Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.3: DSB-AM Realization"

From LNTwww
 
(32 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/ Zweiseitenband-Amplitudenmodulation
+
{{quiz-Header|Buchseite=Modulationsverfahren/Zweiseitenband-Amplitudenmodulation
 
}}
 
}}
  
[[File:P_ID1000__Mod_A_2_3.png|right|]]
+
[[File:EN_Mod_A_2_3.png|right|frame|Nonlinear characteristic curve <br>for DSB-AM realization]]
Zur Realisierung der so genannten „ZSB–AM mit Träger” soll ein Verstärker mit der Kennlinie
+
In order to realize the so-called&nbsp; "Double-Sideband Amplitude Modulation&nbsp; (DSB-AM)&nbsp; with carrier",&nbsp; an amplifier with the following characteristic curve must be used:
y=g(x)=U(1ex/U)
+
:y=g(x)=U(1ex/U)
verwendet werden. Hierbei sind x=x(t) und y=y(t) als zeitabhängige Spannungen am Eingang bzw. Ausgang des Verstärkers zu verstehen. Der Parameter U=3V gibt die Sättigungsspannung des Verstärkers an.
+
*Here, &nbsp;x=x(t)&nbsp; and &nbsp;y=y(t)&nbsp; are time-dependent voltages at the input and output of the amplifier,&nbsp; respectively. &nbsp;
 +
*The parameter &nbsp;$U = 3 \ \rm V$&nbsp; indicates the saturation voltage of the amplifier.
  
Diese Kennlinie wird im Arbeitspunkt A0=2V betrieben. Dies erreicht man beispielsweise durch das Eingangssignal
 
x(t)=A0+z(t)+q(t).
 
Setzen Sie für das Trägersignal und das Quellensignal jeweils Cosinusschwingungen voraus:
 
z(t)=ATcos(2πfTt),AT=1V,fT=30kHz,
 
q(t)=ANcos(2πfNt),AN=1V,fN=3kHz.
 
Verwenden Sie bei der Lösung dieser Aufgabe die Hilfsgröße
 
w(t)=x(t)A0=z(t)+q(t).
 
Die nichtlineare Kennlinie kann entsprechend einer ''Taylorreihe'' um den Arbeitspunkt entwickelt werden:
 
y(x)=y(A0)+11!y(A0)(xA0)+12!y
 
+  \frac{1}{3!} \cdot y\hspace{0.08cm}'''(A_0) \cdot (x - A_0)^3 + ...
 
In Abhängigkeit der Hilfsgröße w(t) kann das Ausgangssignal dann auch wie folgt dargestellt werden:
 
y(t) = c_0 + c_1 \cdot w(t) + c_2 \cdot w^2(t)+ c_3 \cdot w^3(t) + ...
 
Das ZSB–AM–Signal s(t) erhält man durch die Bandbegrenzung von y(t) auf den Frequenzbereich von \text{23 kHz} bis \text{37 kHz}. Das heißt: Alle anderen Frequenzen als f_T, f_T±f_N sowie f_T±2f_N werden durch den Bandpass entfernt.
 
  
Die obige Grafik zeigt die Kennlinie $g(x)$ sowie die Näherungen $g_1(x)$, $g_2(x) und g_3(x)$, wenn man die Taylorreihe nach dem ersten, zweiten oder dritten Term abbricht. Man erkennt, dass die Näherung $g_3(x) im dargestellten Bereich innerhalb der Zeichengenauigkeit von g(x)$ nicht mehr zu unterscheiden ist.
+
This curve is used at the operating point &nbsp;$A_0 = 2\ \rm  V$.&nbsp; This is achieved,&nbsp; for example,&nbsp; by the input signal
 +
:$$x(t) = A_0 + z(t) + q(t)\hspace{0.05cm}.$$
 +
Assume cosine oscillations for both the carrier and the source signal:
 +
:$$ z(t)  = A_{\rm T} \cdot \cos (2 \pi f_{\rm T} t),\hspace{0.2cm} A_{\rm T} = 1\,{\rm V},\hspace{0.2cm} f_{\rm T} = 30\,{\rm kHz},$$
 +
:$$ q(t) =  A_{\rm N} \cdot \cos (2 \pi f_{\rm N} t),\hspace{0.2cm} A_{\rm N} = 1\,{\rm V},\hspace{0.2cm} f_{\rm N} = 3\,{\rm kHz}\hspace{0.05cm}.$$
 +
In solving this problem,&nbsp; use the auxiliary quantity
 +
:$$w(t) = x(t) - A_0 = z(t) + q(t)\hspace{0.05cm}.$$
  
