Difference between revisions of "Digital Signal Transmission/Intersymbol Interference for Multi-Level Transmission"

From LNTwww
 
(45 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Impulsinterferenzen und Entzerrungsverfahren
+
|Untermenü=Intersymbol Interfering and Equalization Methods
 
|Vorherige Seite=Berücksichtigung von Kanalverzerrungen und Entzerrung
 
|Vorherige Seite=Berücksichtigung von Kanalverzerrungen und Entzerrung
 
|Nächste Seite=Lineare Nyquistentzerrung
 
|Nächste Seite=Lineare Nyquistentzerrung
 
}}
 
}}
  
== Augenöffnung bei redundanzfreien Mehrstufensystemen (1) ==
+
== Eye opening for redundancy-free multi-level systems==
 
<br>
 
<br>
Wir gehen weiterhin von folgenden Voraussetzungen aus:
+
[[File:EN_Dig_T_3_4_S1a.png|right|frame|Block diagram for a multi-level (or coded) transmission system|class=fit]]
*NRZ&ndash;Rechteck&ndash;Sendeimpulse,<br>
 
  
*Koaxialkabel und AWGN&ndash;Rauschen,<br>
+
We further assume the following:
 +
*NRZ rectangular transmission pulses,<br>
 +
*coaxial cable and AWGN noise,<br>
 +
*ideal channel equalization, and<br>
 +
*a Gaussian low-pass filter for noise power limitation.<br><br>
  
*ideale Kanalentzerrung, sowie<br>
 
  
*ein Gaußtiefpass zur Rauschleistungsbegrenzung.<br><br>
+
In contrast to the &nbsp;[[Digital_Signal_Transmission/Berücksichtigung_von_Kanalverzerrungen_und_Entzerrung| last chapter]],&nbsp; the still redundancy-free transmitted signal &nbsp;$s(t)$&nbsp; is now no longer binary, but of &nbsp;$M$&ndash;level,&nbsp; which only has an effect in the set of of the amplitude coefficients:
 +
:$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.3cm}{\rm with}\hspace{0.3cm}
 +
a_\nu \in \{ a_1,\ \text{ ...} \  , a_\mu , \ \text{ ...} \  , a_{M}\}\hspace{0.05cm}.$$
  
[[File:P ID1411 Dig T 3 4 S1a version1.png|Blockschaltbild für ein mehrstufiges/codiertes Übertragungssystem|class=fit]]<br>
+
Accordingly,&nbsp; the decision unit now has not only one,&nbsp; but &nbsp;$M-1$&nbsp; decision thresholds and in the eye diagram &nbsp;$M-1$&nbsp; eye openings are visible when the eye is open.<br>
  
Im Unterschied zu Kapitel 3.3 ist das weiterhin redundanzfreie Sendesignal <i>s</i>(<i>t</i>) nun nicht mehr binär, sondern <i>M</i>&ndash;stufig, was sich nur im Wertevorrat der Amplitudenkoeffizienten auswirkt:
+
Comparing the eye diagrams&nbsp; (without noise)&nbsp; of a
 +
*binary &nbsp;$(M = 2)$,<br>
 +
*ternary &nbsp;$(M = 3)$, and<br>
 +
*quaternary &nbsp;$(M = 4)$
  
:<math>s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.3cm}{\rm mit}\hspace{0.3cm}
 
a_\nu \in \{ a_1, ... , a_\mu , ... , a_{M}\}\hspace{0.05cm}.</math>
 
  
Dementsprechend besitzt der Entscheider nun nicht mehr nur eine, sondern <i>M</i> &ndash; 1 Entscheiderschwellen und im Augendiagramm sind bei geöffnetem Auge <i>M</i> &ndash; 1 Augenöffnungen erkennbar.<br>
+
transmission system with the same basic detection pulse &nbsp;$g_d(t)$&nbsp; and the same symbol duration &nbsp;$T$,&nbsp; one obtains for the half vertical eye opening in general:
 +
:$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} - \sum_{\nu = 1}^{\infty} |g_{-\nu} | - \sum_{\nu = 1}^{\infty} |g_{\nu} |\hspace{0.05cm}.$$
  
Vergleicht man die Augendiagramme (ohne Rauschen)
+
&rArr; &nbsp;  $g_0 = g_d(t= 0)$&nbsp; denotes the&nbsp; "main value"&nbsp; as in chapter &nbsp;[[Digital_Signal_Transmission/Berücksichtigung_von_Kanalverzerrungen_und_Entzerrung|"Consideration of Channel Distortion and Equalization"]].&nbsp; The two sums in the above equation take into account
*eines binären (<i>M</i> = 2),<br>
+
*the&nbsp; "precursors"&nbsp; $g_1$, &nbsp;$g_2$, ... of the trailing pulses&nbsp; (second term),&nbsp; and
 +
*the "trailers"&nbsp; or&nbsp; "postcursors"&nbsp;$g_{-1}$, $g_{-2}$, ... of the preceding pulses&nbsp; (last term).
  
*eines ternären (<i>M</i> = 3), und<br>
 
  
*eines quaternären (<i>M</i> = 4)<br><br>
+
Here, &nbsp;$g_\nu = g_d(t = \nu \cdot T)$&nbsp;  always holds.
  
Übertragungssystems bei gleichem vorgegebenen Detektionsgrundimpuls <i>g<sub>d</sub></i>(<i>t</i>) und gleicher Symboldauer <i>T</i>, so erhält man für die halbe vertikale Augenöffnung allgemein:
+
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; Below you can see three eye diagrams&nbsp; (without noise)&nbsp; for the level numbers &nbsp;$M = 2$, &nbsp;$M = 3$&nbsp; and&nbsp; $M = 4$.
 +
[[File:EN_Dig_T_3_4_S1b_neu.png|right|frame|Noiseless eye diagrams of a binary,&nbsp; ternary and quaternary system. &nbsp; Note:&nbsp; the normalized cutoff frequency &nbsp;$f_{\rm G} \cdot T = 0.6$&nbsp; holds for all three diagrams|class=fit]]
 +
 +
*The binary eye diagram is valid for a Gaussian low-pass with the cutoff frequency &nbsp;$f_{\rm G} \cdot T = 0.6$. With the&nbsp; "main value" &nbsp;$g_0 = 0.867 \cdot s_0$,&nbsp; the&nbsp; "postcursor"&nbsp; &nbsp;$g_{1} = 0.067 \cdot s_0$&nbsp; and&nbsp; the&nbsp; "precursor"&nbsp; $g_{-1} = g_{1}$, the result in this case for the vertical eye opening&nbsp;  (rounding to one decimal place)&nbsp; is:
 +
:$${\ddot{o}(T_{\rm D})}= 2 \cdot (g_0 - 2 \cdot g_1) \approx 1.5 \cdot s_0 \hspace{0.05cm}.$$
  
:<math>{\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} - \sum_{\nu = 1}^{\infty} |g_{-\nu} | - \sum_{\nu = 1}^{\infty} |g_{\nu} |\hspace{0.05cm}.</math>
+
*In the multi-level systems,&nbsp; the eye opening is per se smaller by a factor of &nbsp;$1/(M-1)$.&nbsp; Thus,&nbsp; the eye opening is reduced&nbsp; (relatively speaking)&nbsp; more by the&nbsp;  ISI causing pulse values&nbsp; $g_1$&nbsp; and&nbsp; $g_{-1}=g_1$&nbsp;  than in the binary system.&nbsp; One obtains with the same basic detection pulse values for
 +
:$$M = 3\text{:} \hspace{0.2cm}{\ddot{o}(T_{\rm D})} =  2 \cdot (g_0/2 - 2 \cdot g_1) \approx 0.6 \cdot s_0
 +
\hspace{0.05cm},$$
 +
:$$M = 4\text{:} \hspace{0.2cm}{\ddot{o}(T_{\rm D})}  =  2 \cdot (g_0/3 - 2 \cdot g_1) \approx 0.3 \cdot s_0
 +
\hspace{0.05cm}.$$
  
