Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.3: System Comparison at AWGN Channel"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Qualitätskriterien }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type=…“)
 
m
 
(40 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Qualitätskriterien
+
{{quiz-Header|Buchseite=Modulation_Methods/Quality_Criteria
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID960__Mod_A_1_3.png|right|frame|System comparison at AWGN channel]]
 +
For the comparison of different modulation and demodulation methods with regard to noise sensitivity,&nbsp;  we usually assume the so-called&nbsp;  [[Modulation_Methods/Quality_Criteria#Some_remarks_on_the_AWGN_channel_model|AWGN channel]]&nbsp; and present the following double logarithmic diagram:
 +
*The y-axis indicates the&nbsp;  "sink-to-noise ratio"&nbsp;  (logarithmic SNR) &nbsp; &rArr; &nbsp;  10 · \lg ρ_v&nbsp; in dB.
 +
*&nbsp;10 · \lg ξ&nbsp; is plotted on the x-axis;&nbsp;  the normalized power parameter&nbsp;  ("performance parameter")&nbsp;  is characterized by:
 +
: \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.
 +
*Thus,&nbsp;  the transmission power &nbsp;P_{\rm S},&nbsp; the channel attenuation factor&nbsp;α_{\rm K},&nbsp; the noise power density &nbsp;N_0&nbsp; and the bandwidth &nbsp;B_{\rm NF}&nbsp; of the message signal are suitably summarised together in &nbsp;ξ.
 +
* Unless explicitly stated otherwise,&nbsp; the following values shall be assumed in the exercise:
 +
:$$P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm
 +
K} = 0.001\hspace{0.05cm}, \hspace{0.2cm} {N_0} =
 +
10^{-10}\;{\rm W}/{\rm Hz}\hspace{0.05cm}, \hspace{0.2cm}
 +
B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.$$
  
 +
Two systems are plotted in the graph and their &nbsp; (x, y)-curve can be described as follows:
 +
*\text{System A}&nbsp; is characterized by the following equation:
 +
:y = x+1.
 +
*&nbsp;\text{System B}&nbsp; is instead characterized by:
 +
: y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}.
 +
The additional axis labels drawn in green have the following meaning:
 +
: x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.
 +
*Thus &nbsp;x = 4&nbsp; represents &nbsp;10 · \lg ξ = 40\text{ dB}&nbsp; or &nbsp;ξ = 10^4&nbsp;
 +
*and &nbsp;y = 5&nbsp; represents &nbsp;10 · \lg ρ_v= 50\text{ dB}&nbsp;, i.e., &nbsp;ρ_v = 10^5.
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter &nbsp; [[Modulation_Methods/Quality_Criteria|Quality Criteria]].
 +
*Particular reference is made to the page &nbsp;  [[Modulation_Methods/Quality_Criteria#Investigating_at_the_AWGN_channel|Investigating at the AWGN channel]].
 +
*By specifying the powers in watts,&nbsp; they are independent of the reference resistance &nbsp;R.
 +
 +
 
 +
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What is the&nbsp; sink signal-to-noise ratio&nbsp;  (in dB)&nbsp; for &nbsp;\text{System A}&nbsp; with &nbsp;P_{\rm S}= 5 \;{\rm kW}, &nbsp; $\alpha_{\rm
 +
K} = 0.001, &nbsp; N_0 = 10^{-10}\;{\rm W}/{\rm Hz}, &nbsp; B_{\rm NF}= 5\; {\rm kHz}$?
 +
|type="{}"}
 +
10 · \lg \hspace{0.05cm}ρ_v \ = \ { 50 3% } \ \text{dB}
 +
 
 +
{Now &nbsp;10 · \lg \hspace{0.05cm} ρ_v ≥ 60\text{ dB}&nbsp; is required.&nbsp; Which independent measures can be taken to achieve this?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- Increasing the transmission power from &nbsp;P_{\rm S}= 5\text{ kW}&nbsp; to 10\text{ kW}&nbsp;.
+ Richtig
+
+ Increasing the channel transmission factor from &nbsp;α_{\rm K} = 0.001&nbsp; to &nbsp;0.004.
 +
+ Reducing the noise power density to &nbsp;N_0=10^{–11 }\text{ W/Hz}.
 +
- Increasing the source signal bandwidth from &nbsp;B_{\rm NF}= 5\text{ kHz}&nbsp; to &nbsp;10\text{ kHz}.
  
