Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.4: Entropy for Different PMF"

From LNTwww
 
(32 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen
+
{{quiz-Header|Buchseite=Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:P_ID2758__Inf_Z_3_3.png|right|]]
+
[[File:EN_Inf_Z_3_3.png|right|frame|Probability functions, each with  M=4  elements]]
In der ersten Zeile der nebenstehenden Tabelle ist die mit „a” bezeichnete Wahrscheinlichkeitsfunktion angegeben. Für dieses $P_X(X)$ soll  soll in der Teilaufgabe (a) die Entropie
+
In the first row of the adjacent table, the probability mass function denoted by  $\rm (a)$  is given in the following.
  
$$H_{\rm a}(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\right ]$$
+
For this PMF  PX(X)=[0.1, 0.2, 0.3, 0.4]  the entropy is to be calculated in subtask  '''(1)''' :
 +
:$$H_{\rm a}(X) = {\rm E} \big [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\big ]= - {\rm E} \big  [ {\rm log}_2 \hspace{0.1cm}{P_{X}(X)}\big ].$$
 +
Since the logarithm to the base  2  is used here, the pseudo-unit  "bit"  is to be added.
  
berechnet werden. Da hier der Logarithmus zur Basis 2 verwendet wird, ist die Pseudo–Einheit „bit” anzufügen.
+
In the further tasks, some probabilities are to be varied in each case in such a way that the greatest possible entropy results:
 +
 
 +
* By suitably varying  p3  and  p4,  one arrives at the maximum entropy  Hb(X)  under the condition  p1=0.1  and  $p_2 = 0.2$    ⇒   subtask  '''(2)'''.
 +
* By varying  p2  and  p3 appropriately, one arrives at the maximum entropy  Hc(X)  under the condition  p1=0.1  and  p4=0.4   ⇒   subtask  '''(3)'''.
 +
* In subtask  '''(4)'''  all four parameters are released for variation,  which are to be determined according to the maximum entropy   ⇒   Hmax(X) .
  
In den weiteren Aufgaben sollen jeweils einige Wahrscheinlichkeiten variiert werden und zwar derart, dass sich jeweils die größtmögliche Entropie ergibt:
 
  
:* Durch geeignete Variation von p3 und p4 kommt man zur maximalen Entropie Hb(X) unter der Voraussetzung p1=0.1 und p2=0.2      Teilaufgabe (b).
 
  
:* Durch geeignete Variation von p2 und p3 kommt man zur maximalen Entropie Hc(X) unter der Voraussetzung p1=0.1 und p4=0.4      Teilaufgabe (c).
 
 
:* In der Teilaufgabe (d) sind alle vier Parameter zur Variation freigegeben, die entsprechend der maximalen Entropie   Hmax(X)  zu bestimmen sind.
 
  
'''Hinweis:''' Die Aufgabe bezieht sich auf das [http://en.lntwww.de/Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgr%C3%B6%C3%9Fen Kapitel 3.1]
 
  
  
  
  
 +
Hints:
 +
*The exercise belongs to the chapter  [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Some preliminary remarks on two-dimensional random variables]].
 +
*In particular, reference is made to the page  [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Probability_mass_function_and_entropy|Probability mass function and entropy]].
 +
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{To which entropy does the probability mass function&nbsp; PX(X)=[0.1, 0.2, 0.3, 0.4] lead?
|type="[]"}
+
|type="{}"}
- Falsch
+
Ha(X) =  { 1.846 0.5% }  bit
+ Richtig
 
  
 +
{Let&nbsp; PX(X)=[0.1, 0.2, p3, p4] apply in general.&nbsp; What entropy is obtained if&nbsp; p3&nbsp; and&nbsp; p4&nbsp; are chosen as best as possible?
 +
|type="{}"}
 +
Hb(X) =  { 1.857 0.5% }  bit
  
{Input-Box Frage
+
{ Now let&nbsp; PX(X)=[0.1, p2, p3, 0.4].&nbsp; What entropy is obtained if&nbsp; p2&nbsp; and&nbsp; p3&nbsp; are chosen as best as possible?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$H_{\rm c}(X) \ = \ $ { 1.861 0.5% }  bit
  
 +
{ What entropy is obtained if all probabilities &nbsp;(p1, p2, p3, p4)&nbsp; can be chosen as best as possible?
 +
|type="{}"}
 +
Hmax(X) =  { 2 1% }  bit
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp;  With&nbsp; PX(X)=[0.1, 0.2, 0.3, 0.4]&nbsp; we get for the entropy:
'''2.'''
+
:$$H_{\rm a}(X) =
'''3.'''
+
0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} +
'''4.'''
+
0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} +
'''5.'''
+
0.3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.3} +
'''6.'''
+
0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4}
'''7.'''
+
\hspace{0.15cm} \underline {= 1.846}  \hspace{0.05cm}.$$
 +
Here (and in the other tasks) the pseudo-unit&nbsp; "bit"&nbsp; is to be added in each case.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The entropy&nbsp; Hb(X)&nbsp; can be represented as the sum of two parts&nbsp;  Hb1(X)&nbsp; and&nbsp; Hb2(X),&nbsp; with:
 +
:$$H_{\rm b1}(X) =
 +
0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} +
 +
0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} = 0.797 \hspace{0.05cm},$$
 +
:$$H_{\rm b2}(X)  =
 +
p_3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_3} +
 +
(0.7-p_3) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.7-p_3} \hspace{0.05cm}.$$
 +
 