Hierbei bezeichnet <i>g</i><sub>0</sub> = <i>g<sub>d</sub></i>(<i>t</i> = 0) wie im Kapitel 3.3 den Hauptwert, während die beiden Summen in obiger Gleichung
+
*But when comparing the systems,&nbsp; it should be noted that the larger level number&nbsp; $M$&nbsp; also increases the information flow.&nbsp; That is,&nbsp; the multi-level systems are better than these graphs indicate.&nbsp; More about this in the next section.}}<br>
*die Vorläufer <i>g</i><sub>1</sub>, <i>g</i><sub>2</sub>, ... (zweiter Term), und<br>
 
*die Nachläufer <i>g</i><sub>&ndash;1</sub>, <i>g</i><sub>&ndash;2</sub>, ... (dritter Term)<br><br>
 
  
berücksichtigen. Dabei gilt stets <i>g<sub>&nu;</sub></i> = <i>g<sub>d</sub></i>(<i>t</i> = <i>&nu;</i> &middot; <i>T</i>).<br>
+
== Comparison between binary and quaternary system==
 
 
Auf der nächsten Seite wird diese Gleichung an einem Beispiel verdeutlicht.<br>
 
 
 
== Augenöffnung bei redundanzfreien Mehrstufensystemen (2) ==
 
 
<br>
 
<br>
{{Beispiel}}''':''' Nachfolgend sehen Sie drei Augendiagramme für die Stufenzahlen <i>M</i> = 2, <i>M</i> = 3 und <i>M </i>= 4. Das binäre Augendiagramm gilt für einen Gaußtiefpass mit der Grenzfrequenz <i>f</i><sub>G</sub> &middot; <i>T</i> &asymp; 0.6. Mit dem Hauptwert <i>g</i><sub>0</sub> = 0.867 &middot; <i>s</i><sub>0</sub> und den beiden Ausläufern <i>g</i><sub>&ndash;1</sub> = <i>g</i><sub>1</sub> = 0.067 &middot; <i>s</i><sub>0</sub> ergibt sich in diesem Fall für die vertikale Augenöffnung (Rundung auf eine Nachkommastelle):
+
The comparison made in the last section is not fair because the information flow was not assumed to be the same.
 +
*A system comparison at constant equivalent bit rate &nbsp;$R_{\rm B}$&nbsp; must rather also take into account
 +
*that in the&nbsp; (redundancy-free)&nbsp; multi-level systems the symbol duration &nbsp;$T$&nbsp; is larger by a factor &nbsp;$\log_2 \ (M)$&nbsp; than in the binary system,&nbsp; which has a favorable effect on the intersymbol interferences.<br>
  
:<math>{\ddot{o}(T_{\rm D})}= 2 \cdot (g_0 - 2 \cdot g_1) \approx 1.5 \cdot s_0 \hspace{0.05cm}.</math>
 
  
[[File:P ID1412 Dig T 3 4 S1b version1.png|Augendiagramme eines binären, ternären und quaternären Systems|class=fit]]<br>
+
The graph shows the half eye opening&nbsp; $($normalized to &nbsp;$s_0)$&nbsp; as a function of the quotient &nbsp;$f_{\rm G}/R_{\rm B}$&nbsp; of the Gaussian receiver filter.&nbsp; In &nbsp;[[Aufgaben:Exercise_3.4Z:_Eye_Opening_and_Level_Number|Exercise 3.4Z]],&nbsp; this is calculated in analytical form as follows:
 +
:$$\ddot{o}_{\rm norm} = \frac{\ddot{o}(T_{\rm D})}{ 2 \cdot s_0}  =  \frac{M}{ M-1}\cdot \frac{g_0}{
 +
s_0} -1  =  \frac{1}{ M-1}\cdot \big [1- 2 \cdot M \cdot {\rm Q} \left(
 +
\sqrt{2\pi} \cdot {\log_2}\hspace{0.1cm}(M) \cdot {f_{\rm
 +
G}}/{R_{\rm B}}
 +
  \right)\big]
 +
\hspace{0.05cm}.$$
 +
[[File:P ID3140 Dig T 3 4 S2 version1.png|right|frame|Half normalized eye opening for &nbsp;$M = 2$, &nbsp;$M = 3$&nbsp; and &nbsp;$M = 4$|class=fit]]
 +
One can see from the graph:
 +
*For broadband filter&nbsp; $($that is: &nbsp; for large &nbsp;$f_{\rm G})$&nbsp; the binary system is clearly superior to the multi-level systems.&nbsp; The normalized half eye opening in the limiting case is &nbsp;$\ddot{o}_{\rm norm}  = 1$&nbsp; &nbsp; $(M = 2),$&nbsp; $\ddot{o}_{\rm norm}  = 1/2$&nbsp; $(M = 3)$,&nbsp; $\ddot{o}_{\rm norm}  = 1/3$&nbsp; $(M = 4)$.<br>
  
Bei den Mehrstufensystemen ist die Augenöffnung per se um den Faktor 1/(<i>M</i> &ndash; 1) kleiner. Dadurch wird hier die Augenöffnung durch die (gleich großen) Vor&ndash; und Nachläufer (relativ gesehen) stärker verringert als beim Binärsystem. Man erhält bei gleichen Grundimpulswerten für
+
*As shown in the graph,&nbsp; for &nbsp;$f_{\rm G}/R_{\rm B} < 0.35$,&nbsp; the level number &nbsp;$M=4$&nbsp; (red curve)&nbsp; leads to a larger eye opening than &nbsp;$M=2$&nbsp; (blue curve).&nbsp; The ternary system &nbsp;$(M=3)$&nbsp; lies almost in the entire range between binary and quaternary systems.<br>
  
:<math>M = 3 : \hspace{0.2cm}{\ddot{o}(T_{\rm D})}  =  2 \cdot (g_0/2 - 2 \cdot g_1) \approx 0.6 \cdot s_0
+
*It should also be mentioned that for the quaternary system,&nbsp; a closed eye results only with a cutoff frequency &nbsp;$f_{\rm G}/R_{\rm B} < 0.23$&nbsp; $($which leads to very large error probabilities$)$,&nbsp; while a practically relevant binary transmission is already no longer possible for &nbsp;$f_{\rm G}/R_{\rm B} < 0.27$.&nbsp;<br>
\hspace{0.05cm},</math>
+
<br clear=all>
:<math> M = 4 : \hspace{0.2cm}{\ddot{o}(T_{\rm D})}  =  2 \cdot (g_0/3 - 2 \cdot g_1) \approx 0.3 \cdot s_0
+
== Comparison of the optimal cutoff frequencies ==
\hspace{0.05cm}.</math>
 
 
 
Anzumerken ist, dass auch für diese beiden Mehrstufensysteme jeweils die normierte Grenzfrequenz <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.6 zugrundeliegt. Bei einem Systemvergleich ist allerdings zu beachten, dass sich durch die größere Stufenzahl auch der Informationsfluss erhöht. Das heißt, dass die Mehrstufensysteme besser sind, als es diese Grafiken aussagen. Mehr darüber auf der nächsten Seite.{{end}}<br>
 
