Difference between revisions of "Aufgaben:Exercise 2.11: Envelope Demodulation of an SSB Signal"

From LNTwww
m
 
(35 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Einseitenbandmodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Single-Sideband_Modulation
 
}}
 
}}
  
[[File:P_ID1047__Mod_A_2_10.png|right|]]
+
[[File:P_ID1047__Mod_A_2_10.png|right|frame|(Normalized) envelope in <br>Single-sideband modulation]]
Wir betrachten die Übertragung des Cosinussignals
+
Let us consider the transmission of the cosine signal
$$ q(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t)$$
+
:$$ q(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t)$$
gemäß dem Modulationsverfahren „OSB–AM mit Träger”. Beim Empfänger wird das hochfrequente Signal mittels eines Hüllkurvendemodulators in den NF-Bereich zurückgesetzt
+
according to the modulation method&nbsp; $\rm USB–AM$&nbsp; ("upper-sideband amplitude modulation")&nbsp; with carrier.&nbsp; At the receiver,&nbsp; the high frequency range (HF) is reset to the low frquency range (LF) with an &nbsp; [[Modulation_Methods/Envelope_Demodulation|envelope demodulator]].
  
Der Kanal wird als ideal vorausgesetzt, so dass $r(t) = s(t)$ gilt. Mit dem Seitenband–zu–Träger–Verhältnis
+
The channel is assumed to be ideal such that the received signal  &nbsp;$r(t)$&nbsp; is identical to the transmitted signal &nbsp;$s(t)$&nbsp;.&nbsp; With the sideband-to-carrier ratio
$$ \mu = \frac{A_{\rm N}}{2 \cdot A_{\rm T}}$$
+
:$$ \mu = \frac{A_{\rm N}}{2 \cdot A_{\rm T}}$$
kann für das äquivalente TP–Signal auch geschrieben werden:
+
the equivalent low-pass signal&nbsp; (German:&nbsp; "äquivalentes Tiefpass-Signal" &nbsp; &rArr; &nbsp; subscript:&nbsp; "TP")&nbsp; can be written as:
$$r_{\rm TP}(t) = A_{\rm T} \cdot \left( 1 + \mu \cdot {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm N}\cdot \hspace{0.03cm}\hspace{0.03cm}t} \right) \hspace{0.05cm}$$
+
:$$r_{\rm TP}(t) = A_{\rm T} \cdot \left( 1 + \mu \cdot {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm N}\cdot \hspace{0.03cm}\hspace{0.03cm}t} \right) \hspace{0.05cm}$$
Die Hüllkurve – also der Betrag dieses komplexen Signals – kann durch geometrische Überlegungen ermittelt werden. Man erhält abhängig vom Parameter $μ$:
 
$$a(t ) = A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu \cdot \cos(\omega_{\rm N} \cdot t)}\hspace{0.05cm}.$$
 
In der Grafik ist die zeitabhängige Hüllkurve a(t) für $μ = 1$ und $μ = 0.5$ dargestellt. Als gestrichelte Vergleichskurven sind jeweils die in der Amplitude angepassten Cosinusschwingungen eingezeichnet, die für eine verzerrungsfreie Demodulation Voraussetzung wären.
 
  
Das periodische Signal a(t) kann durch eine Fourierreihe angenähert werden:
+
The envelope – i.e.,&nbsp; the magnitude of this complex signal – can be determined by geometric considerations.&nbsp; Independent of the parameter &nbsp;$μ$,&nbsp; one obtains:
$$a(t ) = A_{\rm 0} + A_{\rm 1} \cdot \cos(\omega_{\rm N} \cdot t) + A_{\rm 2} \cdot \cos(2\omega_{\rm N} \cdot t)+ A_{\rm 3} \cdot \cos(3\omega_{\rm N} \cdot t)\hspace{0.05cm}+...$$
+
:$$a(t ) = A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu \cdot \cos(\omega_{\rm N} \cdot t)}\hspace{0.05cm}.$$
Die Fourierkoeffizienten wurden mit Hilfe eines Simulationsprogrammes ermittelt. Für $μ = 1$ ergaben sich folgende Werte:
+
The time-independent envelope &nbsp;$a(t)$&nbsp; for &nbsp;$μ = 1$&nbsp; and &nbsp;$μ = 0.5$&nbsp; is shown in the graph.&nbsp; In each case,&nbsp; the amplitude-matched cosine oscillations,&nbsp; which would be a prerequisite for distortion-free demodulation,&nbsp; are plotted as dashed comparison curves.
$$A_{\rm 0} = 1.273\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.849\,{\rm V},\hspace{0.3cm}A_{\rm 2} = -0.170\,{\rm V},\hspace{0.3cm} A_{\rm 3} = 0.073\,{\rm V},\hspace{0.3cm}A_{\rm 4} = 0.040\,{\rm V} \hspace{0.05cm}.$$
 