 +
{What is the sink signal-to-noise ratio for &nbsp;\text{System B}&nbsp; with &nbsp;10 · \lg ξ = 40\text{ dB}?
 +
|type="{}"}
 +
10 · \lg \hspace{0.05cm}ρ_v \ = \ { 57 3% } \ \text{dB}
  
{Input-Box Frage
+
{If the required sink signal-to-noise ratio is  &nbsp;10 · \lg ρ_v = 50\text{ dB},&nbsp; what transmission power &nbsp;P_{\rm S} is sufficient to achieve this for &nbsp;\text{System B}?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$P_{\rm S} \ = \ $ { 0.3 3% } \ \text{ kW }
  
 +
{What value of &nbsp;10 · \lg ξ&nbsp; gives the greatest improvement for &nbsp;\text{System B}&nbsp; relative to &nbsp;\text{System A}&nbsp;?
 +
|type="{}"}
 +
10 · \lg \hspace{0.05cm} ξ \ = \ { 27.9 3% } \ \text{dB}
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; The normalized performance parameter is calculated using these values as follows:
'''2.'''
+
:\xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}.
'''3.'''
+
*This gives the auxiliary coordinate value&nbsp; y = 5,&nbsp; which leads to a sink SNR of &nbsp; 10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 50 \ \rm dB}.
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
'''(2)'''<u>&nbsp;Answers 2 and 3</u>&nbsp; are correct:
'''7.'''
+
 
 +
This requirement corresponds to a&nbsp; 10&nbsp; dB&nbsp; increase in the sink SNR compared to the previous system,&nbsp; so &nbsp;10 ·  \lg \hspace{0.05cm}ξ&nbsp; must also be increased by&nbsp;10&nbsp; dB:
 +
:10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}.
 +
 
 +
A tenfold larger&nbsp; ξ&nbsp; value is achieved&nbsp;  (provided all other parameters are held constant in each case)
 +
*by a transmission power of&nbsp; P_{\rm S} = 50&nbsp; kW&nbsp; instead of &nbsp; 5&nbsp; kW,
 +
*by a channel transmission factor of &nbsp; α_{\rm K} = 0.00316&nbsp; instead of&nbsp; 0.001,
 +
*by a noise power density of &nbsp; N_0 = 10^{ –11 }&nbsp; W/Hz&nbsp; instead of&nbsp; 10^{ –10 }&nbsp; W/Hz,
 +
*by a signal bandwidth of&nbsp; B_{\rm NF} = 0.5&nbsp; kHz&nbsp; instead of &nbsp; 5&nbsp; kHz.
 +
 
 +
 
 +
'''(3)'''&nbsp; For&nbsp; 10 · \lg \hspace{0.05cm} ξ = 40&nbsp; dB,&nbsp; the auxiliary value is &nbsp; x = 4.&nbsp; This gives the auxiliary&nbsp; y&ndash;value:
 +
:y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}.
 +
*This corresponds to a sink SNR of &nbsp; 10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 57 \ \rm dB} &nbsp; &rArr; &nbsp; 7&nbsp; dB improvement over &nbsp;\text{System A}.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; This problem is described by the following equation:
 +
:$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.$$
 +
*For &nbsp;\text{System A}&nbsp; 10 · \lg \hspace{0.05cm} \xi = 40&nbsp; dB is required,&nbsp; which was achieved with &nbsp; P_{\rm S} = 5&nbsp; kW  and the other numerical values given.&nbsp;
 +
*Now the transmission power can be reduced by about &nbsp; 12.1&nbsp; dB:
 +
: 10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}.
 +
*This means that in &nbsp;\text{System B}&nbsp; the same system quality is achieved with only &nbsp; 6\%&nbsp; of the transmission power of &nbsp;\text{System A}&nbsp; – i.e., with only &nbsp; P_{\rm S} \hspace{0.15cm}\underline{ = 0.3 \ \rm kW}.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; The larger sink SNR of &nbsp;\text{System B}&nbsp; compared to  &nbsp;\text{System A}&nbsp; we will denote with &nbsp; V&nbsp; (from German&nbsp; "Verbesserung" &nbsp; &rArr; &nbsp; "improvement"):
 +
:$$V  =  10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)}
 +
=  \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.$$
 +
*Setting the derivative to zero yields the &nbsp;x–value that leads to the maximum improvement:
 +
:$$ \frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.$$
 +
*This results in exactly the case discussed in subtask &nbsp; '''(4)'''&nbsp; with &nbsp; 10 · \lg ρ_υ = 50&nbsp; dB,&nbsp; while the sink SNR for &nbsp;\text{System A}&nbsp; is only&nbsp; 37.9&nbsp; dB.&nbsp;
 +
*The improvement is therefore&nbsp; 12.1&nbsp; dB.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^1.2 Qualitätskriterien^]]
+
[[Category:Modulation Methods: Exercises|^1.2 Quality Criteria^]]

Latest revision as of 18:54, 23 March 2022

System comparison at AWGN channel

For the comparison of different modulation and demodulation methods with regard to noise sensitivity,  we usually assume the so-called  AWGN channel  and present the following double logarithmic diagram:

  • The y-axis indicates the  "sink-to-noise ratio"  (logarithmic SNR)   ⇒   10 · \lg ρ_v  in dB.
  •  10 · \lg ξ  is plotted on the x-axis;  the normalized power parameter  ("performance parameter")  is characterized by:
\xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.
  • Thus,  the transmission power  P_{\rm S},  the channel attenuation factor α_{\rm K},  the noise power density  N_0  and the bandwidth  B_{\rm NF}  of the message signal are suitably summarised together in  ξ.
  • Unless explicitly stated otherwise,  the following values shall be assumed in the exercise:
P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm K} = 0.001\hspace{0.05cm}, \hspace{0.2cm} {N_0} = 10^{-10}\;{\rm W}/{\rm Hz}\hspace{0.05cm}, \hspace{0.2cm} B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.

