Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.2: Entropy of Ternary Sources"

From LNTwww
m (Text replacement - "autocorrelation" to "auto-correlation")
 
(26 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie und Quellencodierung/Gedächtnislose Nachrichtenquellen
+
{{quiz-Header|Buchseite=Information_Theory/Discrete_Memoryless_Sources}}
}}
 
  
[[File:P_ID2235__Inf_A_1_2.png|right|]]
+
[[File:Inf_A_1_2_vers2.png|right|frame|Probabilities of two ternary sources]]
:Die Entropie einer wertdiskreten gedächtnislosen Nachrichtenquelle mit <i>M</i> möglichen Symbolen lautet:
+
The entropy of a discrete memoryless source with&nbsp; $M$&nbsp; possible symbols is:
 
:$$H =  \sum_{\mu = 1}^M p_{\mu} \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{p_\mu}\hspace{0.05cm},\hspace{0.3cm}
 
:$$H =  \sum_{\mu = 1}^M p_{\mu} \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{p_\mu}\hspace{0.05cm},\hspace{0.3cm}
  {\rm Pseudoeinheit\hspace{-0.15cm}: \hspace{0.15cm}bit}\hspace{0.05cm}.$$
+
  {\rm pseudo unit\hspace{-0.15cm}: \hspace{0.15cm}bit}\hspace{0.05cm}.$$
:Hierbei bezeichnen die <i>p<sub>&mu;</sub></i> die Auftrittswahrscheinlichkeiten der einzelnen Symbole bzw. Ereignisse. Im vorliegenden Beispiel werden die Ereignisse mit <b>R</b>(ot), <b>G</b>(rün) und <b>S</b>(chwarz) bezeichnet.
+
Here, the&nbsp; $p_\mu$&nbsp; denote the occurrence probabilities of the individual symbols or events.&nbsp; In the present example, the events are denoted by&nbsp; $\rm R$(ed),&nbsp; $\rm G$(reen)&nbsp; and&nbsp; $\rm S$(chwarz)&nbsp; with&nbsp; "Schwarz"&nbsp; being the German word for&nbsp; "Black".
  
:Bei einer binären Quelle mit den Auftrittswahrscheinlichkeiten <i>p</i> und 1 &ndash; <i>p</i> kann hierfür geschrieben werden:
+
*For a binary source with the occurrence probabilities&nbsp; $p&nbsp;and&nbsp;1-p$&nbsp; this can be written:
 
:$$H = H_{\rm bin}(p) = p \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{p}+ (1-p) \cdot  
 
:$$H = H_{\rm bin}(p) = p \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{p}+ (1-p) \cdot  
{\rm log}_2\hspace{0.1cm}\frac{1}{1-p}\hspace{0.05cm}.$$
+
{\rm log}_2\hspace{0.1cm}\frac{1}{1-p}\hspace{0.05cm},\hspace{0.3cm}
:Die Entropie einer mehrstufigen Quelle lässt sich häufig mit dieser &bdquo;binären Entropiefunktion&rdquo; <i>H</i><sub>bin</sub>(<i>p</i>) &ndash; ebenfalls mit der Pseudoeinheit &bdquo;bit&rdquo; &ndash; ausdrücken.
+
\text{pseudo&ndash;unit: bit}\hspace{0.05cm}.$$
 +
*The entropy of a multilevel source can often be expressed with this&nbsp; "binary entropy function"&nbsp; $H_{\rm bin}(p)$.
 +
  
:Betrachtet werden in dieser Aufgabe zwei Ternärquellen mit den Symbolwahrscheinlichkeiten gemäß der obigen Grafik:
+
In this task, two ternary sources with the symbol probabilities according to the above graph are considered:
  
:* die Quelle Q<sub>1</sub> mit <i>p</i><sub>G</sub> = 1/2, <i>p</i><sub>S</sub> = 1/3, <i>p</i><sub>R</sub> = 1/6,
+
# source&nbsp; Q1 with&nbsp; $p_{\rm G }= 1/2$, &nbsp;$p_{\rm S }= 1/3&nbsp;and&nbsp;p_{\rm R }= 1/6$,
 +
# source&nbsp; Q2 with&nbsp; $p_{\rm G }= p&nbsp;and&nbsp;p_{\rm S } = p_{\rm R } = (1-p)/2$.
  