 
 
== Vergleich zwischen Binär– und Quaternärsystem (1) ==
 
 
<br>
 
<br>
Der auf der letzten Seite angestellte Vergleich ist nicht fair, da nicht von gleichem Informationsfluss ausgegangen wurde. Ein Systemvergleich bei konstanter äquivalenter Bitrate <i>R</i><sub>B</sub> muss vielmehr auch berücksichtigen, dass bei den (redundanzfreien) Mehrstufensystemen die Symboldauer <i>T</i> um den Faktor ld (<i>M</i>) größer ist als beim Binärsystem, was sich günstig auf die Impulsinterferenzen auswirkt.<br>
+
We now compare the optimal cutoff frequencies of the Gaussian filter, which result for &nbsp;$M=2$&nbsp; and&nbsp; $M=4$,&nbsp; resp.
 +
[[File:P ID1414 Dig T 3 4 S3 version1.png|right|frame|Optimal cutoff frequency for &nbsp;$M=2$,&nbsp; $M=4$;&nbsp; SNR gain due to &nbsp;$M=4$ |class=fit]]
 +
*The comparison is based on a coaxial transmission channel with the characteristic cable attenuation &nbsp;$a_\star$.&nbsp;
 +
*The larger &nbsp;$a_\star$&nbsp; (which also means: &nbsp;the longer the cable),&nbsp; the more the noise is amplified by the required equalization at the receiver.
  
[[File:P ID3140 Dig T 3 4 S2 version1.png|Halbe normierte Augenöffung für <i>M</i> = 2, <i>M</i> = 3 und <i>M</i> = 4|class=fit]]<br>
 
 
Die Grafik zeigt die (auf <i>s</i><sub>0</sub> normierte) halbe Augenöffnung in Abhängigkeit des Quotienten <i>f</i><sub>G</sub>/<i>R</i><sub>B</sub> des gaußförmigen Empfangsfilters. In der Aufgabe Z3.4 wird diese in analytischer Form wie folgt berechnet:
 
 
:<math>\ddot{o}_{\rm norm} = \frac{\ddot{o}(T_{\rm D})}{ 2 \cdot s_0}  =  \frac{M}{ M-1}\cdot \frac{g_0}{
 
s_0} -1 =</math>
 
:::<math>  =  \frac{1}{ M-1}\cdot \left [1- 2 \cdot M \cdot {\rm Q} \left(
 
\sqrt{2\pi} \cdot {\rm ld}\hspace{0.1cm}(M) \cdot {f_{\rm
 
G}}/{R_{\rm B}}
 
  \right)\right]
 
\hspace{0.05cm}.</math>
 
 
Man erkennt aus obiger Grafik:
 
*Bei breitbandigem Filter (das heißt: für großes <i>f</i><sub>G</sub>) ist das Binärsystem den Mehrstufensystemen deutlich überlegen. Die normierte halbe Augenöffnung beträgt im Grenzfall <i>ö</i><sub>norm</sub> = 1 (für <i>M</i> = 2), <i>ö</i><sub>norm</sub> = 1/2 (für <i>M</i> = 3) bzw. <i>ö</i><sub>norm</sub> = 1/3 (für <i>M</i> = 4).<br>
 
 
*Wie aus obiger Grafik hervorgeht, führt für Grenzfrequenzen <i>f</i><sub>G</sub>/<i>R</i><sub>B</sub> < 0.35  die Stufenzahl <i>M</i> = 4 (rote Kurve) zu einer größeren Augenöffnung als <i>M</i> = 2 (blaue Kurve). Das Ternärsystem (<i>M</i> = 3, violette Kurve) liegt fast im gesamten Bereich zwischen dem Binär&ndash; und dem Quaternärsystem.<br>
 
 
*Besonders erwähnenswert ist, dass sich beim Quaternärsystem erst mit einer Grenzfrequenz <i>f</i><sub>G</sub>/<i>R</i><sub>B</sub> < 0.23 ein geschlossenes Auge ergibt (was zu sehr großen Fehlerwahrscheinlichkeiten führt), während die Binärübertragung bereits für <i>f</i><sub>G</sub>/<i>R</i><sub>B</sub> < 0.27 nicht mehr möglich ist.<br>
 
 
== Vergleich zwischen Binär– und Quaternärsystem (2) ==
 
<br>
 
Vergleichen wir nun die optimalen Grenzfrequenzen des Gaußfilters, die sich für <i>M</i> = 2 bzw. <i>M</i> = 4 ergeben. Dem Vergleich liegt ein koaxialer Übertragungskanal mit der charakteristischen Kabeldämpfung <i>a</i><sub>&#8727;</sub> zugrunde. Je größer dieser Kanalparameter ist (das heißt auch: wie größer die Kabellänge ist), desto stärker wird das Rauschen durch die erforderliche Entzerrung beim Empfänger verstärkt.<br>
 
  
Interpretieren wir zunächst die linke Grafik:
+
Let's interpret the left graph first:
*Bei verzerrungsfreiem Kanal (<i>a</i><sub>&#8727;</sub> = 0 dB) ergeben sich die optimalen Grenzfrequenzen zu 0.8 (für <i>M</i> = 2) bzw. 0.48 (für <i>M</i> = 4) &ndash; jeweils normiert auf die äquivalente Bitrate. Entsprechend dem Kurvenverlauf [http://en.lntwww.de/index.php?title=Digitalsignal%C3%BCbertragung/Impulsinterferenzen_bei_mehrstufiger_%C3%9Cbertragung&action=submit#Vergleich_zwischen_Bin.C3.A4r.E2.80.93_und_Quatern.C3.A4rsystem_.281.29 <i>ö</i>(<i>T</i><sub>D</sub>)/(2<i>s</i><sub>0</sub>)] auf der letzten Seite ist hier das Binärsystem dem Quaternärsystem deutlich überlegen.<br>
+
*With distortion-free channel &nbsp;$(a_\star = 0 \ \rm dB)$&nbsp; the optimal (normalized) cutoff frequencies result to &nbsp;$f_\text{G, opt}/R_{\rm B}  = 0.8$&nbsp; $(M=2)$&nbsp; and &nbsp;$f_\text{G, opt}/R_{\rm B}  = 0.48$&nbsp; $(M=4)$.  
  
*Mit der charakteristischen Kabeldämpfung <i>a</i><sub>&#8727;</sub> = 80 dB erhält man für das Binärsystem (<i>M</i> = 2) die optimale Grenzfrequenz <i>f</i><sub>G,opt</sub> = 0.33/<i>T</i>. Für das Quaternärsystem (für <i>M</i> = 4) ergibt sich ein kleinerer Wert:  <i>f</i><sub>G,opt</sub> = 0.28/<i>T</i>.<br><br>
+
*According to the &nbsp;[[Digital_Signal_Transmission/Intersymbol_Interference_for_Multi-Level_Transmission#Comparison_between_binary_and_quaternary_system|curve&nbsp"half normalized eye opening"]]&nbsp; in the last section,&nbsp; the binary system is clearly superior to the quaternary system.<br>
  
[[File:P ID1414 Dig T 3 4 S3 version1.png|Optimale Grenzfrequenz bei quaternärer Übertragung und Störabstandsgewinn|class=fit]]<br>
+
*With the characteristic cable attenuation &nbsp;$a_\star = 80 \ \rm dB$,&nbsp; the optimal cutoff frequency &nbsp;$f_\text{G, opt}/R_{\rm B}  = 0.33$&nbsp;  is obtained for&nbsp; $M=2$..&nbsp; For the quaternary system,&nbsp; a smaller value results again: &nbsp;$f_\text{G, opt}/R_{\rm B}  = 0.28$.
  
