Difference between revisions of "Aufgaben:Exercise 1.3Z: Thermal Noise"

From LNTwww
 
(38 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Qualitätskriterien
+
{{quiz-Header|Buchseite=Modulation_Methods/Quality_Criteria
 
}}
 
}}
  
[[File:P_ID953__Mod_Z_1_3.png|right|]]
+
[[File:P_ID953__Mod_Z_1_3.png|right|frame|Examplary signals for low-pass and band-pass noise]]
Eine fundamentale und bei jedem Nachrichtensystem auftretende Störung ist das thermische Rauschen, da jeder Widerstand $R$ mit der absoluten Temperatur $θ$ (in „Grad Kelvin”) ein Rauschsignal $n(t)$ mit der (einseitigen) Rauschleistungsdichte
+
A fundamental disturbance and one that occurs in any communication system is  "thermal noise",  since any resistance  $R$  with an absolute temperature of  $θ$  (in "degrees Kelvin")  produces a noise signal  $n(t)$  with a  (one-sided)  noise power-spectral density
$$N_{0,min} = k_B \cdot \theta ( k_B = 1.38 \cdot 10^{ -23 } Ws/K)$$
+
:$${N_{\rm 0, \hspace{0.05cm}min}}= k_{\rm B} \cdot \theta  
abgibt. $k_B$ bezeichnet man als die Boltzmann–Konstante.
+
\hspace{0.3cm}\left(k_{\rm B} = 1.38 \cdot 10^{-23}
 +
\hspace{0.05cm}{\rm Ws}/{\rm K}\right)$$
 +
where $k_{\rm B}$  denotes the  "Boltzmann constant" (from German  "Konstante").
  
Allerdings ist diese aus physikalischen Gründen auf $6$ $\text{THz}$ begrenzt. Weiterhin ist zu beobachten, dass dieser minimale Wert nur bei exakter Widerstandsanpassung erreicht werden kann.
+
However,  this noise is limited to  $6\text{ THz}$  for physical reasons.  Furthermore,  it can be observed that this minimum value can only be achieved with exact impedance matching.
  
Bei der Realisierung einer Schaltungseinheit – zum Beispiel eines Verstärkers – ist die wirksame Rauschleistungsdichte meist deutlich größer, da sich mehrere Rauschquellen addieren und zudem Fehlanpassungen eine Rolle spielen. Dieser Effekt wird durch die Rauschzahl F erfasst, und es gilt:
+
In the realization of a circuit unit - for example, an amplifier - the effective noise power-spectral density is usually significantly greater,  since several noise sources add up,  and mismatches also play a role.   This effect is captured by the noise factor  $F \ge 1$  .  It holds that:
$$N_0 = F \cdot {N_{\rm 0, \hspace{0.05cm}min}}= F \cdot k_{\rm B} \cdot \theta \hspace{0.05cm}.$$
+
:$$N_0 = F \cdot {N_{\rm 0, \hspace{0.05cm}min}}= F \cdot k_{\rm B} \cdot \theta \hspace{0.05cm}.$$
Für die wirksame Rauschleistung gilt mit der Bandbreite $B$:
+
With a bandwidth  $B$,  the effective noise power is characterized by:
$$N = N_0 \cdot B \hspace{0.1cm}\left(= N_0 \cdot B\cdot R = \sigma_n^2\right) \hspace{0.01cm}.$$
+
:$$N = N_0 \cdot B \hspace{0.1cm} \hspace{0.01cm}.$$
Nach der ersten Gleichung ergibt sich die tatsächliche, physikalische Leistung in „W”. Nach der zweiten, in Klammern angegebenen Gleichung hat das Ergebnis die Einheit „$V^{ 2 }$. Das heißt: Hier ist die Leistung – wie in der Nachrichtentechnik allgemein üblich – auf den Bezugswiderstand $\text{R = 1 Ω}$ umgerechnet. Diese Gleichung muss auch herangezogen werden, um den Effektivwert (die Streuung) σn des Rauschsignals $n(t)$ zu berechnen.
+
:$$N = N_0 \cdot B\cdot R = \sigma_n^2 \hspace{0.01cm}.$$
 +
*According to the first equation,  the result is the actual,  physical power in "watts"  $\rm (W)$.  
 +
*According to the second equation,  the result has the unit   "$\rm V^{ 2 }$".  
 +
*This means that the power is here converted to the reference resistance  $R = 1\ Ω$  – as is often the case in Communications Engineering.  
 +
*This equation must also be used to calculate the standard deviation  $σ_n$  of the noise signal  $n(t)$ .
  