:* die Quelle Q<sub>2</sub> mit <i>p</i><sub>G</sub> = <i>p</i>, <i>p</i><sub>R</sub> = <i>p</i><sub>S</sub> = (1 &ndash; <i>p</i>)/2.
 
  
:Die Ternärquelle Q<sub>2</sub> lässt sich auch auf Roulette anwenden, wenn ein Spieler nur auf die Felder <b>R</b>ot, <b>S</b>chwarz und <b>G</b>rün (die &bdquo;Null&rdquo;) setzt. Dieser Spieltyp wird im Fragebogen mit &bdquo;Roulette 1&rdquo; bezeichnet.
+
*The ternary source&nbsp; Q2&nbsp; can also be applied to&nbsp; "Roulette"&nbsp; when a player bets only on the squares&nbsp; $\rm R$(ed),&nbsp; $\rm S$(chwarz)&nbsp; and $\rm G$(reen)&nbsp; (the "zero").&nbsp; This type of game is referred to as&nbsp; $\text{Roulette 1}$&nbsp; in the question section.
  
:Dagegen weist &bdquo;Roulette 2&rdquo; darauf hin, dass der Spieler auf einzelne Zahlen (<b>0</b>, ... , <b>36</b>) setzt.
+
*In contrast,&nbsp; $\text{Roulette 2}$&nbsp; indicates that the player bets on single numbers&nbsp; $(0$, ... , $36)$.
  
:<b>Hinweis:</b> Die Aufgabe bezieht sich auf das Kapitel 1.1.
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
''Hint:''
 +
*The task belongs to the chapter&nbsp; [[Information_Theory/Gedächtnislose_Nachrichtenquellen|Discrete Memoryless Sources]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Entropie <i>H</i> besitzt die Quelle Q<sub>1</sub>?
+
{What is the entropy&nbsp; $H&nbsp; of the source&nbsp;\rm \underline{Q_1}$?
 
|type="{}"}
 
|type="{}"}
$Q_1:\ \ H$ = { 1.46 3% } bit
+
$H \ = \ { 1.46 3% }\ \rm bit$
  
  
{Welche der folgenden Aussagen sind zutreffend, wenn man <b>R</b>, <b>G</b> und <b>S</b> durch die Zahlenwerte &ndash;1, 0 und +1 darstellt?
+
{Which of the following statements are true if&nbsp; $\rm R$,&nbsp; $\rm G$&nbsp; and&nbsp; $\rm S$&nbsp; are represented by the numerical values&nbsp; $-1$, &nbsp;$0&nbsp;and&nbsp;+1$&nbsp;?
|type="[]"}
+
|type="()"}
- Es ergibt sich eine kleinere Entropie.
+
- The result is a smaller entropy.
+ Die Entropie bleibt gleich.
+
+ The entropy remains the same.
- Es ergibt sich eine größere Entropie.
+
- The result is a greater entropy.
  
  
{Bestimmen Sie die Entropie der Quelle Q<sub>2</sub> unter Verwendung der binären Entropiefunktion <i>H</i><sub>bin</sub>(<i>p</i>). Welcher Wert ergibt sich für <i>p</i> = 0.5?
+
{Determine the entropy of the source&nbsp; Q2_&nbsp; using the binary entropy function&nbsp; $H_{\rm bin}(p)$.&nbsp; What value results for&nbsp; $\underline{p = 0.5}$?
 
|type="{}"}
 
|type="{}"}
$Q_2;\ p = 0.5:\ H$ = { 1.5 3% } bit
+
$H \ = \ { 1.5 3% }\ \rm bit$
  
  
{Für welchen <i>p</i>&ndash;Wert ergibt sich die maximale Entropie?
+
{For which&nbsp; $p$&ndash;value of the source&nbsp; Q2_&nbsp; does the maximum entropy result:&nbsp; H &#8594; H_\text{max}?
 
