Difference between revisions of "Aufgaben:Exercise 2.3: DSB-AM Realization"
(32 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite=Modulationsverfahren/ Zweiseitenband-Amplitudenmodulation | + | {{quiz-Header|Buchseite=Modulationsverfahren/Zweiseitenband-Amplitudenmodulation |
}} | }} | ||
− | [[File: | + | [[File:EN_Mod_A_2_3.png|right|frame|Nonlinear characteristic curve <br>for DSB-AM realization]] |
− | + | In order to realize the so-called "Double-Sideband Amplitude Modulation (DSB-AM) with carrier", an amplifier with the following characteristic curve must be used: | |
− | y=g(x)=U⋅(1−e−x/U) | + | :y=g(x)=U⋅(1−e−x/U) |
− | + | *Here, x=x(t) and y=y(t) are time-dependent voltages at the input and output of the amplifier, respectively. | |
+ | *The parameter $U = 3 \ \rm V$ indicates the saturation voltage of the amplifier. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | This curve is used at the operating point $A_0 = 2\ \rm V$. This is achieved, for example, by the input signal | |
+ | :$$x(t) = A_0 + z(t) + q(t)\hspace{0.05cm}.$$ | ||
+ | Assume cosine oscillations for both the carrier and the source signal: | ||
+ | :$$ z(t) = A_{\rm T} \cdot \cos (2 \pi f_{\rm T} t),\hspace{0.2cm} A_{\rm T} = 1\,{\rm V},\hspace{0.2cm} f_{\rm T} = 30\,{\rm kHz},$$ | ||
+ | :$$ q(t) = A_{\rm N} \cdot \cos (2 \pi f_{\rm N} t),\hspace{0.2cm} A_{\rm N} = 1\,{\rm V},\hspace{0.2cm} f_{\rm N} = 3\,{\rm kHz}\hspace{0.05cm}.$$ | ||
+ | In solving this problem, use the auxiliary quantity | ||
+ | :$$w(t) = x(t) - A_0 = z(t) + q(t)\hspace{0.05cm}.$$ | ||
− | ''' | + | The nonlinear characteristic curve can be developed according to a "Taylor series" around the operating point: |
+ | :$$y(x) = y(A_0) + \frac{1}{1!} \cdot y\hspace{0.08cm}{\rm '}(A_0) \cdot (x - A_0)+ \frac{1}{2!} \cdot y\hspace{0.08cm}''(A_0) \cdot (x - A_0)^2+ | ||
+ | \frac{1}{3!} \cdot y\hspace{0.08cm}'''(A_0) \cdot (x - A_0)^3 + \text{ ...}$$ | ||
+ | The output signal can then also be represented as depending on the auxiliary quantity w(t) as follows: | ||
+ | :$$y(t) = c_0 + c_1 \cdot w(t) + c_2 \cdot w^2(t)+ c_3 \cdot w^3(t) +\text{ ...}$$ | ||
+ | *The DSB–AM signal s(t) is obtained by band-limiting y(t) to the frequency range from \text{23 kHz} to \text{37 kHz}. | ||
+ | *That is, all frequencies other than f_{\rm T}, f_{\rm T}±f_{\rm N} and f_{\rm T}±2f_{\rm N} are removed by the band-pass. | ||
− | === | + | The graph shows the characteristic curve g(x) and the approximations g_1(x), g_2(x) and g_3(x), when the Taylor series is truncated after the first, second, or third term. It can be seen that the approximation g_3(x) is indistinguishable from g(x) in the range shown. |
+ | |||
+ | |||
+ | |||
+ | |||
+ | Hints: | ||
+ | *This exercise belongs to the chapter [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]]. | ||
+ | *Reference will also be made to the chapter [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions#Description_of_nonlinear_systems|Description of nonlinear systems]] in the book "Linear and Time Invariant Systems". | ||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {In what range can the input signal x(t) vary? Give the minimum and maximum values of the auxiliary variable $w(t) = x(t) - A_0$. |
− | |type=" | + | |type="{}"} |
− | - | + | w_{\rm min} \ = \ { -2.06--1.94 } \ \text{V} |
− | + | w_{\rm max} \ = \ { 2 3% }\ \text{V} | |
+ | {Calculate the coefficients c_0 and c_1 of the Taylor series. | ||
+ | |type="{}"} | ||
+ | c_0 \ = \ { 1.46 3% } \ \text{V} | ||