Alle Gleichungen gelten unabhängig davon, ob es sich um Tiefpass– oder Bandpass–Rauschen handelt. Die Grafik zeigt zwei Rauschsignale $n_1(t)$ und $n_2(t)$ bei gleicher Bandbreite. In der Teilaufgabe (d) ist gefragt, welches dieser Signale am Ausgang eines Tiefpasses bzw. eines Bandpasses auftreten wird.
 
  
Die zweiseitige Rauschleistungsdichte von bandbegrenztem Tiefpass–Rauschen $n_{TP}(t)$ lautet:
+
All equations apply regardless of whether the noise is low-pass or band-pass.  The diagram shows two noise signals  $n_1(t)$  and  $n_2(t)$  of equal bandwidth.  Question   '''(4)'''  asks which of these signals will appear at the output of a low-pass and a band-pass, respectively.
$$ {\it \Phi}_{n, {\hspace{0.05cm}\rm TP}}(f) = \left\{ \begin{array}{c} N_0/2 \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < B,} \\ {\rm sonst.} \\ \end{array}$$
+
 
Dagegen gilt bei bandpassartigem Rauschen $n_{BP}(t)$ mit der Mittenfrequenz $f_M$:
+
The two-sided noise power-spectral density of band-limited low-pass noise &nbsp;$n_{\rm TP}(t)$&nbsp; is:
$${\it \Phi}_{n, {\hspace{0.05cm}\rm BP}}(f) = \left\{ \begin{array}{c} N_0/2 \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f - f_{\rm M}\hspace{0.05cm} \right| < B/2,} \\ {\rm sonst.} \\ \end{array}.$$
+
:$$ {\it \Phi}_{n, {\hspace{0.05cm}\rm LP}}(f) = \left\{ \begin{array}{c} N_0/2 \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{for}} \\ \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < B,} \\ {\rm otherwise.} \\ \end{array}$$
Für alle nachfolgenden numerischen Berechnungen wird vorausgesetzt:
+
In contrast,&nbsp; for band-pass noise &nbsp;$n_{\rm BP}(t)$&nbsp; with center frequency &nbsp;$f_{\rm M}$, it holds that:
$$ F = 10, \hspace{0.2cm}\theta = 290\,{\rm K},\hspace{0.2cm}R = 50\,{\rm \Omega},\hspace{0.2cm}B = 30\,{\rm kHz},\hspace{0.2cm}f_{\rm M} = 0 \hspace{0.1cm}{\rm bzw.}\hspace{0.1cm}100\,{\rm kHz}\hspace{0.05cm}.$$
+
:$${\it \Phi}_{n, {\hspace{0.05cm}\rm BP}}(f) = \left\{ \begin{array}{c} N_0/2 \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{for}} \\ \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f - f_{\rm M}\hspace{0.05cm} \right| < B/2,} \\ {\rm otherwise.} \\ \end{array}.$$
'''Hinweis:''' Die Aufgabe bezieht sich auf die theoretischen Grundlagen von [http://en.lntwww.de/Modulationsverfahren/Qualit%C3%A4tskriterien Kapitel 1.2].
+
For all subsequent numerical calculations it is assumed:
===Fragebogen===
+
:$$ F = 10, \hspace{0.2cm}\theta = 290\,{\rm K},\hspace{0.2cm}R = 50\,{\rm \Omega},\hspace{0.2cm}B = 30\,{\rm kHz},\hspace{0.2cm}f_{\rm M} = 0 \hspace{0.5cm}{\rm or}\hspace{0.5cm}f_{\rm M} =100\,{\rm kHz}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
 
 +
Hints:  
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Quality_Criteria|Quality Criteria]].
 +
*Particular reference is made to the page&nbsp;  [[Modulation_Methods/Quality_Criteria#Some_remarks_on_the_AWGN_channel_model|Some remarks on the AWGN channel model]].
 +
*By specifying the powers in &nbsp;$\rm W$atts&nbsp;, they are independent of the reference resistance &nbsp;$R$,&nbsp; while power with the unit  &nbsp;$\rm V^2$&nbsp; can only be evaluated directly for &nbsp;$R = 1\ \Omega$.
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Rauschleistungsdichte mit $F = 10$ und $θ = 290$$\text{ K}$.
+
{Calculate the noise power-spectral density &nbsp;$N_0$&nbsp; with a noise factor of  &nbsp;$F = 10$&nbsp; and &nbsp;$θ = 290^\circ$&nbsp; Kelvin.
 