|type="{}"}
 
|type="{}"}
$Q_2,\ H &#8594; H_\text{max}:\ p$ = { 0.333 3% }  
+
$p \ \ $ { 0.333 3% }  
  
  
{Welche Entropie hat die Nachrichtenquelle &bdquo;Roulette&rdquo; hinsichtlich der Ereignisse <b>R</b>ot<b>S</b>chwarz und <b>G</b>rün (die &bdquo;Null&rdquo;)?
+
{What is the entropy of the source model&nbsp; $\text{Roulette 1}$,&nbsp; i.e. with respect to the events&nbsp; $\rm R$(ed),&nbsp; $\rm S$(chwarz)&nbsp; and&nbsp; $\rm G$(reen)&nbsp; (the "zero")?
 
|type="{}"}
 
|type="{}"}
$Roulette\ 1:\ H$ = { 1.152 3% } bit
+
$H \ = \ { 1.152 3% }\ \rm bit$
  
  
{Welche Entropie weist &bdquo;Roulette&rdquo; hinsichtlich der Zahlen <b>0</b>, ... , <b>36</b> auf?
+
{What is the entropy of&nbsp; $\text{Roulette 2}$&nbsp;,&nbsp; i.e. with regard to the numbers &nbsp; $0$, ... , $36$?
 
|type="{}"}
 
|type="{}"}
$Roulette\ 2:\ H$ = { 5.209 3% } bit
+
$H \ \ { 5.209 3% }\ \rm bit$
  
  
Line 65: Line 74:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>2.</b>&nbsp;&nbsp;Mit den Auftrittswahrscheinlichkeiten 1/2, 1/3 und 1/6 erhält man folgenden Entropiewert:
+
'''(1)'''&nbsp; With the "symbol" probabilities&nbsp; $1/2$,&nbsp; $1/3&nbsp; and&nbsp;1/6$&nbsp; we get the following entropy value:
:$$H \hspace{0.1cm}  =  \hspace{0.1cm}  1/2 \cdot {\rm log}_2\hspace{0.1cm}(2) +1/3 \cdot {\rm log}_2\hspace{0.1cm}(3) +1/6 \cdot {\rm log}_2\hspace{0.1cm}(6) =\\
+
:$$H \hspace{0.1cm}  =  \hspace{0.1cm}  1/2 \cdot {\rm log}_2\hspace{0.1cm}(2) +1/3 \cdot {\rm log}_2\hspace{0.1cm}(3) +1/6 \cdot {\rm log}_2\hspace{0.1cm}(6) =(1/2 + 1/6)\cdot {\rm log}_2\hspace{0.1cm}(2) +  (1/3 + 1/6)\cdot {\rm log}_2\hspace{0.1cm}(3) \hspace{0.15cm}\underline {\approx 1.46 \, {\rm bit}} \hspace{0.05cm}.$$
  \hspace{0.1cm}  =  \hspace{0.1cm}  (1/2 + 1/6)\cdot {\rm log}_2\hspace{0.1cm}(2) +  (1/3 + 1/6)\cdot {\rm log}_2\hspace{0.1cm}(3) =\\
+
 
  \hspace{0.1cm} =  \hspace{0.1cm} 2/3 \cdot 1\,{\rm bit} + 1/2 \cdot 1.585\,{\rm bit}\hspace{0.15cm}\underline {\approx 1.46 \, {\rm bit}}
+
 
  \hspace{0.05cm}.$$
+
 
 +
'''(2)'''&nbsp;<u>Proposed solution 2</u> is correct:
 +
*The entropy depends only on the probabilities of occurrence.
 +
*It does not matter which numerical values or physical quantities one assigns to the individual symbols.
 +
*It is different with mean values or the ACF (auto correlation function) calculation.&nbsp; If only symbols are given, no moments can be calculated for them.
 +
*Moreover, the mean values, auto-correlation, etc. depend on whether one agrees on the assignment bipolar&nbsp; (1,0,+1)&nbsp;  or unipolar&nbsp;  (0,1,2)&nbsp;.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The entropy of source&nbsp; $\rm Q_2$&nbsp; can be expressed as follows:
 +
:$$H \hspace{0.1cm} =  \hspace{0.1cm} p \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{p}+ 2 \cdot \frac{1-p}{2}  \cdot {\rm log}_2\hspace{0.1cm}\frac {2}{1-p}= p \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{p}+ (1-p)  \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{1-p} + (1-p)\cdot {\rm log}_2\hspace{0.1cm}(2)= H_{\rm bin}(p) + 1-p \hspace{0.05cm}.$$
 +
*For&nbsp; p=0.5 &nbsp;&nbsp;&#8658;&nbsp;&nbsp; Hbin(p)=1&nbsp;, we get&nbsp; H=1.5bit_.
  