'''Hinweis:''' Diese Aufgabe bezieht sich auf den Theorieteil von [http://en.lntwww.de/Modulationsverfahren/Zweiseitenband-Amplitudenmodulation Kapitel 2.1].  
+
The nonlinear characteristic curve can be developed according to a&nbsp; "Taylor series"&nbsp; around the operating point:
 +
:$$y(x)  = y(A_0) + \frac{1}{1!} \cdot y\hspace{0.08cm}{\rm '}(A_0) \cdot (x - A_0)+ \frac{1}{2!} \cdot y\hspace{0.08cm}''(A_0) \cdot (x - A_0)^2+
 +
  \frac{1}{3!} \cdot y\hspace{0.08cm}'''(A_0) \cdot (x - A_0)^3 + \text{ ...}$$
 +
The output signal can then also be represented as depending on the auxiliary quantity &nbsp;w(t)&nbsp; as follows:
 +
:$$y(t) = c_0 + c_1 \cdot w(t) + c_2 \cdot w^2(t)+ c_3 \cdot w^3(t) +\text{ ...}$$
 +
*The DSB–AM signal &nbsp;s(t)&nbsp; is obtained by band-limiting&nbsp;y(t)&nbsp; to the frequency range from &nbsp;\text{23 kHz}&nbsp; to &nbsp;\text{37 kHz}.&nbsp;
 +
*That is,&nbsp; all frequencies other than &nbsp;f_{\rm T}, &nbsp;f_{\rm T}±f_{\rm N}&nbsp; and &nbsp;f_{\rm T}±2f_{\rm N}&nbsp;  are removed by the band-pass.
  
  
===Fragebogen===
+
The graph shows the characteristic curve &nbsp;g(x)&nbsp; and the approximations &nbsp;g_1(x), &nbsp;g_2(x)&nbsp; and &nbsp;g_3(x), when the Taylor series is truncated after the first, second, or third term.&nbsp;  It can be seen that the approximation &nbsp;g_3(x)&nbsp;  is indistinguishable from &nbsp;g(x)&nbsp; in the range shown.
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]].
 +
*Reference will also be made to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions#Description_of_nonlinear_systems|Description of nonlinear systems]]&nbsp; in the book "Linear and Time Invariant Systems".
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{In what range can the input signal &nbsp;x(t)&nbsp;vary?&nbsp;Give the minimum and maximum values of the auxiliary variable  &nbsp;$w(t) = x(t) - A_0$.
|type="[]"}
+
|type="{}"}
- Falsch
+
w_{\rm min} \ = \ { -2.06--1.94 } \ \text{V}
+ Richtig
+
w_{\rm max} \ = \ { 2 3% }\ \text{V}
  
 +
{Calculate the coefficients &nbsp;c_0&nbsp; and &nbsp;c_1&nbsp; of the Taylor series.
 +
|type="{}"}
 +
c_0 \ = \ { 1.46 3% } \ \text{V}
 +
c_1 \ = \ { 0.513 3% }
  
{Input-Box Frage
+
{What are the coefficients &nbsp;c_2&nbsp; and &nbsp;c_3&nbsp; of the nonlinear characteristic curve?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$c_2\ = \ { -0.088--0.084 }  \ \rm V^{ -1 }$
 
+
$c_3\ = \ $ { 0.0095 3% } \ \rm V^{ -2 }
  
 +
{Show that a&nbsp; "DSB-AM with carrier"&nbsp; constellation results when &nbsp;c_3&nbsp; is considered negligibly small.&nbsp;  What is the modulation depth &nbsp;m?
 +
|type="{}"}
 +
m \ = \ { 0.335 3% }
  