+ | c_1 \ = \ { 0.513 3% } | ||
− | { | + | {What are the coefficients c_2 and c_3 of the nonlinear characteristic curve? |
|type="{}"} | |type="{}"} | ||
− | $\ | + | $c_2\ = \ { -0.088--0.084 } \ \rm V^{ -1 }$ |
− | + | $c_3\ = \ $ { 0.0095 3% } \ \rm V^{ -2 } | |
+ | {Show that a "DSB-AM with carrier" constellation results when c_3 is considered negligibly small. What is the modulation depth m? | ||
+ | |type="{}"} | ||
+ | m \ = \ { 0.335 3% } | ||
+ | {Assuming that c_3 cannot be considered negligibly small, which of the following statements are true? | ||
+ | |type="[]"} | ||
+ | - The weight of the spectral line at f_{\rm T} is unchanged. | ||
+ | + s(t) now includes Dirac delta lines at f_{\rm T} ± 2f_{\rm N}. | ||
+ | + The cubic term leads to nonlinear distortions. | ||
+ | - The cubic term leads to linear distortions. | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' From x(t) = A_0 + z(t) + q(t), with A_0 = 2\ \rm V and A_{\rm T} = A_{\rm N} = 1 \ \rm V, we get the possible range 0 \ {\rm V} ≤ x(t) ≤ 4\ \rm V. |
− | '''2 | + | *Thus, the auxiliary quantity w(t) can take values between w_{\rm min}\hspace{0.15cm}\underline{ = -2 \ \rm V} and w_{\rm max}\hspace{0.15cm}\underline{ = +2 \ \rm V}. |
− | '''3 | + | |
− | '''4 | + | |
− | '''5 | + | |
− | + | '''(2)''' The coefficient c_0 is equal to the characteristic value at the operating point. Using A_0 = 2 \ \rm V and U = 3 \ \rm V we obtain: | |
− | + | :c_0 = y(A_0) = U \cdot \left( 1 -{\rm e} ^{-A_0/U}\right) \hspace{0.15cm}\underline {= 1.460\,{\rm V}}\hspace{0.05cm}. | |
+ | *Accordingly, for the Taylor coefficient c_1: | ||
+ | :$$c_1 = y\hspace{0.06cm}'(A_0)= {\rm e} ^{-A_0/U}\hspace{0.15cm}\underline { = 0.513}\hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | |||
+ | '''(3)''' The further derivatives (n ≥ 2) are: | ||
+ | :y^{(n)}(A_0)= \frac{(-1)^{n-1}}{U^{n-1}} \cdot {\rm e} ^{-A_0/U} \hspace{0.05cm}. | ||
+ | *This results in the following coefficients: | ||
+ | : c_2 = \frac{1}{2!} \cdot y^{(2)}(A_0)= \frac{1}{2U} \cdot {\rm e}^{-A_0/U} \hspace{0.15cm}\underline {= -0.086\,{\rm V^{-1}}}\hspace{0.05cm}, | ||
+ | :c_3 = \frac{1}{3!} \cdot y^{(3)}(A_0)= \frac{1}{6U^2} \cdot {\rm e}^{-A_0/U}\hspace{0.15cm}\underline { = 0.0095\,{\rm V^{-2}}}\hspace{0.05cm}. | ||
+ | |||
+ | |||
+ | '''(4)''' Setting c_3 = 0, the output signal of the amplifier is: | ||
+ | :y(t) = c_0 + c_1 \cdot (z(t) + q(t)) + c_2 \cdot (z^2(t) + q^2(t) + 2 \cdot z(t) \cdot q(t))\hspace{0.05cm}. | ||
+ | *Thus, after the band-pass, the following signal components remain: | ||
+ | :$$s(t) = c_1 \cdot z(t) + 2 \cdot c_2 \cdot z(t) \cdot q(t) | ||
+ | = \left[c_1 \cdot A_{\rm T} + 2 \cdot c_2 \cdot A_{\rm T} \cdot A_{\rm N} \cdot \cos(\omega_{\rm N} t)\right] \cdot \cos(\omega_{\rm T} t)\hspace{0.05cm}.$$ | ||
+ | *The modulation depth is then determined as the quotient of the "amplitude of the message oscillation" over the "amplitude of the carrier": | ||
+ | :m = \frac{2 \cdot |c_2| \cdot A_{\rm T} \cdot A_{\rm N}}{|c_1| \cdot A_{\rm T}} = \frac{2 \cdot |c_2| \cdot A_{\rm N}}{|c_1| }= \frac{2 \cdot 0.086 \cdot 1\,{\rm V}}{0.513 }\hspace{0.15cm}\underline { = 0.335}\hspace{0.05cm}. | ||
+ | |||
+ | |||
+ | |||
+ | '''(5)''' <u>Answers 2 and 3</u> are correct: | ||
+ | *Considering the cubic part, y(t) includes the following other components: | ||
+ | :$$y_3(t) = c_3 \cdot (z(t) + q(t))^3 | ||
+ | = c_3 \cdot z^3(t) + 3 \cdot c_3 \cdot z^2(t) \cdot q(t)+ 3 \cdot c_3 \cdot z(t) \cdot q^2(t) + c_3 \cdot q^3(t) \hspace{0.05cm}.$$ | ||