|type="{}"}
 
|type="{}"}
$N_0$ = { 4 3% }  $10^{ -20 }$ $\text{W/Hz}$  
+
$N_0 \ = \ $ { 4 3% }  $\ \cdot 10^{ -20 }\ \text{W/Hz}$  
  
{Wie groß ist die maximale Rauschleistung (ohne Bandbegrenzung)?
+
{What is the maximum noise power&nbsp; (without bandwidth limits)?
 
|type="{}"}
 
|type="{}"}
$N_{max}$= { 2.4 3% } $10^{ -7 }$ $\text{W}$  
+
$N_{\rm max} \ = \ $ { 0.24 3% } $\ \cdot 10^{ -6 }\ \text{W/Hz}$  
 +
 
  
{Welche Rauschleistung N ergibt sich mit der Bandbreite $B = 30$ $\text{kHz}$? Wie groß ist der Rauscheffektivwert $σ_n$?  
+
{What is the noise power &nbsp;$N$&nbsp;  with bandwidth &nbsp;$B = 30\text{ kHz}$?&nbsp; What is the standard deviation $σ_n$?  
 
|type="{}"}
 
|type="{}"}
$N$={ -12 3% }  $10^{ -16 }$ $\text{W}$
+
$N \ = \ $ { 12 3% }  $\ \cdot 10^{ -16 }\ \text{W/Hz}$  
$σ_n$={ 0.245 3% } $10^{ -6 }$ $\text{V}$
+
$σ_n \ = \ ${ 0.245 3% } $\ \cdot 10^{ -6 }\ \text{V}$
 
   
 
   
{Welches der Signale $n_1(t)$ und $n_2(t)$ zeigt TP– und welches BP–Rauschen?
+
{Which of the signals &ndash; &nbsp;$n_1(t)$&nbsp; or &nbsp;$n_2(t)$&nbsp; &ndash;  shows low-pass noise and which shows band-pass noise?
|type="[]"}
+
|type="()"}
+ Das Rauschsignal $n_1(t)$ hat Tiefpass–Charakter.
+
+ The noise signal &nbsp;$n_1(t)$&nbsp; is characteristically low-pass.
- Das Rauschsignal $n_1(t)$ hat Bandpass–Charakter.
+
- The noise signal &nbsp;$n_1(t)$&nbsp; is characteristically band-pass.
  
{Welchen Wert hat die Rauschleistungsdichte des Tiefpass–Rauschens bei der Frequenz $f = 20$ $\text{kHz}$? Es gelte $B = 30$ $\text{kHz}$.
+
{What is the value of the noise power-spectral density of the low-pass&nbsp; $\rm (LP)$&nbsp; noise at frequency &nbsp;$f = 20\text{ kHz}$?&nbsp; Let &nbsp;$B = 30\text{ kHz}$.
 
|type="{}"}
 
|type="{}"}
$Φ_{n, TP}(f = 20 kHz)$={ -12 3% } $10^{ -12 }$ $\text{W\Hz}$
+
${\it Φ}_{n, \hspace{0.05cm}\rm LP}(f = 20 \ \rm kHz) \ = \ $ { 2 3% } $\ \cdot 10^{ -12 }\ \text{W/Hz}$
  
{Welchen Wert besitzt die Rauschleistungsdichte des Bandpass–Rauschens bei der Frequenz $f = 120$ $\text{kHz}$? Es gelte $f_M = 100 kHz$ und $B = 30 kHz$.
+
{What is the value of the noise power-spectral density of the band-pass&nbsp; $\rm (BP)$&nbsp; noise at  &nbsp;$f = 120\text{ kHz}$?&nbsp; Let &nbsp;$f_{\rm M} = 100\text{ kHz}$&nbsp; and &nbsp;$B = 30\text{ kHz}$.
 