 +
{Assuming that &nbsp;c_3&nbsp; cannot be considered negligibly small,&nbsp; which of the following statements are true?
 +
|type="[]"}
 +
- The weight of the spectral line at&nbsp;f_{\rm T}&nbsp; is unchanged.
 +
+ s(t)&nbsp; now includes Dirac delta lines at&nbsp;f_{\rm T} ± 2f_{\rm N}.
 +
+ The cubic term leads to nonlinear distortions.
 +
- The cubic term leads to linear distortions.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; From&nbsp; x(t) = A_0 + z(t) + q(t),&nbsp; with &nbsp; A_0 = 2\ \rm  V&nbsp; and &nbsp; A_{\rm T} = A_{\rm N} = 1 \ \rm  V,&nbsp; we get the possible range&nbsp; 0 \ {\rm V} ≤ x(t) ≤ 4\ \rm  V.
'''2.'''
+
*Thus,&nbsp; the auxiliary quantity&nbsp; w(t)&nbsp; can take values between&nbsp; w_{\rm min}\hspace{0.15cm}\underline{ = -2 \ \rm V}&nbsp; and&nbsp; w_{\rm max}\hspace{0.15cm}\underline{ = +2 \ \rm V}.
'''3.'''
+
 
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
'''(2)'''&nbsp; The coefficient&nbsp; c_0&nbsp; is equal to the characteristic value at the operating point.&nbsp; Using&nbsp; A_0 = 2 \ \rm V&nbsp; and&nbsp; U = 3 \ \rm V&nbsp; we obtain:
'''7.'''
+
:c_0 = y(A_0) = U \cdot \left( 1 -{\rm e} ^{-A_0/U}\right) \hspace{0.15cm}\underline {= 1.460\,{\rm V}}\hspace{0.05cm}.
 +
*Accordingly,&nbsp; for the Taylor coefficient&nbsp; c_1:
 +
:$$c_1 = y\hspace{0.06cm}'(A_0)= {\rm e} ^{-A_0/U}\hspace{0.15cm}\underline { = 0.513}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The further derivatives &nbsp; (n ≥ 2)&nbsp; are:
 +
:y^{(n)}(A_0)= \frac{(-1)^{n-1}}{U^{n-1}} \cdot {\rm e} ^{-A_0/U} \hspace{0.05cm}.
 +
*This results in the following coefficients:
 +
: c_2  =  \frac{1}{2!} \cdot y^{(2)}(A_0)= \frac{1}{2U} \cdot {\rm e}^{-A_0/U} \hspace{0.15cm}\underline {= -0.086\,{\rm V^{-1}}}\hspace{0.05cm},
 +
:c_3  =  \frac{1}{3!} \cdot y^{(3)}(A_0)= \frac{1}{6U^2} \cdot {\rm e}^{-A_0/U}\hspace{0.15cm}\underline { = 0.0095\,{\rm V^{-2}}}\hspace{0.05cm}.
 +
 