Entsprechend ergab die Simulation mit $μ = 0.5$:
 
$$A_{\rm 0} = 1.064\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.484\,{\rm V},\hspace{0.3cm}A_{\rm 2} = 0.058\,{\rm V} \hspace{0.05cm}.$$
 
Die hier nicht angegebenen Werte können bei der Berechnung des Klirrfaktors vernachlässigt werden. Das Sinkensignal $υ(t)$ ergibt sich aus $a(t)$ wie folgt:
 
$$v(t) = 2 \cdot [a(t ) - A_{\rm 0}] \hspace{0.05cm}.$$
 
Der Faktor 2 korrigiert dabei die Amplitudenminderung durch die ESB–AM, während die Subtraktion des Gleichsignalkoeffizienten $A_0$ den Einfluss des Hochpasses innerhalb des Hüllkurvendemodulators berücksichtigt.
 
  
Für die Teilaufgaben a) bis c) wird $A_N = 2 V$, $A_T = 1 V$ und somit $μ = 1$ vorausgesetzt, während ab Frage d) der Parameter $μ = 0.5 (A_N = A_T = 1 V)$ festgelegt ist.
+
*The periodic signal&nbsp; $a(t)$&nbsp; can be approximated by a&nbsp; [[Signal_Representation/Fourier_Series|Fourier series]] :
 +
:$$a(t ) = A_{\rm 0} + A_{\rm 1} \cdot \cos(\omega_{\rm N} \cdot t) + A_{\rm 2} \cdot \cos(2\omega_{\rm N} \cdot t)+ A_{\rm 3} \cdot \cos(3\omega_{\rm N} \cdot t)\hspace{0.05cm}+\text{...}$$
 +
*The Fourier coefficients were determined using a simulation program. &nbsp; With &nbsp;$μ = 1$&nbsp; the following values were obtained:
 +
:$$A_{\rm 0} = 1.273\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.849\,{\rm V},\hspace{0.3cm}A_{\rm 2} = -0.170\,{\rm V},\hspace{0.3cm} A_{\rm 3} = 0.073\,{\rm V},\hspace{0.3cm}A_{\rm 4} = 0.040\,{\rm V} \hspace{0.05cm}.$$
 +
*Accordingly,&nbsp; for &nbsp;$μ = 0.5$,&nbsp; the simulation yielded:
 +
:$$A_{\rm 0} = 1.064\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.484\,{\rm V},\hspace{0.3cm}A_{\rm 2} = 0.058\,{\rm V} \hspace{0.05cm}.$$
 +
:The values not given here can be ignored when calculating of the distortion factor.
 +
*The sink signal &nbsp;$v(t)$&nbsp; is obtained from &nbsp;$a(t)$&nbsp; as follows:
 +
:$$v(t) = 2 \cdot \big [a(t ) - A_{\rm 0} \big ] \hspace{0.05cm}.$$
 +
:The factor of&nbsp; $2$&nbsp; corrects for the amplitude loss due to&nbsp; "single-sideband amplitude modulation",&nbsp; while the subtraction of the DC signal coefficient &nbsp;$A_0$&nbsp; takes into account the influence of the high-pass within the envelope demodulator.
 +
*In questions&nbsp; '''(1)'''&nbsp; to&nbsp; '''(3)''',&nbsp; it is assumed that &nbsp;$A_{\rm N} = 2 \ \rm V$, $A_{\rm T} = 1 \ \rm V$ &nbsp; &rArr; &nbsp; $μ = 1$,&nbsp; <br>whereas from question&nbsp; '''(4)''', &nbsp; $A_{\rm N} = A_{\rm T} = 1 \ \rm V$&nbsp; should apply for the parameter &nbsp;$μ = 0.5$.
  