|type="{}"}
 
|type="{}"}
$Φ_{n, BP}(f = 120 kHz)$= { 0 3% } $\text{W\Hz}$
+
${\it Φ}_{n, \hspace{0.05cm}\rm BP}(f = 120 \ \rm kHz) \ = \ $ { 0. } $\ \cdot 10^{ -12 }\ \text{W/Hz}$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''Mit der Boltzmann–Konstante $k_B$ gilt:
+
'''(1)'''&nbsp; Using the Boltzmann constant&nbsp; $k_{\rm B}$&nbsp; it holds that:
 +
:$$N_0 = F \cdot k_{\rm B} \cdot \theta = 10 \cdot
 +
1.38\hspace{0.05cm}\cdot 10^{-23} \hspace{0.05cm}\frac{\rm
 +
Ws}{\rm K}\cdot 290\,{\rm K} \hspace{0.15cm}\underline {\approx 4\hspace{0.05cm}\cdot
 +
10^{-20} \hspace{0.05cm}{\rm W}/{\rm Hz}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; The specified noise power density&nbsp; $N_0$&nbsp; is physically limited to&nbsp; $6$&nbsp; THz.&nbsp;  Thus the maximum noise power is:
 +
:$$N_{\rm max} =  4\hspace{0.05cm}\cdot 10^{-20}
 +
\hspace{0.08cm}\frac{\rm W}{\rm Hz}\cdot 6 \cdot10^{12}
 +
\hspace{0.08cm}{\rm Hz}\hspace{0.15cm}\underline {= 0.24\hspace{0.08cm}\cdot 10^{-6}\;{\rm
 +
W}}\hspace{0.05cm}.$$
  
$$N_0= F \cdot K_B \cdot \theta = 10 \cdot  1.38 \cdot 10^{ -23 } \frac{Ws}{K} \cdot 290K \approx  4 \cdot 10^{ -20 } W/Hz.$$
 
  
 +
'''(3)'''&nbsp; Now the resulting noise power is:
 +
:$$N = N_0 \cdot B =  4\hspace{0.08cm}\cdot 10^{-20}
 +
\hspace{0.08cm}\frac{\rm W}{\rm Hz}\cdot 3 \cdot10^{4}
 +
\hspace{0.08cm}{\rm Hz}\hspace{0.15cm}\underline {= 12\hspace{0.05cm}\cdot 10^{-16}\;{\rm
 +
W}}\hspace{0.05cm}.$$
  
'''2.'''Die angegebene Rauschleistungsdichte $N_0$ ist physikalisch auf $6 \text{THz}$ begrenzt. Damit beträgt die maximale Rauschleistung:
+
* Converting to the reference resistance&nbsp; $R = 1 \ Ω$:
$$N_{max} = 4 \cdot 10^{ -20 }\frac{ W}{Hz} \cdot 6 \cdot 10^{ 12 } Hz = 0.24 \cdot 10^{-6} W.$$
+
:$$N = N_0 \cdot B \cdot R = 12\hspace{0.05cm}\cdot 10^{-16}\;{\rm
 +
W}\hspace{0.05cm} \cdot 50 \; {\rm \Omega}= 6\hspace{0.05cm}\cdot
 +
10^{-14}\;{\rm V^2}\hspace{0.05cm}.$$
 +
[[File:EN_Mod_Z_1_3_e.png|rechts|frame|Power-spectral densities with band-limited noise]]
 +
*The noise standard deviation $σ_n$&nbsp; is the square root of this:
 +
:$$\sigma_n= \sqrt{6\hspace{0.05cm}\cdot 10^{-14}\;{\rm V^2}} \hspace{0.15cm}\underline {= 0.245 \hspace{0.05cm}\cdot 10^{-6}\;{\rm V}}\hspace{0.05cm}.$$
  
  
'''3.''' Nun ergibt sich für die Rauschleistung:
+
'''(4)'''&nbsp; <u>Answer 1</u>&nbsp; is correct:
$$N=N_0 \cdot B = 4 \cdot 10^{ -20 } \frac{W}{Hz} \cdot 3 \cdot 10^{ 4 } Hz = 12 \cdot 10^{ -16 }W,$$
+
*In the random signal&nbsp; $n_2(t)$&nbsp;one can recognize certain regularities similar to a harmonic oscillation &nbsp; &rArr; &nbsp; it is bandpass noise.
 +
*In contrast, the signal&nbsp; $n_1(t)$&nbsp; is low-pass noise.
  