 +
 
 +
'''(4)'''&nbsp; Setting&nbsp; c_3 = 0,&nbsp; the output signal of the amplifier is:
 +
:y(t) = c_0 + c_1 \cdot (z(t) + q(t)) + c_2 \cdot (z^2(t) + q^2(t) + 2 \cdot z(t) \cdot q(t))\hspace{0.05cm}.
 +
*Thus,&nbsp; after the band-pass,&nbsp; the following signal components remain:
 +
:$$s(t)  =  c_1 \cdot z(t) + 2 \cdot c_2 \cdot z(t) \cdot q(t)
 +
  =  \left[c_1 \cdot A_{\rm T} + 2 \cdot c_2 \cdot A_{\rm T} \cdot A_{\rm N} \cdot \cos(\omega_{\rm N} t)\right] \cdot \cos(\omega_{\rm T} t)\hspace{0.05cm}.$$
 +
*The modulation depth is then determined as the quotient of the&nbsp; "amplitude of the message oscillation"&nbsp; over the "amplitude of the carrier":
 +
:m = \frac{2 \cdot |c_2| \cdot A_{\rm T} \cdot A_{\rm N}}{|c_1| \cdot A_{\rm T}} = \frac{2 \cdot |c_2| \cdot A_{\rm N}}{|c_1| }= \frac{2 \cdot 0.086 \cdot 1\,{\rm V}}{0.513 }\hspace{0.15cm}\underline { = 0.335}\hspace{0.05cm}.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; <u>Answers 2 and 3</u>&nbsp; are correct:
 +
*Considering the cubic part,&nbsp; y(t)&nbsp; includes the following other components:
 +
:$$y_3(t)  =  c_3 \cdot (z(t) + q(t))^3
 +
=  c_3 \cdot z^3(t) + 3 \cdot c_3 \cdot z^2(t) \cdot q(t)+ 3 \cdot c_3 \cdot z(t) \cdot q^2(t) + c_3 \cdot q^3(t) \hspace{0.05cm}.$$
 +
*The first term results in components at&nbsp; f_{\rm T}&nbsp; and&nbsp; 3f_{\rm T}, and the last term results in components at&nbsp; f_{\rm N}&nbsp; and&nbsp; 3f_{\rm N}.&nbsp;
 +
*The second term gives a component at &nbsp; f_{\rm N}&nbsp; and others at&nbsp; 2f_{\rm T} ± f_{\rm N}:
 +
:3 \cdot c_3 \cdot z^2(t) \cdot q(t)= {3}/{2 } \cdot A_{\rm T}^2 \cdot A_{\rm N} \cdot \left[ \cos(\omega_{\rm N} t) + \cos(2\omega_{\rm T} t) \cdot \cos(\omega_{\rm N} t)\right] \hspace{0.05cm}.
 +
*Accordingly, the third summand in the above equation leads to
 +
:3 \cdot c_3 \cdot z(t) \cdot q^2(t)= {3}/{2 }  \cdot A_{\rm T} \cdot A_{\rm N}^2 \cdot \left[ \cos(\omega_{\rm T} t) + \cos(\omega_{\rm T} t)\cdot \cos(2 \omega_{\rm N} t)\right] \hspace{0.05cm}.
 +
*Thus,&nbsp; within the frequency range from&nbsp; \text{23 kHz}&nbsp; to&nbsp; \text{37 kHz},&nbsp; there is indeed a change in the spectral line at&nbsp; f_{\rm T}&nbsp; <br>and new Dirac delta lines are formed at &nbsp; f_{\rm T} ± 2f_{\rm N},&nbsp; i.e.,&nbsp; at &nbsp; \text{24 kHz}&nbsp; and&nbsp; \text{36 kHz}.  
 +
*The resulting distortions are thus nonlinear&nbsp; &rArr; &nbsp; Answer 3 ist correct and Answer 4 is wrong.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^2.1 Zweiseitenband-Amplitudenmodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.1 Double Sideband Amplitude Modulation^]]

Latest revision as of 16:18, 18 January 2023

Nonlinear characteristic curve
for DSB-AM realization

In order to realize the so-called  "Double-Sideband Amplitude Modulation  \text{(DSB-AM)}  with carrier",  an amplifier with the following characteristic curve must be used:

y = g(x) = U \cdot \left( 1 -{\rm e} ^{-x/U}\right)
  • Here,  x = x(t)  and  y = y(t)  are time-dependent voltages at the input and output of the amplifier,  respectively.  
  • The parameter  U = 3 \ \rm V  indicates the saturation voltage of the amplifier.


This curve is used at the operating point  A_0 = 2\ \rm V.  This is achieved,  for example,  by the input signal

x(t) = A_0 + z(t) + q(t)\hspace{0.05cm}.