'''Hinweis:''' Die Aufgabe bezieht sich auf den Theorieteil von [http://en.lntwww.de/Modulationsverfahren/Einseitenbandmodulation Kapitel 2.4]. Vergleichen Sie Ihre Ergebnisse auch mit der Faustformel, die besagt, dass bei der Hüllkurvendemodulation eines ESB–AM–Signals mit dem Seitenband–zu–Träger–Verhältnis $μ$ der Klirrfaktor $K ≈ μ/4$ beträgt.
 
  
  
===Fragebogen===
+
 
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Single-Sideband_Modulation|Single-Sideband Modulation]].
 +
*Particular reference is made to the page &nbsp;  [[Modulation_Methods/Single-Sideband_Modulation#Sideband-to-carrier_ratio|Sideband-to-carrier ratio]].
 +
*Also compare your results to the rule of thumb which states that <br>"for the envelope demodulation of an SSB-AM signal with sideband-to-carrier ratio &nbsp;$μ$,&nbsp; the distortion factor is &nbsp;$K ≈ μ/4$".
 +
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie den Maximal– und Minimalwert des Sinkensignals für $μ = 1$ an.
+
{Give the maximum and minimum values of the sink signal &nbsp;$v(t)$&nbsp; when &nbsp;$μ = 1$.
 
|type="{}"}
 
|type="{}"}
$μ = 1:  υ_{max}$ = { 1.454 3% } $V$
+
$v_{\rm max} \ = \ $ { 1.454 3% } $\ \rm V$
$μ = 1:  υ_{min}$ = { -2.546 3% } $V$
+
$v_{\rm min} \ = \ $ { -2.62--2.48 } $\ \rm V$
  
{Berechnen Sie den Klirrfaktor für '$μ = 1$.
+
{Calculate the distortion factor when &nbsp;$μ = 1$.
 
|type="{}"}
 
|type="{}"}
$μ = 1:  K$ = { 22.3 3%  } $\text{%}$
+
$K \ = \ $ { 22.3 3%  } $\ \text{%}$
  
{Woran erkennt man die nichtlinearen Verzerrungen im vorliegenden Signal $υ(t)$?
+
{How can you recognize the nonlinear distortions in the signal &nbsp;$v(t)$?
 
|type="[]"}
 
|type="[]"}
+ Die untere Cosinushalbwelle ist spitzförmiger als die obere.
+
+ The lower cosine half-wave is more peaked than the upper one.
- Der Gleichsignalanteil $Ε[υ(t)] = 0$.
+
- The DC component &nbsp;${\rm Ε}\big[v(t)\big ] = 0$.
  
{Geben Sie den Maximal– und Minimalwert des Sinkensignals für $μ = 0.5$ an.
+
{Give the maximum and minimum values of the sink signal &nbsp;$v(t)$&nbsp; when &nbsp;$μ = 0.5$.
 
|type="{}"}
 
|type="{}"}
$μ = 0.5:  υ_ {max}$ = { 0.872 3% } $V$  
+
$v_{\rm max} \ = \ $ { 0.872 3% } $\ \rm V$
$μ = 0.5:  υ_ {min}$ = { -2.128 3% } $V$
+
$v_{\rm min} \ = \ $ { -2.19--2.07 } $\ \rm V$
  
{Berechnen Sie den Klirrfaktor für $μ = 0.5$.
+
{Calculate the distortion factor when &nbsp;$μ = 0.5$.
 
|type="{}"}
 
|type="{}"}
$μ = 0.5:  K$ = { 12 3% } $\text{%}$  
+
$K \ = \ $ { 12 3% } $\ \text{%}$  
  