Das optimierte Binärsystem ist aber trotz größerer Augenöffnung nicht immer besser als das optimierte Quaternärsystem, da auch die Rauschleistung zu berücksichtigen ist. Diese wird mit kleiner werdenden Grenzfrequenz ebenfalls kleiner.<br>
 
  
Die rechte Grafik zeigt den Störabstandsgewinn des Quaternärsystems gegenüber dem Binärsystem,
+
However,&nbsp; the optimized binary system is not always better than the optimized quaternary system despite the larger eye opening,&nbsp; since the noise power must also be taken into account.&nbsp; This also becomes smaller with decreasing cutoff frequency.<br>
  
:<math>G_{_{M=4}} =  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{_{{\rm U},\hspace{0.05cm}
+
The right graph shows the&nbsp; '''signal-to-noise ratio gain'''&nbsp; of the quaternary system over the binary system,
M=4}} - 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{_{{\rm U}, \hspace{0.05cm}M=2}},</math>
+
:$$G_{_{M=4}} =  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{_{{\rm U},\hspace{0.05cm}
 +
M=4}} - 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{_{{\rm U}, \hspace{0.05cm}M=2}},$$
  
wenn die Grenzfrequenzen gemäß der linken Grafik jeweils optimal gewählt werden. Demnach gilt:
+
when the cutoff frequencies are chosen optimally in each case according to the left graph.&nbsp; Accordingly:
*Für <i>a</i><sub>&#8727;</sub> < 50 dB ist das Binärsystem optimal. Beim verzerrungsfreien Kanal (<i>a</i><sub>&#8727;</sub> = 0 dB) ergibt sich ein um ca. 7 dB größeres SNR als mit <i>M</i> = 4.<br>
+
*For &nbsp;$a_\star <50 \ \rm dB$,&nbsp; the binary system is optimal.&nbsp; For the distortion-free channel &nbsp;$(a_\star = 0 \ \rm dB)$,&nbsp; the SNR is about &nbsp;$7 \ \rm dB$&nbsp; larger than with &nbsp;$M=4$.<br>
  
*Dagegen ergeben sich für <i>a</i><sub>&#8727;</sub> &#8805; 50 dB günstigere Verhältnisse für die Quaternärübertragung. Bei 80 dB Kabeldämpfung ist der Störabstandsgewinn gegenüber <i>M</i> = 2 größer als 3 dB.<br>
+
*In contrast,&nbsp; more favorable ratios result for &nbsp;$a_\star >50 \ \rm dB$&nbsp;  with &nbsp;$M=4$.&nbsp; For &nbsp;$a_\star = 80 \ \rm dB$,&nbsp; the signal-to-noise ratio gain is greater than &nbsp;$3 \ \rm dB$&nbsp; compared to &nbsp;$M=2$.<br>
  
== Augenöffnung bei den Pseudoternärcodes (1) ==
+
== Eye opening for the pseudo-ternary codes==
 
<br>
 
<br>
In Kapitel 2.4 wurden die Pseudoternärcodes allgemein beschrieben und es wurden für diese die Augendiagramme bei Nyquistimpulsformung angegeben. In der Grafik auf dieser Seite sehen Sie die Augendiagramme &ndash; jeweils ohne Rauschen &ndash; für den AMI&ndash;Code (links) und den Duobinärcode (rechts) im Vergleich zum redundanzfreien Binärcode (Mitte). Die Amplitude ist jeweils zu <i>s</i><sub>0</sub> = 1 normiert.<br>
+
In the chapter &nbsp;[[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo_Ternary_Codes|"Symbolwise Coding"]],&nbsp; the &nbsp;'''pseudo-ternary codes'''&nbsp; were described in general and the eye diagrams with Nyquist pulse shaping were given for them.
 
 
[[File:P ID1416 Dig T 3 4 S4 version1.png|Augendiagramme der Pseudoternärcodes (AMI–Code, Duobinärcode)|class=fit]]<br>
 
 
 
Alle Augendiagramme gelten für ein gaußförmiges Empfangsfilter mit der Grenzfrequenz <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.4, woraus sich folgende (normierte) Grundimpulswerte ergeben:
 
 
 
:<math>g_{0} \approx 0.68, \hspace{0.2cm} g_{1}= g_{-1}  \approx 0.16, \hspace{0.2cm}\hspace{0.2cm} g_{2}= g_{-2}= ...  \approx 0 \hspace{0.05cm}.</math>
 
  
Beim redundanzfreien Binärsystem (mittlere Grafik) erhält man somit für die Augenöffnung
+
In the adjacent graphic you can see,&nbsp; in comparison to the redundancy-free binary code&nbsp; (center),&nbsp; the eye diagrams &ndash; in each case without noise &ndash; for
 +
[[File:EN_Dig_T_3_4_S4.png|right|frame|Eye diagrams for the pseudo-ternary codes&nbsp; (AMI code,&nbsp; duobinary code)|class=fit]]
 +
 +
*the &nbsp;[[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes#Properties_of_the_AMI_code|AMI code]] &nbsp; (on the left),
 +
*the &nbsp;[[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes#Properties_of_the_duobinary_code|duobinary code]] &nbsp; (on the right).
  
:<math>{\ddot{o}(T_{\rm D})}= 2 \cdot (g_0 - 2 \cdot g_1 ) = 0.72 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
\ddot{o}_{\rm norm} = \frac{\ddot{o}(T_{\rm D})}{ 2 \cdot s_0} = 0.36</math>
 
  
im Vergleich zu <i>ö</i>(<i>T</i><sub>D</sub>) = 2 bzw. <i>ö</i><sub>norm</sub> = 1 beim binären Nyquistsystem.<br>
+
The amplitude in each case is &nbsp;$s_0 = 1$.&nbsp; All eye diagrams are furthermore valid for a Gaussian receiver filter with cutoff frequency &nbsp;$f_\text{G} \cdot T = 0.4$, resulting in the following&nbsp; (normalized)&nbsp; basic detection pulse values:
 +
:$$g_{0} \approx 0.68, \hspace{0.2cm} g_{1}= g_{-1}  \approx 0.16, \hspace{0.2cm}\hspace{0.2cm} g_{2}= g_{-2}= \text{...}  \approx 0 \hspace{0.05cm}.$$
  
Da die Pseudoternärcodes mit der gleichen Symbolrate arbeiten wie das redundanzfreie Binärsystem,
+
Thus,&nbsp; for the redundancy-free binary system (middle graph),&nbsp; due to the intersymbol interference, we obtain for the eye opening
*sind die Detektionsgrundimpulswerte <i>g</i><sub>&nu;</sub> und auch der Rauscheffektivwert <i>&sigma;<sub>d</sub></i> in allen Fällen gleich,<br>
+
:$${\ddot{o}(T_{\rm D})}= 2 \cdot (g_0 - 2 \cdot g_1 ) = 0.72$$
 +
:$$\Rightarrow \hspace{0.3cm}
 +
\ddot{o}_{\rm norm} = \frac{\ddot{o}(T_{\rm D})}{ 2 \cdot s_0} = 36\%$$
  