Assume cosine oscillations for both the carrier and the source signal:

z(t) = A_{\rm T} \cdot \cos (2 \pi f_{\rm T} t),\hspace{0.2cm} A_{\rm T} = 1\,{\rm V},\hspace{0.2cm} f_{\rm T} = 30\,{\rm kHz},
q(t) = A_{\rm N} \cdot \cos (2 \pi f_{\rm N} t),\hspace{0.2cm} A_{\rm N} = 1\,{\rm V},\hspace{0.2cm} f_{\rm N} = 3\,{\rm kHz}\hspace{0.05cm}.

In solving this problem,  use the auxiliary quantity

w(t) = x(t) - A_0 = z(t) + q(t)\hspace{0.05cm}.

The nonlinear characteristic curve can be developed according to a  "Taylor series"  around the operating point:

y(x) = y(A_0) + \frac{1}{1!} \cdot y\hspace{0.08cm}{\rm '}(A_0) \cdot (x - A_0)+ \frac{1}{2!} \cdot y\hspace{0.08cm}''(A_0) \cdot (x - A_0)^2+ \frac{1}{3!} \cdot y\hspace{0.08cm}'''(A_0) \cdot (x - A_0)^3 + \text{ ...}

The output signal can then also be represented as depending on the auxiliary quantity  w(t)  as follows:

y(t) = c_0 + c_1 \cdot w(t) + c_2 \cdot w^2(t)+ c_3 \cdot w^3(t) +\text{ ...}
  • The DSB–AM signal  s(t)  is obtained by band-limiting y(t)  to the frequency range from  \text{23 kHz}  to  \text{37 kHz}
  • That is,  all frequencies other than  f_{\rm T},  f_{\rm T}±f_{\rm N}  and  f_{\rm T}±2f_{\rm N}  are removed by the band-pass.


The graph shows the characteristic curve  g(x)  and the approximations  g_1(x),  g_2(x)  and  g_3(x), when the Taylor series is truncated after the first, second, or third term.  It can be seen that the approximation  g_3(x)  is indistinguishable from  g(x)  in the range shown.



Hints:


Questions

1

In what range can the input signal  x(t) vary? Give the minimum and maximum values of the auxiliary variable  w(t) = x(t) - A_0.

w_{\rm min} \ = \

\ \text{V}
w_{\rm max} \ = \

\ \text{V}

2

Calculate the coefficients  c_0  and  c_1  of the Taylor series.

c_0 \ = \

\ \text{V}
c_1 \ = \

3

What are the coefficients  c_2  and  c_3  of the nonlinear characteristic curve?

c_2\ = \

\ \rm V^{ -1 }
c_3\ = \

\ \rm V^{ -2 }

4

Show that a  "DSB-AM with carrier"  constellation results when  c_3  is considered negligibly small.  What is the modulation depth  m?

m \ = \

5

Assuming that  c_3  cannot be considered negligibly small,  which of the following statements are true?

The weight of the spectral line at f_{\rm T}  is unchanged.
s(t)  now includes Dirac delta lines at f_{\rm T} ± 2f_{\rm N}.
The cubic term leads to nonlinear distortions.
The cubic term leads to linear distortions.


Solution

(1)  From  x(t) = A_0 + z(t) + q(t),  with   A_0 = 2\ \rm V  and   A_{\rm T} = A_{\rm N} = 1 \ \rm V,  we get the possible range  0 \ {\rm V} ≤ x(t) ≤ 4\ \rm V.

  • Thus,  the auxiliary quantity  w(t)  can take values between  w_{\rm min}\hspace{0.15cm}\underline{ = -2 \ \rm V}  and  w_{\rm max}\hspace{0.15cm}\underline{ = +2 \ \rm V}.


(2)  The coefficient  c_0  is equal to the characteristic value at the operating point.  Using  A_0 = 2 \ \rm V  and  U = 3 \ \rm V  we obtain:

c_0 = y(A_0) = U \cdot \left( 1 -{\rm e} ^{-A_0/U}\right) \hspace{0.15cm}\underline {= 1.460\,{\rm V}}\hspace{0.05cm}.
  • Accordingly,  for the Taylor coefficient  c_1:
c_1 = y\hspace{0.06cm}'(A_0)= {\rm e} ^{-A_0/U}\hspace{0.15cm}\underline { = 0.513}\hspace{0.05cm}.