bzw. umgerechnet auf den Bezugswiderstand $R = 1 Ω$:
 
$$N = N_0 \cdot B \cdot R = 12\hspace{0.05cm}\cdot 10^{-16}\;{\rm W}\hspace{0.05cm} \cdot 50 \; {\rm \Omega}= 6\hspace{0.05cm}\cdot 10^{-14}\;{\rm V^2}\hspace{0.05cm}.$$
 
Der Rauscheffektivwert $σ_n$ ist die Quadratwurzel hieraus:
 
$$\sigma_n= \sqrt{6\hspace{0.05cm}\cdot 10^{-14}\;{\rm V^2}} \hspace{0.15cm}\underline {= 0.245 \hspace{0.05cm}\cdot 10^{-6}\;{\rm V}}\hspace{0.05cm}.$$
 
  
'''4.'''[[File:P ID954 Mod Z 1 3e neu.png|mini|rechts]]
+
'''(5)'''&nbsp; The noise power density of the random signal&nbsp; $n_1(t)$&nbsp; is constant in the frequency range&nbsp; $|f| < 30$&nbsp; kHz:
Im Zufallssignal $n_2(t)$ erkennt man gewisse Regelmäßigkeiten ähnlich einer harmonischen Schwingung – es ist Bandpass–Rauschen. Dagegen handelt es sich beim Signal $n_1(t)$ um Tiefpass–Rauschen.
+
:$${\it \Phi}_{n,\hspace{0.05cm}{  \rm LP} }(f) \hspace{-0.05cm}=\hspace{-0.05cm} \frac{N_0}{2}  \hspace{0.15cm}\underline {=2\hspace{0.05cm}\hspace{-0.05cm}\cdot \hspace{-0.05cm}
 +
10^{-12} \hspace{0.05cm}{\rm W}/{\rm Hz}}\hspace{0.05cm}.$$
 +
*Thus,&nbsp; this value is also valid for the frequency&nbsp; $f = 20$&nbsp; kHz.
  
'''5.'''Die Rauschleistungsdichte des Zufallssignals $n_1(t)$ ist im Frequenzbereich $|f| < 30 kHz$ konstant gleich
 
$$\phi_{n,TP}(f)= \frac{N_0}{2}= 2 \cdot 10^{-12} W/Hz$$
 
Dieser Wert gilt somit auch für die Frequenz $f = 20$ $\text{kHz}$.
 
  
'''6.'''Wie aus der Grafik hervorgeht, ist $Φ_{n,BP}(f)$ nur zwischen $85 kHz$ und $115 kHz$ ungleich 0, wenn die Bandbreite $B = 30 kHz$ beträgt. Bei der Frequenz $f = 120 kHz$ ist die Rauschleistungsdichte somit Null.
+
'''(6)'''&nbsp; As can be seen from the diagram, &nbsp; ${\it Φ}_{n, \hspace{0.05cm}\rm BP}(f)$&nbsp; is non-zero only in the range between&nbsp; $85$&nbsp; kHz and&nbsp; $115$&nbsp; kHz,&nbsp; when the bandwidth is&nbsp; $B = 30$&nbsp; kHz.  
 +
*Thus,&nbsp; at the frequency &nbsp; $f = 120$&nbsp; kHz, the noise power density is zero:
 +
:$${\it Φ}_{n, \hspace{0.05cm}\rm BP}(f = 120 \ \rm kHz)\hspace{0.15cm}\underline{=0}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 89: Line 126:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^1.2 Qualitätskriterien^]]
+
[[Category:Modulation Methods: Exercises|^1.2 Quality Criteria^]]

Latest revision as of 17:27, 10 April 2022

Examplary signals for low-pass and band-pass noise

A fundamental disturbance and one that occurs in any communication system is  "thermal noise",  since any resistance  $R$  with an absolute temperature of  $θ$  (in "degrees Kelvin")  produces a noise signal  $n(t)$  with a  (one-sided)  noise power-spectral density

$${N_{\rm 0, \hspace{0.05cm}min}}= k_{\rm B} \cdot \theta \hspace{0.3cm}\left(k_{\rm B} = 1.38 \cdot 10^{-23} \hspace{0.05cm}{\rm Ws}/{\rm K}\right)$$

where $k_{\rm B}$  denotes the  "Boltzmann constant" (from German  "Konstante").