:<b>2.</b>&nbsp;&nbsp;Richtig ist <u>Lösungsvorschlag 2</u>. Die Entropie hängt nur von den Auftrittswahrscheinlichkeiten ab. Es ist dabei egal, welche Zahlenwerte oder physikalische Größen man den einzelnen Symbolen zuordnet. Anders ist es bei Mittelwerten oder der AKF&ndash;Berechnung. Werden nur Symbole angegeben, so kann man hierfür keine Momente angeben. Außerdem hängen die Mittelwerte, Autokorrelation, usw. davon ab, ob man die Zuordnung bipolar (&ndash;1, 0, +1) oder unipolar (zum Beispiel: 0, 1, 2) vereinbart.
 
  
:<b>3.</b>&nbsp;&nbsp;Die Entropie der Quelle Q<sub>2</sub> lässt sich wie folgt ausdrücken:
 
:$$H \hspace{0.1cm} =  \hspace{0.1cm} p \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{p}+ 2 \cdot \frac{1-p}{2}  \cdot {\rm log}_2\hspace{0.1cm}\frac {2}{1-p}=\\
 
\hspace{0.1cm}  =  \hspace{0.1cm} p \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{p}+ (1-p)  \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{1-p} + (1-p)\cdot {\rm log}_2\hspace{0.1cm}(2)= H_{\rm bin}(p) + 1-p \hspace{0.05cm}.$$
 
:Für <i>p</i> = 0.5 &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i>H</i><sub>bin</sub>(<i>p</i>) = 1 ergibt sich <i>H</i> <u>= 1.5 bit</u>.
 
  
:<b>4.</b>&nbsp;&nbsp;Die maximale Entropie einer gedächtnislosen Quelle mit dem Symbolumfang <i>M</i> ergibt sich, wenn alle <i>M</i> Symbole gleichwahrscheinlich sind. Für den Sonderfall <i>M</i> = 3 folgt daraus:
+
'''(4)'''&nbsp; The maximum entropy of a memoryless source with symbol set size&nbsp; $M&nbsp; is obtained when all&nbsp;M$&nbsp; symbols are equally probable.
 +
*For the special case&nbsp; $M=3$&nbsp; it follows:
 
:$$p_{\rm R} + p_{\rm G} + p_{\rm S} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
:$$p_{\rm R} + p_{\rm G} + p_{\rm S} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
  \underline {p = 1/3}\hspace{0.05cm}.$$
+
  \underline {p = 1/3 \approx 0.333}\hspace{0.05cm}.$$
:Damit erhält man mit dem Ergebnis der Teilaufgabe (3) die folgende Entropie:
+
*Thus, using the result of sub-task&nbsp; '''(3)'''&nbsp;, we obtain the following entropy:
:$$H \hspace{0.1cm} = \hspace{0.1cm} H_{\rm bin}(1/3) + 1-1/3 = 1/3 \cdot  
+
:$$H = H_{\rm bin}(1/3) + 1-1/3 = 1/3 \cdot  
{\rm log}_2\hspace{0.1cm}(3) + 2/3 \cdot {\rm log}_2\hspace{0.1cm}(3/2) + 2/3 =\\
+
{\rm log}_2\hspace{0.1cm}(3) + 2/3 \cdot {\rm log}_2\hspace{0.1cm}(3/2) + 2/3 $$
\hspace{0.1cm} = \hspace{0.1cm}  1/3 \cdot {\rm log}_2\hspace{0.1cm}(3) + 2/3 \cdot  
+
:$$\Rightarrow \hspace{0.3cm}H = 1/3 \cdot {\rm log}_2\hspace{0.1cm}(3) + 2/3 \cdot  
 