*ist die (halbe) Augenöffnung  für die Systemoptimierung ebenso geeignet wie das S/N&ndash;Verhältnis <i>&rho;</i><sub>U</sub> = [<i>ö</i>(<i>T</i><sub>D</sub>)/2]<sup>2</sup>/<i>&sigma;<sub>d</sub></i><sup>2</sup> und die daraus resultierende (ungünstigste) Fehlerwahrscheinlichkeit <i>p</i><sub>U</sub>.<br><br>
+
compared to &nbsp;$\ddot{o}(T_{\rm D}) = 2$&nbsp; or&nbsp; $\ddot{o}_{\rm norm} = 100\%$&nbsp; for the binary Nyquist system.<br>
  
Die Beschreibung der beiden äußeren Augendiagramme folgt auf der nächsten Seite.<br>
+
For the pseudo-ternary codes,&nbsp; there are two eye openings each and one needs two thresholds &nbsp;$E_1$&nbsp; and&nbsp; $E_2$&nbsp; for the ternary decision.&nbsp; Furthermore,&nbsp; since all pseudo-ternary codes operate at the same symbol rate as the redundancy-free binary system,&nbsp;
 +
*the basic detection pulse values &nbsp;$g_\nu$&nbsp; and also the noise rms value &nbsp;$\sigma_d$&nbsp; are the same in both cases,<br>
  
== Augenöffnung bei den Pseudoternärcodes (2) ==
+
*the (half) eye opening is suitable for system optimization as well as the worst case SNR &nbsp;$\rho_{\rm U} = [\ddot{o}(T_{\rm D})/2]^2 /\sigma_d^2$&nbsp; and the resulting worst&ndash;case error probability &nbsp;$p_{\rm U}$.<br>
<br>
 
Bei den Pseudoternärcodes sind jeweils zwei Augenöffnungen zu erkennen und man benötigt für die ternäre Entscheidung zwei Schwellenwerte <i>E</i><sub>1</sub> und <i>E</i><sub>2</sub>.<br>
 
  
[[File:P ID1417 Dig T 3 4 S4 version1.png|Augendiagramme der Pseudoternärcodes (AMI–Code, Duobinärcode)|class=fit]]<br>
 
  
Interpretieren wir nun das Augendiagramm bei AMI&ndash;Codierung:
+
Let us now interpret the&nbsp; (left)&nbsp; eye diagram with&nbsp; '''AMI coding''':
*Die obere Begrenzung des oberen Auges gehört zur Symbolfolge &bdquo; ... , &ndash;1, +1, &ndash;1, ... &rdquo; und liegt demzufolge bei <i>d</i><sub>oben</sub> = <i>g</i><sub>0</sub> &ndash; 2 &middot; <i>g</i><sub>1</sub>.<br>
+
*The upper boundary of the upper eye belongs to the symbol sequence &nbsp;"$\text{...} -\hspace{-0.05cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} -\hspace{-0.05cm}\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$"&nbsp; $($coefficient &nbsp;$a_{\nu = 0}$&nbsp; italic$)$&nbsp; and consequently lies at &nbsp;$d_{\rm top} = g_0 - 2\cdot g_1$.
 
+
*Die untere Begrenzungslinie <i>d</i><sub>unten</sub> = <i>g</i><sub>1</sub> geht auf die Symbolfolge &bdquo; ... , 0, 0, +1, ... &rdquo; bzw. auf die Folge &bdquo; ... , +1, 0, 0, ... &rdquo; zurück. Hierbei ist berücksichtigt, dass die Folge &bdquo; ..., +1, 0, +1, ... &rdquo; durch die AMI&ndash;Codierregel ausgeschlossen wird.<br>
+
*The lower boundary line &nbsp;$d_{\rm bottom} = g_1$&nbsp; goes back to the symbol sequence &nbsp;"$\text{...} 0,\hspace{0.05cm} {\it 0},\hspace{0.05cm} +\hspace{-0.05cm}\hspace{-0.05cm}1 \text{...}$"&nbsp; and to the sequence &nbsp;"$\text{...} +\hspace{-0.05cm}\hspace{-0.05cm}1,\hspace{0.05cm} {\it 0},\hspace{0.05cm} 0\hspace{0.05cm} \text{...}$",&nbsp; respectively.  
 
+
*Here it is considered that the sequence &nbsp;"$\text{...} +\hspace{-0.05cm}\hspace{-0.05cm}1,\hspace{0.05cm} {\it 0},\hspace{0.05cm} +\hspace{-0.05cm}\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$"&nbsp; is excluded by the AMI coding rule.&nbsp; Thus,&nbsp; the eye opening of the AMI code is:
*Damit gilt für die Augenöffnung des AMI&ndash;Codes:
+
:$${\ddot{o}(T_{\rm D})}= d_{\rm top} - d_{\rm bottom} =g_0 - 3 \cdot g_1 = 0.20
 
 
::<math>{\ddot{o}(T_{\rm D})}= d_{\rm oben} - d_{\rm unten} =g_0 - 3 \cdot g_1 = 0.20
 
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
\ddot{o}_{\rm norm} = \frac{\ddot{o}(T_{\rm D})}{ 2 \cdot s_0} = 10\, \%.</math>
+
\ddot{o}_{\rm norm} = \frac{\ddot{o}(T_{\rm D})}{ 2 \cdot s_0} = 10\, \%.$$
 +
*The upper decision threshold&nbsp; $E_2$&nbsp; as well as the lower decision threshold&nbsp; $E_1$&nbsp; are at
 +
:$$E_2 = {1}/{2} \cdot (d_{\rm top} + d_{\rm bottom}) = {1}/{2} \cdot (g_0 - g_1) = 0.27 \hspace{0.05cm}, \hspace{0.2cm}E_1 = - 0.27 \hspace{0.05cm}.$$
  
*Die obere Entscheiderschwelle <i>E</i><sub>2</sub> sowie die untere Entscheiderschwelle <i>E</i><sub>1</sub> liegen bei
 
  
::<math>E_2 = {1}/{2} \cdot (d_{\rm oben} + d_{\rm unten}) = {1}/{2} \cdot (g_0 - g_1) = 0.27 \hspace{0.05cm}, \hspace{0.2cm}E_1 = - 0.27 \hspace{0.05cm}.</math>
+
In the&nbsp; '''duobinary code'''&nbsp; (right graph),&nbsp; the particularly unfavorable alternating symbol sequence does not occur and one obtains for the eye opening as well as the decision thresholds:
 
+
:$$d_{\rm top}= g_0, \hspace{0.2cm} d_{\rm bottom} = g_1 \hspace{0.3cm}\Rightarrow
Beim Duobinärcode (rechte Grafik) tritt die besonders ungünstige alternierende Symbolfolge nicht auf und man erhält für die Augenöffung sowie die obere Entscheiderschwelle:
 
 
 
:<math>d_{\rm oben}= g_0, \hspace{0.2cm} d_{\rm unten} = g_1 \hspace{0.3cm}\Rightarrow
 
 
\hspace{0.3cm}{\ddot{o}(T_{\rm D})} = g_0 -  g_1 = 0.52
 
\hspace{0.3cm}{\ddot{o}(T_{\rm D})} = g_0 -  g_1 = 0.52
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
\ddot{o}_{\rm norm} =  26\, \%
 
\ddot{o}_{\rm norm} =  26\, \%
\hspace{0.05cm},</math>
+
\hspace{0.05cm}, \hspace{0.3cm} E_2 =  {1}/{2} \cdot (g_0 + g_1) = 0.42 \hspace{0.05cm}, \hspace{0.2cm}E_1 = - 0.42 \hspace{0.05cm}.$$
  