However,  this noise is limited to  $6\text{ THz}$  for physical reasons.  Furthermore,  it can be observed that this minimum value can only be achieved with exact impedance matching.

In the realization of a circuit unit - for example, an amplifier - the effective noise power-spectral density is usually significantly greater,  since several noise sources add up,  and mismatches also play a role.  This effect is captured by the noise factor  $F \ge 1$  .  It holds that:

$$N_0 = F \cdot {N_{\rm 0, \hspace{0.05cm}min}}= F \cdot k_{\rm B} \cdot \theta \hspace{0.05cm}.$$

With a bandwidth  $B$,  the effective noise power is characterized by:

$$N = N_0 \cdot B \hspace{0.1cm} \hspace{0.01cm}.$$
$$N = N_0 \cdot B\cdot R = \sigma_n^2 \hspace{0.01cm}.$$
  • According to the first equation,  the result is the actual,  physical power in "watts"  $\rm (W)$.
  • According to the second equation,  the result has the unit   "$\rm V^{ 2 }$".
  • This means that the power is here converted to the reference resistance  $R = 1\ Ω$  – as is often the case in Communications Engineering.
  • This equation must also be used to calculate the standard deviation  $σ_n$  of the noise signal  $n(t)$ .


All equations apply regardless of whether the noise is low-pass or band-pass. The diagram shows two noise signals  $n_1(t)$  and  $n_2(t)$  of equal bandwidth.  Question   (4)  asks which of these signals will appear at the output of a low-pass and a band-pass, respectively.

The two-sided noise power-spectral density of band-limited low-pass noise  $n_{\rm TP}(t)$  is:

$$ {\it \Phi}_{n, {\hspace{0.05cm}\rm LP}}(f) = \left\{ \begin{array}{c} N_0/2 \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{for}} \\ \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < B,} \\ {\rm otherwise.} \\ \end{array}$$

In contrast,  for band-pass noise  $n_{\rm BP}(t)$  with center frequency  $f_{\rm M}$, it holds that:

$${\it \Phi}_{n, {\hspace{0.05cm}\rm BP}}(f) = \left\{ \begin{array}{c} N_0/2 \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{for}} \\ \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f - f_{\rm M}\hspace{0.05cm} \right| < B/2,} \\ {\rm otherwise.} \\ \end{array}.$$

For all subsequent numerical calculations it is assumed:

$$ F = 10, \hspace{0.2cm}\theta = 290\,{\rm K},\hspace{0.2cm}R = 50\,{\rm \Omega},\hspace{0.2cm}B = 30\,{\rm kHz},\hspace{0.2cm}f_{\rm M} = 0 \hspace{0.5cm}{\rm or}\hspace{0.5cm}f_{\rm M} =100\,{\rm kHz}\hspace{0.05cm}.$$



Hints:

  • This exercise belongs to the chapter  Quality Criteria.
  • Particular reference is made to the page  Some remarks on the AWGN channel model.
  • By specifying the powers in  $\rm W$atts , they are independent of the reference resistance  $R$,  while power with the unit  $\rm V^2$  can only be evaluated directly for  $R = 1\ \Omega$.



Questions

1

Calculate the noise power-spectral density  $N_0$  with a noise factor of  $F = 10$  and  $θ = 290^\circ$  Kelvin.

$N_0 \ = \ $

$\ \cdot 10^{ -20 }\ \text{W/Hz}$

2

What is the maximum noise power  (without bandwidth limits)?

$N_{\rm max} \ = \ $

$\ \cdot 10^{ -6 }\ \text{W/Hz}$

3

What is the noise power  $N$  with bandwidth  $B = 30\text{ kHz}$?  What is the standard deviation $σ_n$?

$N \ = \ $

$\ \cdot 10^{ -16 }\ \text{W/Hz}$
$σ_n \ = \ $

$\ \cdot 10^{ -6 }\ \text{V}$

4

Which of the signals –  $n_1(t)$  or  $n_2(t)$  – shows low-pass noise and which shows band-pass noise?

The noise signal  $n_1(t)$  is characteristically low-pass.
The noise signal  $n_1(t)$  is characteristically band-pass.

5

What is the value of the noise power-spectral density of the low-pass  $\rm (LP)$  noise at frequency  $f = 20\text{ kHz}$?  Let  $B = 30\text{ kHz}$.