{\rm log}_2\hspace{0.1cm}(3) - 2/3 \cdot {\rm log}_2\hspace{0.1cm}(2)+ 2/3 =  
 
{\rm log}_2\hspace{0.1cm}(3) - 2/3 \cdot {\rm log}_2\hspace{0.1cm}(2)+ 2/3 =  
 
{\rm log}_2\hspace{0.1cm}(3) = {1.585 \, {\rm bit}}
 
{\rm log}_2\hspace{0.1cm}(3) = {1.585 \, {\rm bit}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
:<b>5.</b>&nbsp;&nbsp;&bdquo;Roulette 1&rdquo; ist informationstheoretisch gleich der Konfiguration Q<sub>2</sub> mit <i>p</i> = 1/37:
+
 
 +
 
 +
'''(5)'''&nbsp; The source model&nbsp; Roulette 1&nbsp; is information theoretically equal to the configuration&nbsp; Q2&nbsp; with&nbsp; $p = 1/37$:
 
:pG=p=137,pR=pS=1p2=1837.
 
:pG=p=137,pR=pS=1p2=1837.
:Damit erhält man mit dem Ergebnis der Teilaufgabe (3):
+
*Thus, using the result of subtask&nbsp; '''(3)''', we obtain:
:$$H \hspace{0.1cm} = \hspace{0.1cm} H_{\rm bin}(1/37) + \frac{36}{37} = \frac{1}{37} \cdot {\rm log}_2\hspace{0.1cm}(37) + \frac{36}{37} \cdot {\rm log}_2\hspace{0.1cm}(37) - \frac{36}{37} \cdot {\rm log}_2\hspace{0.1cm}36 + \frac{36}{37} =\\
+
:$$H = H_{\rm bin}(1/37) + \frac{36}{37} = \frac{1}{37} \cdot {\rm log}_2\hspace{0.1cm}(37) + \frac{36}{37} \cdot {\rm log}_2\hspace{0.1cm}(37) - \frac{36}{37} \cdot {\rm log}_2\hspace{0.1cm}36 + \frac{36}{37} =
\hspace{0.1cm}  =  \hspace{0.1cm}  {\rm log}_2\hspace{0.1cm}(37) + \frac{36}{37} \cdot ( 1- {\rm log}_2\hspace{0.1cm}(36)) = 5.209 - 4.057  \hspace{0.15cm} \underline { = 1.152 \, {\rm bit}}
+
  {\rm log}_2\hspace{0.1cm}(37) + \frac{36}{37} \cdot ( 1- {\rm log}_2\hspace{0.1cm}(36)) = 5.209 - 4.057  \hspace{0.15cm} \underline { = 1.152 \, {\rm bit}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
:<b>6.</b>&nbsp;&nbsp; Setzt man bei Roulette auf einzelne Zahlen &#8658; Konfiguration &bdquo;Roulette 2&rdquo;, so sind alle Zahlen von <b>0</b> bis <b>36</b> gleichwahrscheinlich und man erhält:
+
 
 +
 
 +
'''(6)'''&nbsp; If we bet on single numbers in roulette &nbsp; &#8658; &nbsp; source model&nbsp; $\text{Roulette 2}$, all numbers from&nbsp; $0&nbsp; to&nbsp;36$&nbsp;  are equally probable and we get:
 
:$$H = {\rm log}_2\hspace{0.1cm}(37)  \hspace{0.15cm} \underline { = 5.209 \, {\rm bit}}
 
:$$H = {\rm log}_2\hspace{0.1cm}(37)  \hspace{0.15cm} \underline { = 5.209 \, {\rm bit}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 105: Line 125:
  
  
[[Category:Aufgaben zu Informationstheorie|^1.1 Gedächtnislose Nachrichtenquellen^]]
+
[[Category:Information Theory: Exercises|^1.1 Memoryless Sources^]]

Latest revision as of 13:29, 17 February 2022

Probabilities of two ternary sources

The entropy of a discrete memoryless source with  M  possible symbols is:

H=Mμ=1pμlog21pμ,pseudounit:bit.

