Difference between revisions of "Aufgaben:Exercise 1.3: System Comparison at AWGN Channel"
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Qualitätskriterien }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type=…“) |
m |
||
(40 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Modulation_Methods/Quality_Criteria |
}} | }} | ||
− | [[File:|right|]] | + | [[File:P_ID960__Mod_A_1_3.png|right|frame|System comparison at AWGN channel]] |
+ | For the comparison of different modulation and demodulation methods with regard to noise sensitivity, we usually assume the so-called [[Modulation_Methods/Quality_Criteria#Some_remarks_on_the_AWGN_channel_model|AWGN channel]] and present the following double logarithmic diagram: | ||
+ | *The y-axis indicates the "sink-to-noise ratio" (logarithmic SNR) ⇒ 10 · \lg ρ_v in dB. | ||
+ | * 10 · \lg ξ is plotted on the x-axis; the normalized power parameter ("performance parameter") is characterized by: | ||
+ | : \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}. | ||
+ | *Thus, the transmission power P_{\rm S}, the channel attenuation factor α_{\rm K}, the noise power density N_0 and the bandwidth B_{\rm NF} of the message signal are suitably summarised together in ξ. | ||
+ | * Unless explicitly stated otherwise, the following values shall be assumed in the exercise: | ||
+ | :$$P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm | ||
+ | K} = 0.001\hspace{0.05cm}, \hspace{0.2cm} {N_0} = | ||
+ | 10^{-10}\;{\rm W}/{\rm Hz}\hspace{0.05cm}, \hspace{0.2cm} | ||
+ | B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.$$ | ||
+ | Two systems are plotted in the graph and their (x, y)-curve can be described as follows: | ||
+ | *\text{System A} is characterized by the following equation: | ||
+ | :y = x+1. | ||
+ | * \text{System B} is instead characterized by: | ||
+ | : y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}. | ||
+ | The additional axis labels drawn in green have the following meaning: | ||
+ | : x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}. | ||
+ | *Thus x = 4 represents 10 · \lg ξ = 40\text{ dB} or ξ = 10^4 | ||
+ | *and y = 5 represents 10 · \lg ρ_v= 50\text{ dB} , i.e., ρ_v = 10^5. | ||
− | === | + | |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ''Hints:'' | ||
+ | *This exercise belongs to the chapter [[Modulation_Methods/Quality_Criteria|Quality Criteria]]. | ||
+ | *Particular reference is made to the page [[Modulation_Methods/Quality_Criteria#Investigating_at_the_AWGN_channel|Investigating at the AWGN channel]]. | ||
+ | *By specifying the powers in watts, they are independent of the reference resistance R. | ||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the sink signal-to-noise ratio (in dB) for \text{System A} with P_{\rm S}= 5 \;{\rm kW}, $\alpha_{\rm |
+ | K} = 0.001, N_0 = 10^{-10}\;{\rm W}/{\rm Hz}, B_{\rm NF}= 5\; {\rm kHz}$? | ||
+ | |type="{}"} | ||
+ | 10 · \lg \hspace{0.05cm}ρ_v \ = \ { 50 3% } \ \text{dB} | ||
+ | |||
+ | {Now 10 · \lg \hspace{0.05cm} ρ_v ≥ 60\text{ dB} is required. Which independent measures can be taken to achieve this? | ||
|type="[]"} | |type="[]"} | ||
− | - | + | - Increasing the transmission power from P_{\rm S}= 5\text{ kW} to 10\text{ kW} . |
− | + | + | + Increasing the channel transmission factor from α_{\rm K} = 0.001 to 0.004. |
+ | + Reducing the noise power density to N_0=10^{–11 }\text{ W/Hz}. | ||
+ | - Increasing the source signal bandwidth from B_{\rm NF}= 5\text{ kHz} to 10\text{ kHz}. | ||
+ | {What is the sink signal-to-noise ratio for \text{System B} with 10 · \lg ξ = 40\text{ dB}? | ||
+ | |type="{}"} | ||
+ | 10 · \lg \hspace{0.05cm}ρ_v \ = \ { 57 3% } \ \text{dB} | ||
− | { | + | {If the required sink signal-to-noise ratio is 10 · \lg ρ_v = 50\text{ dB}, what transmission power P_{\rm S} is sufficient to achieve this for \text{System B}? |
|type="{}"} | |type="{}"} | ||
− | $\ | + | $P_{\rm S} \ = \ $ { 0.3 3% } \ \text{ kW } |
+ | {What value of 10 · \lg ξ gives the greatest improvement for \text{System B} relative to \text{System A} ? | ||
+ | |type="{}"} | ||
+ | 10 · \lg \hspace{0.05cm} ξ \ = \ { 27.9 3% } \ \text{dB} | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' The normalized performance parameter is calculated using these values as follows: |
− | '''2 | + | :\xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}. |
− | '''3 | + | *This gives the auxiliary coordinate value y = 5, which leads to a sink SNR of 10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 50 \ \rm dB}. |
− | '''4 | + | |
− | '''5 | + | |
− | + | '''(2)'''<u> Answers 2 and 3</u> are correct: | |
− | ''' | + | |
+ | This requirement corresponds to a 10 dB increase in the sink SNR compared to the previous system, so 10 · \lg \hspace{0.05cm}ξ must also be increased by 10 dB: | ||
+ | :10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}. | ||
+ | |||
+ | A tenfold larger ξ value is achieved (provided all other parameters are held constant in each case) | ||
+ | *by a transmission power of P_{\rm S} = 50 kW instead of 5 kW, | ||
+ | *by a channel transmission factor of α_{\rm K} = 0.00316 instead of 0.001, | ||
+ | *by a noise power density of N_0 = 10^{ –11 } W/Hz instead of 10^{ –10 } W/Hz, | ||
+ | *by a signal bandwidth of B_{\rm NF} = 0.5 kHz instead of 5 kHz. | ||
+ | |||
+ | |||
+ | '''(3)''' For 10 · \lg \hspace{0.05cm} ξ = 40 dB, the auxiliary value is x = 4. This gives the auxiliary y–value: | ||
+ | :y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}. | ||
+ | *This corresponds to a sink SNR of 10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 57 \ \rm dB} ⇒ 7 dB improvement over \text{System A}. | ||
+ | |||
+ | |||