+ | *The first term results in components at f_{\rm T} and 3f_{\rm T}, and the last term results in components at f_{\rm N} and 3f_{\rm N}. | ||
+ | *The second term gives a component at f_{\rm N} and others at 2f_{\rm T} ± f_{\rm N}: | ||
+ | :3 \cdot c_3 \cdot z^2(t) \cdot q(t)= {3}/{2 } \cdot A_{\rm T}^2 \cdot A_{\rm N} \cdot \left[ \cos(\omega_{\rm N} t) + \cos(2\omega_{\rm T} t) \cdot \cos(\omega_{\rm N} t)\right] \hspace{0.05cm}. | ||
+ | *Accordingly, the third summand in the above equation leads to | ||
+ | :3 \cdot c_3 \cdot z(t) \cdot q^2(t)= {3}/{2 } \cdot A_{\rm T} \cdot A_{\rm N}^2 \cdot \left[ \cos(\omega_{\rm T} t) + \cos(\omega_{\rm T} t)\cdot \cos(2 \omega_{\rm N} t)\right] \hspace{0.05cm}. | ||
+ | *Thus, within the frequency range from \text{23 kHz} to \text{37 kHz}, there is indeed a change in the spectral line at f_{\rm T} <br>and new Dirac delta lines are formed at f_{\rm T} ± 2f_{\rm N}, i.e., at \text{24 kHz} and \text{36 kHz}. | ||
+ | *The resulting distortions are thus nonlinear ⇒ Answer 3 ist correct and Answer 4 is wrong. | ||
+ | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Modulation Methods: Exercises|^2.1 Double Sideband Amplitude Modulation^]] |
Latest revision as of 16:18, 18 January 2023
In order to realize the so-called "Double-Sideband Amplitude Modulation \text{(DSB-AM)} with carrier", an amplifier with the following characteristic curve must be used:
- y = g(x) = U \cdot \left( 1 -{\rm e} ^{-x/U}\right)
- Here, x = x(t) and y = y(t) are time-dependent voltages at the input and output of the amplifier, respectively.
- The parameter U = 3 \ \rm V indicates the saturation voltage of the amplifier.
This curve is used at the operating point A_0 = 2\ \rm V. This is achieved, for example, by the input signal
- x(t) = A_0 + z(t) + q(t)\hspace{0.05cm}.
Assume cosine oscillations for both the carrier and the source signal:
- z(t) = A_{\rm T} \cdot \cos (2 \pi f_{\rm T} t),\hspace{0.2cm} A_{\rm T} = 1\,{\rm V},\hspace{0.2cm} f_{\rm T} = 30\,{\rm kHz},
- q(t) = A_{\rm N} \cdot \cos (2 \pi f_{\rm N} t),\hspace{0.2cm} A_{\rm N} = 1\,{\rm V},\hspace{0.2cm} f_{\rm N} = 3\,{\rm kHz}\hspace{0.05cm}.
In solving this problem, use the auxiliary quantity
- w(t) = x(t) - A_0 = z(t) + q(t)\hspace{0.05cm}.
The nonlinear characteristic curve can be developed according to a "Taylor series" around the operating point:
- y(x) = y(A_0) + \frac{1}{1!} \cdot y\hspace{0.08cm}{\rm '}(A_0) \cdot (x - A_0)+ \frac{1}{2!} \cdot y\hspace{0.08cm}''(A_0) \cdot (x - A_0)^2+ \frac{1}{3!} \cdot y\hspace{0.08cm}'''(A_0) \cdot (x - A_0)^3 + \text{ ...}
The output signal can then also be represented as depending on the auxiliary quantity w(t) as follows:
- y(t) = c_0 + c_1 \cdot w(t) + c_2 \cdot w^2(t)+ c_3 \cdot w^3(t) +\text{ ...}
- The DSB–AM signal s(t) is obtained by band-limiting y(t) to the frequency range from \text{23 kHz} to \text{37 kHz}.
- That is, all frequencies other than f_{\rm T}, f_{\rm T}±f_{\rm N} and f_{\rm T}±2f_{\rm N} are removed by the band-pass.
The graph shows the characteristic curve g(x) and the approximations g_1(x), g_2(x) and g_3(x), when the Taylor series is truncated after the first, second, or third term. It can be seen that the approximation g_3(x) is indistinguishable from g(x) in the range shown.
Hints:
- This exercise belongs to the chapter Double-Sideband Amplitude Modulation.
- Reference will also be made to the chapter Description of nonlinear systems in the book "Linear and Time Invariant Systems".