Here, the  pμ  denote the occurrence probabilities of the individual symbols or events.  In the present example, the events are denoted by  R(ed),  G(reen)  and  S(chwarz)  with  "Schwarz"  being the German word for  "Black".

  • For a binary source with the occurrence probabilities  p  and  1p  this can be written:
H=Hbin(p)=plog21p+(1p)log211p,pseudo–unit: bit.
  • The entropy of a multilevel source can often be expressed with this  "binary entropy function"  Hbin(p).


In this task, two ternary sources with the symbol probabilities according to the above graph are considered:

  1. source  Q1 with  pG=1/2,  pS=1/3  and  pR=1/6,
  2. source  Q2 with  pG=p  and  pS=pR=(1p)/2.


  • The ternary source  Q2  can also be applied to  "Roulette"  when a player bets only on the squares  R(ed),  S(chwarz)  and G(reen)  (the "zero").  This type of game is referred to as  Roulette 1  in the question section.
  • In contrast,  Roulette 2  indicates that the player bets on single numbers  (0, ... , 36).




Hint:


Questions

1

What is the entropy  H  of the source  Q1_?

H = 

 bit

2

Which of the following statements are true if  RG  and  S  are represented by the numerical values  1,  0  and  +1 ?

The result is a smaller entropy.
The entropy remains the same.
The result is a greater entropy.

3

Determine the entropy of the source  Q2_  using the binary entropy function  Hbin(p).  What value results for  p=0.5_?

H = 

 bit

4

For which  p–value of the source  Q2_  does the maximum entropy result:  HHmax?

p = 

5

What is the entropy of the source model  Roulette 1,  i.e. with respect to the events  R(ed),  S(chwarz)  and  G(reen)  (the "zero")?

H = 

 bit

6

What is the entropy of  Roulette 2 ,  i.e. with regard to the numbers   0, ... , 36?

H = 

 bit


Solution

(1)  With the "symbol" probabilities  1/21/3  and  1/6  we get the following entropy value:

H=1/2log2(2)+1/3log2(3)+1/6log2(6)=(1/2+1/6)log2(2)+(1/3+1/6)log2(3)1.46bit_.


(2) Proposed solution 2 is correct:

  • The entropy depends only on the probabilities of occurrence.
  • It does not matter which numerical values or physical quantities one assigns to the individual symbols.
  • It is different with mean values or the ACF (auto correlation function) calculation.  If only symbols are given, no moments can be calculated for them.
  • Moreover, the mean values, auto-correlation, etc. depend on whether one agrees on the assignment bipolar  (1,0,+1)  or unipolar  (0,1,2) .


(3)  The entropy of source  Q2  can be expressed as follows:

H=plog21p+21p2log221p=plog21p+(1p)log211p+(1p)log2(2)=Hbin(p)+1p.
  • For  p=0.5   ⇒   Hbin(p)=1 , we get  H=1.5bit_.


(4)  The maximum entropy of a memoryless source with symbol set size  M  is obtained when all  M  symbols are equally probable.

  • For the special case  M=3  it follows:
pR+pG+pS=1p=1/30.333_.
  • Thus, using the result of sub-task  (3) , we obtain the following entropy:
H=Hbin(1/3)+11/3=1/3log2(3)+2/3log2(3/2)+2/3
H=1/3log2(3)+2/3log2(3)2/3log2(2)+2/3=log2(3)=1.585bit.


(5)  The source model  Roulette 1  is information theoretically equal to the configuration  Q2  with  p=1/37:

pG=p=137,pR=pS=1p2=1837.
  • Thus, using the result of subtask  (3), we obtain:
H=Hbin(1/37)+3637=137log2(37)+3637log2(37)3637log236+3637=log2(37)+3637(1log2(36))=5.2094.057=1.152bit_.


(6)  If we bet on single numbers in roulette   ⇒   source model  Roulette 2, all numbers from  0  to  36  are equally probable and we get:

H=log2(37)=5.209bit_.