rm sin} (\omega_0 \cdot T) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t = \frac{\omega_0}{p^2 + \omega_0^2} \hspace{0.05cm} .$$


(3)  Suggested solution 3  is correct:

  • The  $p$–transfer function of the causal  $\rm si$–function is as follows considering the integral given above:
$$Z_{\rm L}(p) = \int_{0}^{ \infty} { \frac{\sin(\pi \cdot t/T)}{\pi \cdot t/T} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t = \frac{T}{\pi} \cdot {\rm arctan} \; \frac{\pi}{p\cdot T} \hspace{0.05cm} .$$
  • Suggestion 1 only applies to the Fourier transform of the non-causal  $\rm si$–function.
  • Since here the argument of the  $\rm arctan$  function is dimensional, suggestion 2 cannot be true for this reason alone.


(4)  Suggested solution 1  is correct:

  • The following arises as a result from  $z(t) = s(t) \cdot \gamma(t)$  with the convolution theorem:
$$Z(f) = S(f) \star {\it \Gamma}(f) = {1}/{2} \cdot S(f) \star \delta (f) + S(f) \star \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm}.$$
  • Since  $S(f)$  is real, the real part of  $Z(f)$  is obtained as the first term of this equation:
$${\rm Re}[ Z(f)] = {1}/{2} \cdot S(f) \star \delta (f) = {1}/{2} \cdot S(f) \hspace{0.05cm}.$$
  • The real part of  $Z(f)$  thus has the same rectangular shape as  $S(f)$,  but it is only half as high:
$${\rm Re}\{ Z(f)\}= \left\{ \begin{array}{c} T/2 \\ 0 \end{array} \right. \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \end{array} \begin{array}{*{20}c} { |f|< 1/(2T)\hspace{0.05cm},} \\ { |f|> 1/(2T)\hspace{0.05cm},} \end{array} \hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{{\rm suggestion \hspace{0.15cm} 1}}.$$


(5)  Suggested solution 2  is correct:

  • With the result of the last subtask,  it follows for the imaginary part:
$${\rm Im}\{ Z(f)\} = S(f) \star \frac{(-1)}{{\rm j} \cdot 2\pi f} \hspace{0.05cm}.$$
  • This convolution integral yields the following for sufficiently large frequencies  $f \ge 1/(2T)$:
$${\rm Im}\{ Z(f)\} = -T \cdot \int_{f- 1/(2T)}^{ f+ 1/(2T)} { \frac{1}{2\pi x}}\hspace{0.1cm}{\rm d}x = \frac{T}{2\pi } \cdot {\rm ln}\hspace{0.15cm}\left |\frac{f- 1/(2T)}{f+ 1/(2T)}\right | \hspace{0.05cm} \hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{{\rm suggestion \hspace{0.15cm} 2}}.$$