 +
*The second function is maximum for&nbsp; p3=p4=0.35.&nbsp; A similar relationship has been found for the binary entropy function. &nbsp;
 +
*Thus one obtains:
 +
 
 +
:$$H_{\rm b2}(X) = 2 \cdot
 +
p_3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_3} =
 +
0.7 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.35} = 1.060 $$
 +
:Hb(X)=Hb1(X)+Hb2(X)=0.797+1.060=1.857_.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Analogous to subtask&nbsp; '''(2)''',&nbsp; p1=0.1&nbsp; and&nbsp; p4=0.4&nbsp; yield the maximum for&nbsp; p2=p3=0.25:
 +
:$$H_{\rm c}(X) =
 +
0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} +
 +
2 \cdot 0.25 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.25} +
 +
0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4}
 +
\hspace{0.15cm} \underline {= 1.861}  \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; The maximum entropy for the symbol range&nbsp; M=4&nbsp; is obtained for equal probabilities, i.e. for&nbsp; p1=p2=p3=p4=0.25:
 +
:$$H_{\rm max}(X) =
 +
{\rm log}_2 \hspace{0.1cm} M
 +
\hspace{0.15cm} \underline {= 2}  \hspace{0.05cm}.$$
 +
 
 +
*The difference of the entropies according to&nbsp; '''(4)'''&nbsp; and&nbsp; '''(3)'''&nbsp; gives&nbsp; ΔH(X)=0.139 bit.&nbsp;  Here:
 +
:$${\rm \Delta}  H(X) = 1-
 +
0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} -
 +
0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4}
 +
\hspace{0.05cm}.$$
 +
 
 +
*With the binary entropy function
 +
 
 +
:$$H_{\rm bin}(p) =
 +
p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p} +
 +
(1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p}$$
 +
 
 +
:can also be written for this:
 +
 
 +
:$${\rm \Delta} H(X) = 0.5 \cdot \big [ 1- H_{\rm bin}(0.2) \big ] =
 +
0.5 \cdot \big [ 1- 0.722 \big ] = 0.139
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
 
 +
 +
 
 +
 
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^3.1 Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen^]]
+
[[Category:Information Theory: Exercises|^3.1 General Information on 2D Random Variables^]]

Latest revision as of 10:13, 24 September 2021

Probability functions, each with  M=4  elements

In the first row of the adjacent table, the probability mass function denoted by  (a)  is given in the following.

For this PMF  PX(X)=[0.1, 0.2, 0.3, 0.4]  the entropy is to be calculated in subtask  (1) :

Ha(X)=E[log21PX(X)]=E[log2PX(X)].

Since the logarithm to the base  2  is used here, the pseudo-unit  "bit"  is to be added.

In the further tasks, some probabilities are to be varied in each case in such a way that the greatest possible entropy results:

  • By suitably varying  p3  and  p4,  one arrives at the maximum entropy  Hb(X)  under the condition  p1=0.1  and  p2=0.2   ⇒   subtask  (2).
  • By varying  p2  and  p3 appropriately, one arrives at the maximum entropy  Hc(X)  under the condition  p1=0.1  and  p4=0.4   ⇒   subtask  (3).
  • In subtask  (4)  all four parameters are released for variation,  which are to be determined according to the maximum entropy   ⇒   Hmax(X) .





Hints:


Questions

1

To which entropy does the probability mass function  PX(X)=[0.1, 0.2, 0.3, 0.4] lead?

Ha(X) = 

 bit

2

Let  PX(X)=[0.1, 0.2, p3, p4] apply in general.  What entropy is obtained if  p3  and  p4  are chosen as best as possible?

Hb(X) = 

 bit

3

Now let  PX(X)=[0.1, p2, p3, 0.4].  What entropy is obtained if  p2  and  p3  are chosen as best as possible?

Hc(X) = 

 bit

4

What entropy is obtained if all probabilities  (p1, p2, p3, p4)  can be chosen as best as possible?

Hmax(X) = 

 bit


Solution

(1)  With  PX(X)=[0.1, 0.2, 0.3, 0.4]  we get for the entropy:

Ha(X)=0.1log210.1+0.2log210.2+0.3log210.3+0.4log210.4=1.846_.

Here (and in the other tasks) the pseudo-unit  "bit"  is to be added in each case.


(2)  The entropy  Hb(X)  can be represented as the sum of two parts  Hb1(X)  and  Hb2(X),  with:

Hb1(X)=0.1log210.1+0.2log210.2=0.797,
Hb2(X)=p3log21p3+(0.7p3)log210.7p3.
  • The second function is maximum for  p3=p4=0.35.  A similar relationship has been found for the binary entropy function.  
  • Thus one obtains:
Hb2(X)=2p3log21p3=0.7log210.35=1.060
Hb(X)=Hb1(X)+Hb2(X)=0.797+1.060=1.857_.


(3)  Analogous to subtask  (2)p1=0.1  and  p4=0.4  yield the maximum for  p2=p3=0.25:

Hc(X)=0.1log210.1+20.25log210.25+0.4log210.4=1.861_.


(4)  The maximum entropy for the symbol range  M=4  is obtained for equal probabilities, i.e. for  p1=p2=p3=p4=0.25:

Hmax(X)=log2M=2_.
  • The difference of the entropies according to  (4)  and  (3)  gives  ΔH(X)=0.139 bit.  Here:
ΔH(X)=10.1log210.10.4log210.4.
  • With the binary entropy function
Hbin(p)=plog21p+(1p)log211p
can also be written for this:
ΔH(X)=0.5[1Hbin(0.2)]=0.5[10.722]=0.139.