:<math>E_2 =  {1}/{2} \cdot (g_0 + g_1) = 0.42 \hspace{0.05cm}, \hspace{0.2cm}E_1 = - 0.42 \hspace{0.05cm}.</math>
 
  
<b>Hinweis:</b> Augendiagramm und Augenöffnung bei AMI&ndash; und Duobinärcodierung können ebenfalls mit dem Interaktionsmodul [[:File:augendiagramm (1).swf|Augendiagramm und Augenöffnung]] angezeigt werden. Die angegebenen Fehlerwahrscheinlichkeiten gelten allerdings nur für den verzerrungsfreien Kanal (<i>a</i><sub>&#8727;</sub> = 0 dB).<br>
+
&rArr; &nbsp; Note:&nbsp; The degradations due to intersymbol interference in AMI and duobinary coding can also be displayed using the HTML5/JavaScript applet&nbsp; [[Applets:Eye_Pattern_and_Worst-Case_Error_Probability|"Eye Diagram and Eye Opening"]].&nbsp; However,&nbsp; the error probabilities apply only to the distortion-free channel &nbsp;$(a_\star = 0 \ \rm dB)$.<br>
  
== Grenzfrequenzoptimierung bei Pseudoternärcodierung ==
+
== Cutoff frequency optimization with pseudo-ternary coding ==
 
<br>
 
<br>
[[File:P ID1422 Dig T 3 4 S4 version1.png|Augendiagramme der Pseudoternärcodes (AMI–Code, Duobinärcode)|class=fit]]<br>
+
Considering a coaxial transmission channel and the thus necessary channel equalization,&nbsp; the following statements are possible:
 +
*The AMI code always leads to a worse signal-to-noise ratio than the redundancy-free binary code if the overall frequency response is Gaussian.&nbsp; With the characteristic cable attenuation &nbsp;$a_\star = 80 \ \rm dB$,&nbsp; the signal-to-noise ratio loss is about &nbsp;$11 \ \rm dB$.<br>
  
Unter Berücksichtigung eines koaxialen Übertragungskanals und der damit notwendigen Kanalentzerrung sind folgende Aussagen möglich:
+
*This loss is due to the fact that,&nbsp; despite ternary coding,&nbsp; the symbol rate is not reduced compared to the binary reference system.&nbsp; This has the consequence that with the AMI code already a cutoff frequency &nbsp;$f_\text{G} \cdot T  < 0.36$&nbsp; leads to a closed eye.<br>
*Der AMI&ndash;Code führt stets zu einem schlechteren Störabstand als der redundanzfreie Binärcode, wenn der Gesamtfrequenzgang gaußförmig verläuft. Mit der charakteristischen Kabeldämpfung <i>a</i><sub>&#8727;</sub> = 80 dB beträgt der Störabstandsverlust ca. 11 dB.<br>
 
  
*Dieser Verlust ist darauf zurückzuführen, dass trotz ternärer Codierung die Symbolrate gegenüber dem binären Vergleichssystem nicht vermindert wird. Dies hat zur Folge, dass beim AMI&ndash;Code bereits eine Grenzfrequenz <i>f</i><sub>G</sub> &middot; <i>T</i> < 0.36 zu einem geschlossenen Auge führt.<br>
+
*In contrast,&nbsp; with the duobinary code a closed eye results only from &nbsp;$f_\text{G} \cdot T < 0.22$.&nbsp; As a result,&nbsp; the optimal cutoff frequency is also smaller than with the binary system.&nbsp; At 80 dB cable attenuation,&nbsp; the duobinary code in combination with &nbsp;$f_\text{G} \cdot T =0.28$&nbsp; is &nbsp;$3.3 \ \rm dB$&nbsp; better than the best value with redundancy-free binary coding.<br>
 
 
*Dagegen ergibt sich beim Duobinärcode ein geschlossenes Auge erst ab <i>f</i><sub>G</sub> &middot; <i>T</i> < 0.22. Dadurch ist auch die optimale Grenzfrequenz kleiner als beim redundanzfreien Binärsystem. Bei 80 dB Kabeldämpfung ist der Duobinärcode in Kombination mit <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.28 um 3.3 dB besser.<br>
 
 
 
*Allerdings ist zu berücksichtigen: Der AMI&ndash;Code ist gleichsignalfrei und kann damit auch über einen Telefonkanal mit <i>H</i><sub>K</sub>(<i>f</i> = 0) = 0 übertragen werden. Dies ist der entscheidende Grund, dass der AMI&ndash;Code zum Beispiel bei [http://en.lntwww.de/Beispiele_von_Nachrichtensystemen ISDN] (<i>Integrated Services Digital Network</i>) eingesetzt wird.<br>
 
 
 
*Alle Ergebnisse in diesem Kapitel gelten jedoch unter der Bedingung <i>H</i><sub>K</sub>(<i>f</i> = 0) = 1. Soll ein redundanzfreies Signal oder das duobinär&ndash;codierte Signal über einen gleichsignalundurchlässigen Kanal übertragen werden, so ist eine aufwändige Gleichsignalwiedergewinnung erforderlich, die stets ebenfalls mit einer Degradation des S/N-Verhältnisses verbunden ist Söder, G.; Tröndle, K.: ''Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme.'' Berlin – Heidelberg: Springer, 1985.<br><br>
 
  
  
 +
{{BlaueBox|TEXT= 
 +
$\text{However, it has to be taken into account:}$&nbsp; All results in this chapter are valid under the condition &nbsp;$H_{\rm K}(f=0) = 1$.
 +
#If a redundancy-free signal or the duobinary-encoded signal is to be transmitted over a DC-impermeable channel,&nbsp; a complex DC recovery is required,&nbsp; which is always associated with a degradation of the S/N ratio as well &nbsp;[TS87]<ref>Tröndle, K.; Söder, G.:&nbsp; Optimization of Digital Transmission Systems.&nbsp; Boston – London: Artech House, 1987,&nbsp; ISBN:&nbsp; 0-89006-225-0.</ref>.<br><br>
 +
# The AMI code is free of DC signals and can thus also be transmitted over a telephone channel &nbsp; &rArr; &nbsp; $H_{\rm K}(f=0) = 0$.&nbsp; This is the decisive reason why the AMI code is used in &nbsp;[[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN| ISDN]]&nbsp; ("Integrated Services Digital Network"),&nbsp; for example,&nbsp; despite otherwise poor properties.}}<br>
  
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_3.4:_Optimization_of_the_Cutoff_Frequency|Exercise 3.4: Optimization of the Cutoff Frequency]]
  
 +
[[Aufgaben:Exercise_3.4Z:_Eye_Opening_and_Level_Number|Exercise 3.4Z: Eye Opening and Level Number]]
  
 +
[[Aufgaben:Exercise_3.5:_Eye_Opening_with_Pseudoternary_Coding|Exercise 3.5: Eye Opening with Pseudoternary Coding]]
  
 +
==References==
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:14, 23 January 2023

Eye opening for redundancy-free multi-level systems


Block diagram for a multi-level (or coded) transmission system

We further assume the following:

  • NRZ rectangular transmission pulses,
  • coaxial cable and AWGN noise,
  • ideal channel equalization, and
  • a Gaussian low-pass filter for noise power limitation.