+ | |||
+ | '''(4)''' This problem is described by the following equation: | ||
+ | :$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}\hspace{0.3cm} | ||
+ | \Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.$$ | ||
+ | *For \text{System A} 10 · \lg \hspace{0.05cm} \xi = 40 dB is required, which was achieved with P_{\rm S} = 5 kW and the other numerical values given. | ||
+ | *Now the transmission power can be reduced by about 12.1 dB: | ||
+ | : 10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}. | ||
+ | *This means that in \text{System B} the same system quality is achieved with only 6\% of the transmission power of \text{System A} – i.e., with only P_{\rm S} \hspace{0.15cm}\underline{ = 0.3 \ \rm kW}. | ||
+ | |||
+ | |||
+ | |||
+ | '''(5)''' The larger sink SNR of \text{System B} compared to \text{System A} we will denote with V (from German "Verbesserung" ⇒ "improvement"): | ||
+ | :$$V = 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)} | ||
+ | = \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.$$ | ||
+ | *Setting the derivative to zero yields the x–value that leads to the maximum improvement: | ||
+ | :$$ \frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.$$ | ||
+ | *This results in exactly the case discussed in subtask '''(4)''' with 10 · \lg ρ_υ = 50 dB, while the sink SNR for \text{System A} is only 37.9 dB. | ||
+ | *The improvement is therefore 12.1 dB. | ||
+ | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Modulation Methods: Exercises|^1.2 Quality Criteria^]] |
Latest revision as of 18:54, 23 March 2022
For the comparison of different modulation and demodulation methods with regard to noise sensitivity, we usually assume the so-called AWGN channel and present the following double logarithmic diagram:
- The y-axis indicates the "sink-to-noise ratio" (logarithmic SNR) ⇒ 10 · \lg ρ_v in dB.
- 10 · \lg ξ is plotted on the x-axis; the normalized power parameter ("performance parameter") is characterized by:
- \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.
- Thus, the transmission power P_{\rm S}, the channel attenuation factor α_{\rm K}, the noise power density N_0 and the bandwidth B_{\rm NF} of the message signal are suitably summarised together in ξ.
- Unless explicitly stated otherwise, the following values shall be assumed in the exercise:
- P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm K} = 0.001\hspace{0.05cm}, \hspace{0.2cm} {N_0} = 10^{-10}\;{\rm W}/{\rm Hz}\hspace{0.05cm}, \hspace{0.2cm} B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.
Two systems are plotted in the graph and their (x, y)-curve can be described as follows:
- \text{System A} is characterized by the following equation:
- y = x+1.
- \text{System B} is instead characterized by:
- y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}.
The additional axis labels drawn in green have the following meaning:
- x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.
- Thus x = 4 represents 10 · \lg ξ = 40\text{ dB} or ξ = 10^4
- and y = 5 represents 10 · \lg ρ_v= 50\text{ dB} , i.e., ρ_v = 10^5.
Hints:
- This exercise belongs to the chapter Quality Criteria.
- Particular reference is made to the page Investigating at the AWGN channel.
- By specifying the powers in watts, they are independent of the reference resistance R.
Questions
Solution
- \xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}.
- This gives the auxiliary coordinate value y = 5, which leads to a sink SNR of 10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 50 \ \rm dB}.
(2) Answers 2 and 3 are correct:
This requirement corresponds to a 10 dB increase in the sink SNR compared to the previous system, so 10 · \lg \hspace{0.05cm}ξ must also be increased by 10 dB:
- 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}.
A tenfold larger ξ value is achieved (provided all other parameters are held constant in each case)
- by a transmission power of P_{\rm S} = 50 kW instead of 5 kW,
- by a channel transmission factor of α_{\rm K} = 0.00316 instead of 0.001,
- by a noise power density of N_0 = 10^{ –11 } W/Hz instead of 10^{ –10 } W/Hz,
- by a signal bandwidth of B_{\rm NF} = 0.5 kHz instead of 5 kHz.
(3) For 10 · \lg \hspace{0.05cm} ξ = 40 dB, the auxiliary value is x = 4. This gives the auxiliary y–value:
- y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}.
- This corresponds to a sink SNR of 10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 57 \ \rm dB} ⇒ 7 dB improvement over \text{System A}.
(4) This problem is described by the following equation:
- y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.
- For \text{System A} 10 · \lg \hspace{0.05cm} \xi = 40 dB is required, which was achieved with P_{\rm S} = 5 kW and the other numerical values given.
- Now the transmission power can be reduced by about 12.1 dB:
- 10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}.
- This means that in \text{System B} the same system quality is achieved with only 6\% of the transmission power of \text{System A} – i.e., with only P_{\rm S} \hspace{0.15cm}\underline{ = 0.3 \ \rm kW}.
(5) The larger sink SNR of \text{System B} compared to \text{System A} we will denote with V (from German "Verbesserung" ⇒ "improvement"):
- V = 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)} = \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.
- Setting the derivative to zero yields the x–value that leads to the maximum improvement:
- \frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.
- This results in exactly the case discussed in subtask (4) with 10 · \lg ρ_υ = 50 dB, while the sink SNR for \text{System A} is only 37.9 dB.
- The improvement is therefore 12.1 dB.