${\it Φ}_{n, \hspace{0.05cm}\rm LP}(f = 20 \ \rm kHz) \ = \ $

$\ \cdot 10^{ -12 }\ \text{W/Hz}$

6

What is the value of the noise power-spectral density of the band-pass  $\rm (BP)$  noise at  $f = 120\text{ kHz}$?  Let  $f_{\rm M} = 100\text{ kHz}$  and  $B = 30\text{ kHz}$.

${\it Φ}_{n, \hspace{0.05cm}\rm BP}(f = 120 \ \rm kHz) \ = \ $

$\ \cdot 10^{ -12 }\ \text{W/Hz}$


Solution

(1)  Using the Boltzmann constant  $k_{\rm B}$  it holds that:

$$N_0 = F \cdot k_{\rm B} \cdot \theta = 10 \cdot 1.38\hspace{0.05cm}\cdot 10^{-23} \hspace{0.05cm}\frac{\rm Ws}{\rm K}\cdot 290\,{\rm K} \hspace{0.15cm}\underline {\approx 4\hspace{0.05cm}\cdot 10^{-20} \hspace{0.05cm}{\rm W}/{\rm Hz}}\hspace{0.05cm}.$$


(2)  The specified noise power density  $N_0$  is physically limited to  $6$  THz.  Thus the maximum noise power is:

$$N_{\rm max} = 4\hspace{0.05cm}\cdot 10^{-20} \hspace{0.08cm}\frac{\rm W}{\rm Hz}\cdot 6 \cdot10^{12} \hspace{0.08cm}{\rm Hz}\hspace{0.15cm}\underline {= 0.24\hspace{0.08cm}\cdot 10^{-6}\;{\rm W}}\hspace{0.05cm}.$$


(3)  Now the resulting noise power is:

$$N = N_0 \cdot B = 4\hspace{0.08cm}\cdot 10^{-20} \hspace{0.08cm}\frac{\rm W}{\rm Hz}\cdot 3 \cdot10^{4} \hspace{0.08cm}{\rm Hz}\hspace{0.15cm}\underline {= 12\hspace{0.05cm}\cdot 10^{-16}\;{\rm W}}\hspace{0.05cm}.$$
  • Converting to the reference resistance  $R = 1 \ Ω$:
$$N = N_0 \cdot B \cdot R = 12\hspace{0.05cm}\cdot 10^{-16}\;{\rm W}\hspace{0.05cm} \cdot 50 \; {\rm \Omega}= 6\hspace{0.05cm}\cdot 10^{-14}\;{\rm V^2}\hspace{0.05cm}.$$
Power-spectral densities with band-limited noise
  • The noise standard deviation $σ_n$  is the square root of this:
$$\sigma_n= \sqrt{6\hspace{0.05cm}\cdot 10^{-14}\;{\rm V^2}} \hspace{0.15cm}\underline {= 0.245 \hspace{0.05cm}\cdot 10^{-6}\;{\rm V}}\hspace{0.05cm}.$$


(4)  Answer 1  is correct:

  • In the random signal  $n_2(t)$ one can recognize certain regularities similar to a harmonic oscillation   ⇒   it is bandpass noise.
  • In contrast, the signal  $n_1(t)$  is low-pass noise.


(5)  The noise power density of the random signal  $n_1(t)$  is constant in the frequency range  $|f| < 30$  kHz:

$${\it \Phi}_{n,\hspace{0.05cm}{ \rm LP} }(f) \hspace{-0.05cm}=\hspace{-0.05cm} \frac{N_0}{2} \hspace{0.15cm}\underline {=2\hspace{0.05cm}\hspace{-0.05cm}\cdot \hspace{-0.05cm} 10^{-12} \hspace{0.05cm}{\rm W}/{\rm Hz}}\hspace{0.05cm}.$$
  • Thus,  this value is also valid for the frequency  $f = 20$  kHz.


(6)  As can be seen from the diagram,   ${\it Φ}_{n, \hspace{0.05cm}\rm BP}(f)$  is non-zero only in the range between  $85$  kHz and  $115$  kHz,  when the bandwidth is  $B = 30$  kHz.

  • Thus,  at the frequency   $f = 120$  kHz, the noise power density is zero:
$${\it Φ}_{n, \hspace{0.05cm}\rm BP}(f = 120 \ \rm kHz)\hspace{0.15cm}\underline{=0}.$$