Questions
Solution
- Thus, the auxiliary quantity w(t) can take values between w_{\rm min}\hspace{0.15cm}\underline{ = -2 \ \rm V} and w_{\rm max}\hspace{0.15cm}\underline{ = +2 \ \rm V}.
(2) The coefficient c_0 is equal to the characteristic value at the operating point. Using A_0 = 2 \ \rm V and U = 3 \ \rm V we obtain:
- c_0 = y(A_0) = U \cdot \left( 1 -{\rm e} ^{-A_0/U}\right) \hspace{0.15cm}\underline {= 1.460\,{\rm V}}\hspace{0.05cm}.
- Accordingly, for the Taylor coefficient c_1:
- c_1 = y\hspace{0.06cm}'(A_0)= {\rm e} ^{-A_0/U}\hspace{0.15cm}\underline { = 0.513}\hspace{0.05cm}.
(3) The further derivatives (n ≥ 2) are:
- y^{(n)}(A_0)= \frac{(-1)^{n-1}}{U^{n-1}} \cdot {\rm e} ^{-A_0/U} \hspace{0.05cm}.
- This results in the following coefficients:
- c_2 = \frac{1}{2!} \cdot y^{(2)}(A_0)= \frac{1}{2U} \cdot {\rm e}^{-A_0/U} \hspace{0.15cm}\underline {= -0.086\,{\rm V^{-1}}}\hspace{0.05cm},
- c_3 = \frac{1}{3!} \cdot y^{(3)}(A_0)= \frac{1}{6U^2} \cdot {\rm e}^{-A_0/U}\hspace{0.15cm}\underline { = 0.0095\,{\rm V^{-2}}}\hspace{0.05cm}.
(4) Setting c_3 = 0, the output signal of the amplifier is:
- y(t) = c_0 + c_1 \cdot (z(t) + q(t)) + c_2 \cdot (z^2(t) + q^2(t) + 2 \cdot z(t) \cdot q(t))\hspace{0.05cm}.
- Thus, after the band-pass, the following signal components remain:
- s(t) = c_1 \cdot z(t) + 2 \cdot c_2 \cdot z(t) \cdot q(t) = \left[c_1 \cdot A_{\rm T} + 2 \cdot c_2 \cdot A_{\rm T} \cdot A_{\rm N} \cdot \cos(\omega_{\rm N} t)\right] \cdot \cos(\omega_{\rm T} t)\hspace{0.05cm}.
- The modulation depth is then determined as the quotient of the "amplitude of the message oscillation" over the "amplitude of the carrier":
- m = \frac{2 \cdot |c_2| \cdot A_{\rm T} \cdot A_{\rm N}}{|c_1| \cdot A_{\rm T}} = \frac{2 \cdot |c_2| \cdot A_{\rm N}}{|c_1| }= \frac{2 \cdot 0.086 \cdot 1\,{\rm V}}{0.513 }\hspace{0.15cm}\underline { = 0.335}\hspace{0.05cm}.
(5) Answers 2 and 3 are correct:
- Considering the cubic part, y(t) includes the following other components:
- y_3(t) = c_3 \cdot (z(t) + q(t))^3 = c_3 \cdot z^3(t) + 3 \cdot c_3 \cdot z^2(t) \cdot q(t)+ 3 \cdot c_3 \cdot z(t) \cdot q^2(t) + c_3 \cdot q^3(t) \hspace{0.05cm}.
- The first term results in components at f_{\rm T} and 3f_{\rm T}, and the last term results in components at f_{\rm N} and 3f_{\rm N}.
- The second term gives a component at f_{\rm N} and others at 2f_{\rm T} ± f_{\rm N}:
- 3 \cdot c_3 \cdot z^2(t) \cdot q(t)= {3}/{2 } \cdot A_{\rm T}^2 \cdot A_{\rm N} \cdot \left[ \cos(\omega_{\rm N} t) + \cos(2\omega_{\rm T} t) \cdot \cos(\omega_{\rm N} t)\right] \hspace{0.05cm}.
- Accordingly, the third summand in the above equation leads to
- 3 \cdot c_3 \cdot z(t) \cdot q^2(t)= {3}/{2 } \cdot A_{\rm T} \cdot A_{\rm N}^2 \cdot \left[ \cos(\omega_{\rm T} t) + \cos(\omega_{\rm T} t)\cdot \cos(2 \omega_{\rm N} t)\right] \hspace{0.05cm}.
- Thus, within the frequency range from \text{23 kHz} to \text{37 kHz}, there is indeed a change in the spectral line at f_{\rm T}
and new Dirac delta lines are formed at f_{\rm T} ± 2f_{\rm N}, i.e., at \text{24 kHz} and \text{36 kHz}. - The resulting distortions are thus nonlinear ⇒ Answer 3 ist correct and Answer 4 is wrong.