Two systems are plotted in the graph and their   (x, y)-curve can be described as follows:

  • \text{System A}  is characterized by the following equation:
y = x+1.
  •  \text{System B}  is instead characterized by:
y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}.

The additional axis labels drawn in green have the following meaning:

x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.
  • Thus  x = 4  represents  10 · \lg ξ = 40\text{ dB}  or  ξ = 10^4 
  • and  y = 5  represents  10 · \lg ρ_v= 50\text{ dB} , i.e.,  ρ_v = 10^5.





Hints:


Questions

1

What is the  sink signal-to-noise ratio  (in dB)  for  \text{System A}  with  P_{\rm S}= 5 \;{\rm kW},   \alpha_{\rm K} = 0.001,   N_0 = 10^{-10}\;{\rm W}/{\rm Hz},   B_{\rm NF}= 5\; {\rm kHz}?

10 · \lg \hspace{0.05cm}ρ_v \ = \

\ \text{dB}

2

Now  10 · \lg \hspace{0.05cm} ρ_v ≥ 60\text{ dB}  is required.  Which independent measures can be taken to achieve this?

Increasing the transmission power from  P_{\rm S}= 5\text{ kW}  to 10\text{ kW} .
Increasing the channel transmission factor from  α_{\rm K} = 0.001  to  0.004.
Reducing the noise power density to  N_0=10^{–11 }\text{ W/Hz}.
Increasing the source signal bandwidth from  B_{\rm NF}= 5\text{ kHz}  to  10\text{ kHz}.

3

What is the sink signal-to-noise ratio for  \text{System B}  with  10 · \lg ξ = 40\text{ dB}?

10 · \lg \hspace{0.05cm}ρ_v \ = \

\ \text{dB}

4

If the required sink signal-to-noise ratio is  10 · \lg ρ_v = 50\text{ dB},  what transmission power  P_{\rm S} is sufficient to achieve this for  \text{System B}?

P_{\rm S} \ = \

\ \text{ kW }

5

What value of  10 · \lg ξ  gives the greatest improvement for  \text{System B}  relative to  \text{System A} ?

10 · \lg \hspace{0.05cm} ξ \ = \

\ \text{dB}


Solution

(1)  The normalized performance parameter is calculated using these values as follows:

\xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}.
  • This gives the auxiliary coordinate value  y = 5,  which leads to a sink SNR of   10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 50 \ \rm dB}.


(2) Answers 2 and 3  are correct:

This requirement corresponds to a  10  dB  increase in the sink SNR compared to the previous system,  so  10 · \lg \hspace{0.05cm}ξ  must also be increased by 10  dB:

10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}.

A tenfold larger  ξ  value is achieved  (provided all other parameters are held constant in each case)

  • by a transmission power of  P_{\rm S} = 50  kW  instead of   5  kW,
  • by a channel transmission factor of   α_{\rm K} = 0.00316  instead of  0.001,
  • by a noise power density of   N_0 = 10^{ –11 }  W/Hz  instead of  10^{ –10 }  W/Hz,
  • by a signal bandwidth of  B_{\rm NF} = 0.5  kHz  instead of   5  kHz.


(3)  For  10 · \lg \hspace{0.05cm} ξ = 40  dB,  the auxiliary value is   x = 4.  This gives the auxiliary  y–value:

y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}.
  • This corresponds to a sink SNR of   10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 57 \ \rm dB}   ⇒   7  dB improvement over  \text{System A}.


(4)  This problem is described by the following equation:

y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.
  • For  \text{System A}  10 · \lg \hspace{0.05cm} \xi = 40  dB is required,  which was achieved with   P_{\rm S} = 5  kW and the other numerical values given. 
  • Now the transmission power can be reduced by about   12.1  dB:
10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}.
  • This means that in  \text{System B}  the same system quality is achieved with only   6\%  of the transmission power of  \text{System A}  – i.e., with only   P_{\rm S} \hspace{0.15cm}\underline{ = 0.3 \ \rm kW}.


(5)  The larger sink SNR of  \text{System B}  compared to  \text{System A}  we will denote with   V  (from German  "Verbesserung"   ⇒   "improvement"):

V = 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)} = \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.
  • Setting the derivative to zero yields the  x–value that leads to the maximum improvement:
\frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.
  • This results in exactly the case discussed in subtask   (4)  with   10 · \lg ρ_υ = 50  dB,  while the sink SNR for  \text{System A}  is only  37.9  dB. 
  • The improvement is therefore  12.1  dB.