(3)  The further derivatives   (n ≥ 2)  are:

y^{(n)}(A_0)= \frac{(-1)^{n-1}}{U^{n-1}} \cdot {\rm e} ^{-A_0/U} \hspace{0.05cm}.
  • This results in the following coefficients:
c_2 = \frac{1}{2!} \cdot y^{(2)}(A_0)= \frac{1}{2U} \cdot {\rm e}^{-A_0/U} \hspace{0.15cm}\underline {= -0.086\,{\rm V^{-1}}}\hspace{0.05cm},
c_3 = \frac{1}{3!} \cdot y^{(3)}(A_0)= \frac{1}{6U^2} \cdot {\rm e}^{-A_0/U}\hspace{0.15cm}\underline { = 0.0095\,{\rm V^{-2}}}\hspace{0.05cm}.


(4)  Setting  c_3 = 0,  the output signal of the amplifier is:

y(t) = c_0 + c_1 \cdot (z(t) + q(t)) + c_2 \cdot (z^2(t) + q^2(t) + 2 \cdot z(t) \cdot q(t))\hspace{0.05cm}.
  • Thus,  after the band-pass,  the following signal components remain:
s(t) = c_1 \cdot z(t) + 2 \cdot c_2 \cdot z(t) \cdot q(t) = \left[c_1 \cdot A_{\rm T} + 2 \cdot c_2 \cdot A_{\rm T} \cdot A_{\rm N} \cdot \cos(\omega_{\rm N} t)\right] \cdot \cos(\omega_{\rm T} t)\hspace{0.05cm}.
  • The modulation depth is then determined as the quotient of the  "amplitude of the message oscillation"  over the "amplitude of the carrier":
m = \frac{2 \cdot |c_2| \cdot A_{\rm T} \cdot A_{\rm N}}{|c_1| \cdot A_{\rm T}} = \frac{2 \cdot |c_2| \cdot A_{\rm N}}{|c_1| }= \frac{2 \cdot 0.086 \cdot 1\,{\rm V}}{0.513 }\hspace{0.15cm}\underline { = 0.335}\hspace{0.05cm}.


(5)  Answers 2 and 3  are correct:

  • Considering the cubic part,  y(t)  includes the following other components:
y_3(t) = c_3 \cdot (z(t) + q(t))^3 = c_3 \cdot z^3(t) + 3 \cdot c_3 \cdot z^2(t) \cdot q(t)+ 3 \cdot c_3 \cdot z(t) \cdot q^2(t) + c_3 \cdot q^3(t) \hspace{0.05cm}.
  • The first term results in components at  f_{\rm T}  and  3f_{\rm T}, and the last term results in components at  f_{\rm N}  and  3f_{\rm N}
  • The second term gives a component at   f_{\rm N}  and others at  2f_{\rm T} ± f_{\rm N}:
3 \cdot c_3 \cdot z^2(t) \cdot q(t)= {3}/{2 } \cdot A_{\rm T}^2 \cdot A_{\rm N} \cdot \left[ \cos(\omega_{\rm N} t) + \cos(2\omega_{\rm T} t) \cdot \cos(\omega_{\rm N} t)\right] \hspace{0.05cm}.
  • Accordingly, the third summand in the above equation leads to
3 \cdot c_3 \cdot z(t) \cdot q^2(t)= {3}/{2 } \cdot A_{\rm T} \cdot A_{\rm N}^2 \cdot \left[ \cos(\omega_{\rm T} t) + \cos(\omega_{\rm T} t)\cdot \cos(2 \omega_{\rm N} t)\right] \hspace{0.05cm}.
  • Thus,  within the frequency range from  \text{23 kHz}  to  \text{37 kHz},  there is indeed a change in the spectral line at  f_{\rm T} 
    and new Dirac delta lines are formed at   f_{\rm T} ± 2f_{\rm N},  i.e.,  at   \text{24 kHz}  and  \text{36 kHz}.
  • The resulting distortions are thus nonlinear  ⇒   Answer 3 ist correct and Answer 4 is wrong.