In contrast to the   last chapter,  the still redundancy-free transmitted signal  $s(t)$  is now no longer binary, but of  $M$–level,  which only has an effect in the set of of the amplitude coefficients:

$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T)\hspace{0.3cm}{\rm with}\hspace{0.3cm} a_\nu \in \{ a_1,\ \text{ ...} \ , a_\mu , \ \text{ ...} \ , a_{M}\}\hspace{0.05cm}.$$

Accordingly,  the decision unit now has not only one,  but  $M-1$  decision thresholds and in the eye diagram  $M-1$  eye openings are visible when the eye is open.

Comparing the eye diagrams  (without noise)  of a

  • binary  $(M = 2)$,
  • ternary  $(M = 3)$, and
  • quaternary  $(M = 4)$


transmission system with the same basic detection pulse  $g_d(t)$  and the same symbol duration  $T$,  one obtains for the half vertical eye opening in general:

$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} - \sum_{\nu = 1}^{\infty} |g_{-\nu} | - \sum_{\nu = 1}^{\infty} |g_{\nu} |\hspace{0.05cm}.$$

⇒   $g_0 = g_d(t= 0)$  denotes the  "main value"  as in chapter  "Consideration of Channel Distortion and Equalization".  The two sums in the above equation take into account

  • the  "precursors"  $g_1$,  $g_2$, ... of the trailing pulses  (second term),  and
  • the "trailers"  or  "postcursors" $g_{-1}$, $g_{-2}$, ... of the preceding pulses  (last term).


Here,  $g_\nu = g_d(t = \nu \cdot T)$  always holds.

$\text{Example 1:}$  Below you can see three eye diagrams  (without noise)  for the level numbers  $M = 2$,  $M = 3$  and  $M = 4$.

Noiseless eye diagrams of a binary,  ternary and quaternary system.   Note:  the normalized cutoff frequency  $f_{\rm G} \cdot T = 0.6$  holds for all three diagrams
  • The binary eye diagram is valid for a Gaussian low-pass with the cutoff frequency  $f_{\rm G} \cdot T = 0.6$. With the  "main value"  $g_0 = 0.867 \cdot s_0$,  the  "postcursor"   $g_{1} = 0.067 \cdot s_0$  and  the  "precursor"  $g_{-1} = g_{1}$, the result in this case for the vertical eye opening  (rounding to one decimal place)  is:
$${\ddot{o}(T_{\rm D})}= 2 \cdot (g_0 - 2 \cdot g_1) \approx 1.5 \cdot s_0 \hspace{0.05cm}.$$
  • In the multi-level systems,  the eye opening is per se smaller by a factor of  $1/(M-1)$.  Thus,  the eye opening is reduced  (relatively speaking)  more by the  ISI causing pulse values  $g_1$  and  $g_{-1}=g_1$  than in the binary system.  One obtains with the same basic detection pulse values for
$$M = 3\text{:} \hspace{0.2cm}{\ddot{o}(T_{\rm D})} = 2 \cdot (g_0/2 - 2 \cdot g_1) \approx 0.6 \cdot s_0 \hspace{0.05cm},$$
$$M = 4\text{:} \hspace{0.2cm}{\ddot{o}(T_{\rm D})} = 2 \cdot (g_0/3 - 2 \cdot g_1) \approx 0.3 \cdot s_0 \hspace{0.05cm}.$$
  • But when comparing the systems,  it should be noted that the larger level number  $M$  also increases the information flow.  That is,  the multi-level systems are better than these graphs indicate.  More about this in the next section.


Comparison between binary and quaternary system


The comparison made in the last section is not fair because the information flow was not assumed to be the same.

  • A system comparison at constant equivalent bit rate  $R_{\rm B}$  must rather also take into account
  • that in the  (redundancy-free)  multi-level systems the symbol duration  $T$  is larger by a factor  $\log_2 \ (M)$  than in the binary system,  which has a favorable effect on the intersymbol interferences.


The graph shows the half eye opening  $($normalized to  $s_0)$  as a function of the quotient  $f_{\rm G}/R_{\rm B}$  of the Gaussian receiver filter.  In  Exercise 3.4Z,  this is calculated in analytical form as follows:

$$\ddot{o}_{\rm norm} = \frac{\ddot{o}(T_{\rm D})}{ 2 \cdot s_0} = \frac{M}{ M-1}\cdot \frac{g_0}{ s_0} -1 = \frac{1}{ M-1}\cdot \big [1- 2 \cdot M \cdot {\rm Q} \left( \sqrt{2\pi} \cdot {\log_2}\hspace{0.1cm}(M) \cdot {f_{\rm G}}/{R_{\rm B}} \right)\big] \hspace{0.05cm}.$$
Half normalized eye opening for  $M = 2$,  $M = 3$  and  $M = 4$

One can see from the graph:

  • For broadband filter  $($that is:   for large  $f_{\rm G})$  the binary system is clearly superior to the multi-level systems.  The normalized half eye opening in the limiting case is  $\ddot{o}_{\rm norm} = 1$    $(M = 2),$  $\ddot{o}_{\rm norm} = 1/2$  $(M = 3)$,  $\ddot{o}_{\rm norm} = 1/3$  $(M = 4)$.
  • As shown in the graph,  for  $f_{\rm G}/R_{\rm B} < 0.35$,  the level number  $M=4$  (red curve)  leads to a larger eye opening than  $M=2$  (blue curve).  The ternary system  $(M=3)$  lies almost in the entire range between binary and quaternary systems.
  • It should also be mentioned that for the quaternary system,  a closed eye results only with a cutoff frequency  $f_{\rm G}/R_{\rm B} < 0.23$  $($which leads to very large error probabilities$)$,  while a practically relevant binary transmission is already no longer possible for  $f_{\rm G}/R_{\rm B} < 0.27$. 


Comparison of the optimal cutoff frequencies


We now compare the optimal cutoff frequencies of the Gaussian filter, which result for  $M=2$  and  $M=4$,  resp.

Optimal cutoff frequency for  $M=2$,  $M=4$;  SNR gain due to  $M=4$
  • The comparison is based on a coaxial transmission channel with the characteristic cable attenuation  $a_\star$. 
  • The larger  $a_\star$  (which also means:  the longer the cable),  the more the noise is amplified by the required equalization at the receiver.


Let's interpret the left graph first:

  • With distortion-free channel  $(a_\star = 0 \ \rm dB)$  the optimal (normalized) cutoff frequencies result to  $f_\text{G, opt}/R_{\rm B} = 0.8$  $(M=2)$  and  $f_\text{G, opt}/R_{\rm B} = 0.48$  $(M=4)$.
  • With the characteristic cable attenuation  $a_\star = 80 \ \rm dB$,  the optimal cutoff frequency  $f_\text{G, opt}/R_{\rm B} = 0.33$  is obtained for  $M=2$..  For the quaternary system,  a smaller value results again:  $f_\text{G, opt}/R_{\rm B} = 0.28$.


However,  the optimized binary system is not always better than the optimized quaternary system despite the larger eye opening,  since the noise power must also be taken into account.  This also becomes smaller with decreasing cutoff frequency.

The right graph shows the  signal-to-noise ratio gain  of the quaternary system over the binary system,

$$G_{_{M=4}} = 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{_{{\rm U},\hspace{0.05cm} M=4}} - 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{_{{\rm U}, \hspace{0.05cm}M=2}},$$

when the cutoff frequencies are chosen optimally in each case according to the left graph.  Accordingly:

  • For  $a_\star <50 \ \rm dB$,  the binary system is optimal.  For the distortion-free channel  $(a_\star = 0 \ \rm dB)$,  the SNR is about  $7 \ \rm dB$  larger than with  $M=4$.
  • In contrast,  more favorable ratios result for  $a_\star >50 \ \rm dB$  with  $M=4$.  For  $a_\star = 80 \ \rm dB$,  the signal-to-noise ratio gain is greater than  $3 \ \rm dB$  compared to  $M=2$.

Eye opening for the pseudo-ternary codes


In the chapter  "Symbolwise Coding",  the  pseudo-ternary codes  were described in general and the eye diagrams with Nyquist pulse shaping were given for them.

In the adjacent graphic you can see,  in comparison to the redundancy-free binary code  (center),  the eye diagrams – in each case without noise – for

Eye diagrams for the pseudo-ternary codes  (AMI code,  duobinary code)


The amplitude in each case is  $s_0 = 1$.  All eye diagrams are furthermore valid for a Gaussian receiver filter with cutoff frequency  $f_\text{G} \cdot T = 0.4$, resulting in the following  (normalized)  basic detection pulse values:

$$g_{0} \approx 0.68, \hspace{0.2cm} g_{1}= g_{-1} \approx 0.16, \hspace{0.2cm}\hspace{0.2cm} g_{2}= g_{-2}= \text{...} \approx 0 \hspace{0.05cm}.$$

Thus,  for the redundancy-free binary system (middle graph),  due to the intersymbol interference, we obtain for the eye opening

$${\ddot{o}(T_{\rm D})}= 2 \cdot (g_0 - 2 \cdot g_1 ) = 0.72$$
$$\Rightarrow \hspace{0.3cm} \ddot{o}_{\rm norm} = \frac{\ddot{o}(T_{\rm D})}{ 2 \cdot s_0} = 36\%$$

compared to  $\ddot{o}(T_{\rm D}) = 2$  or  $\ddot{o}_{\rm norm} = 100\%$  for the binary Nyquist system.

For the pseudo-ternary codes,  there are two eye openings each and one needs two thresholds  $E_1$  and  $E_2$  for the ternary decision.  Furthermore,  since all pseudo-ternary codes operate at the same symbol rate as the redundancy-free binary system, 

  • the basic detection pulse values  $g_\nu$  and also the noise rms value  $\sigma_d$  are the same in both cases,
  • the (half) eye opening is suitable for system optimization as well as the worst case SNR  $\rho_{\rm U} = [\ddot{o}(T_{\rm D})/2]^2 /\sigma_d^2$  and the resulting worst–case error probability  $p_{\rm U}$.


Let us now interpret the  (left)  eye diagram with  AMI coding:

  • The upper boundary of the upper eye belongs to the symbol sequence  "$\text{...} -\hspace{-0.05cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} -\hspace{-0.05cm}\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$"  $($coefficient  $a_{\nu = 0}$  italic$)$  and consequently lies at  $d_{\rm top} = g_0 - 2\cdot g_1$.
  • The lower boundary line  $d_{\rm bottom} = g_1$  goes back to the symbol sequence  "$\text{...} 0,\hspace{0.05cm} {\it 0},\hspace{0.05cm} +\hspace{-0.05cm}\hspace{-0.05cm}1 \text{...}$"  and to the sequence  "$\text{...} +\hspace{-0.05cm}\hspace{-0.05cm}1,\hspace{0.05cm} {\it 0},\hspace{0.05cm} 0\hspace{0.05cm} \text{...}$",  respectively.
  • Here it is considered that the sequence  "$\text{...} +\hspace{-0.05cm}\hspace{-0.05cm}1,\hspace{0.05cm} {\it 0},\hspace{0.05cm} +\hspace{-0.05cm}\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$"  is excluded by the AMI coding rule.  Thus,  the eye opening of the AMI code is:
$${\ddot{o}(T_{\rm D})}= d_{\rm top} - d_{\rm bottom} =g_0 - 3 \cdot g_1 = 0.20 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \ddot{o}_{\rm norm} = \frac{\ddot{o}(T_{\rm D})}{ 2 \cdot s_0} = 10\, \%.$$
  • The upper decision threshold  $E_2$  as well as the lower decision threshold  $E_1$  are at
$$E_2 = {1}/{2} \cdot (d_{\rm top} + d_{\rm bottom}) = {1}/{2} \cdot (g_0 - g_1) = 0.27 \hspace{0.05cm}, \hspace{0.2cm}E_1 = - 0.27 \hspace{0.05cm}.$$


In the  duobinary code  (right graph),  the particularly unfavorable alternating symbol sequence does not occur and one obtains for the eye opening as well as the decision thresholds:

$$d_{\rm top}= g_0, \hspace{0.2cm} d_{\rm bottom} = g_1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\ddot{o}(T_{\rm D})} = g_0 - g_1 = 0.52 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \ddot{o}_{\rm norm} = 26\, \% \hspace{0.05cm}, \hspace{0.3cm} E_2 = {1}/{2} \cdot (g_0 + g_1) = 0.42 \hspace{0.05cm}, \hspace{0.2cm}E_1 = - 0.42 \hspace{0.05cm}.$$


⇒   Note:  The degradations due to intersymbol interference in AMI and duobinary coding can also be displayed using the HTML5/JavaScript applet  "Eye Diagram and Eye Opening".  However,  the error probabilities apply only to the distortion-free channel  $(a_\star = 0 \ \rm dB)$.

Cutoff frequency optimization with pseudo-ternary coding


Considering a coaxial transmission channel and the thus necessary channel equalization,  the following statements are possible:

  • The AMI code always leads to a worse signal-to-noise ratio than the redundancy-free binary code if the overall frequency response is Gaussian.  With the characteristic cable attenuation  $a_\star = 80 \ \rm dB$,  the signal-to-noise ratio loss is about  $11 \ \rm dB$.
  • This loss is due to the fact that,  despite ternary coding,  the symbol rate is not reduced compared to the binary reference system.  This has the consequence that with the AMI code already a cutoff frequency  $f_\text{G} \cdot T < 0.36$  leads to a closed eye.
  • In contrast,  with the duobinary code a closed eye results only from  $f_\text{G} \cdot T < 0.22$.  As a result,  the optimal cutoff frequency is also smaller than with the binary system.  At 80 dB cable attenuation,  the duobinary code in combination with  $f_\text{G} \cdot T =0.28$  is  $3.3 \ \rm dB$  better than the best value with redundancy-free binary coding.


$\text{However, it has to be taken into account:}$  All results in this chapter are valid under the condition  $H_{\rm K}(f=0) = 1$.

  1. If a redundancy-free signal or the duobinary-encoded signal is to be transmitted over a DC-impermeable channel,  a complex DC recovery is required,  which is always associated with a degradation of the S/N ratio as well  [TS87][1].

  2. The AMI code is free of DC signals and can thus also be transmitted over a telephone channel   ⇒   $H_{\rm K}(f=0) = 0$.  This is the decisive reason why the AMI code is used in   ISDN  ("Integrated Services Digital Network"),  for example,  despite otherwise poor properties.


Exercises for the chapter


Exercise 3.4: Optimization of the Cutoff Frequency

Exercise 3.4Z: Eye Opening and Level Number

Exercise 3.5: Eye Opening with Pseudoternary Coding

References

  1. Tröndle, K.; Söder, G.:  Optimization of Digital Transmission Systems.  Boston – London: Artech House, 1987,  ISBN:  0-89006-225-0.