{Geben Sie eine obere Schranke für den Klirrfaktor bei ZSB–AM (m = 0.5) und HKD an, wenn ein Seitenband durch den Kanal gedämpft wird.
+
{What is the upper bound &nbsp;$K_{\rm max}$&nbsp; of the distortion factor in&nbsp; "double-sideband amplitude modulation"&nbsp; $\text{(DSB-AM)}$&nbsp; with &nbsp;$m = 0.5$&nbsp; <br>and envelope demodulation,&nbsp; if one sideband is completely damped by the channel.
 
|type="{}"}
 
|type="{}"}
$μ = 0.5:  K_{max}$ = { 6.25 3% } $\text{%}$  
+
$K_{\rm max} \ = \ ${ 6.25 3% } $\ \text{%}$  
  
  
Line 65: Line 76:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; The maximum value &nbsp; $a_{\rm max} = 2\ \rm  V$&nbsp; and the minimum value &nbsp; $a_{\rm min} = 0$&nbsp; can be read off the graph or calculated using the equation given:
'''2.'''
+
:$$ a_{\rm max}  =  A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu}= A_{\rm T} \cdot (1+ \mu) = 2\,{\rm V} \hspace{0.05cm},$$
'''3.'''
+
:$$a_{\rm min}  =  A_{\rm T} \cdot \sqrt{1+ \mu^2 - 2 \mu}= A_{\rm T} \cdot (1- \mu) = 0 \hspace{0.05cm}.$$
'''4.'''
+
*For the two extreme values of the sink signal it follows:
'''5.'''
+
:$$ v_{\rm max}  = 2 \cdot [a_{\rm max} - A_{\rm 0}] = 2 \cdot [2\,{\rm V} - 1.273\,{\rm V}] \hspace{0.15cm}\underline {=1.454\,{\rm V}}\hspace{0.05cm},$$
'''6.'''
+
:$$ v_{\rm min}  =  -2 \cdot A_{\rm 0} \hspace{0.15cm}\underline {= -2.546\,{\rm V}}\hspace{0.05cm}.$$
'''7.'''
+
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Ignoring the Fourier coefficients &nbsp; $A_5$,&nbsp; $A_6$,&nbsp; etc., we obtain:
 +
:$$K = \frac{\sqrt{A_2^2 + A_3^2+ A_4^2 }}{A_1}= \frac{\sqrt{0.170^2 + 0.073^2 + 0.040^2 }{\,\rm V}}{0.849\,{\rm V}}\hspace{0.15cm}\underline { \approx 22.3 \%}.$$
 +
*Here,&nbsp; the approximation&nbsp; $K ≈ μ/4$&nbsp; yields the value $25\%$.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Only the&nbsp; <u>first answer</u>&nbsp; is correct.
 +
*Due to the high-pass within the envelope demodulator,&nbsp; the DC signal component would also be equal to zero if no distortions were present.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Like in subtask&nbsp; '''(1)'''&nbsp; here it holds that:
 +
:$$v_{\rm max}  =  2 \cdot [a_{\rm max} - A_{\rm 0}] = 2 \cdot [1.5\,{\rm V} - 1.064\,{\rm V}] \hspace{0.15cm}\underline {= 0.872\,{\rm V}}\hspace{0.05cm},$$
 +
:$$ v_{\rm min}  =  -2 \cdot A_{\rm 0} \hspace{0.15cm}\underline {= -2.128\,{\rm V}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; A smaller sideband-to-carrier ratio also results in a smaller distortion factor:
 +
:$$K = \frac{0.058{\,\rm V}}{0.484\,{\rm V}}\hspace{0.15cm}\underline { \approx 12 \%}.$$
 +
*The simple approximation &nbsp; $K ≈ μ/4$&nbsp; here yields&nbsp; $12.5\%$.
 +
*It can be concluded that the above rule of thumb is more accurate for smaller values of &nbsp; $μ$.
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; Thus,&nbsp; the distortion factor is largest when one of the sidebands is entirely cut out.
 +
*However,&nbsp; since the envelope demodulator has no information to distinguish between
 +
#a SSB–AM, or
 +
#a DSB-AM which has been extremely affected by the channel,
 +
 
 +
:&nbsp; $K_{\rm max} ≈ μ/4$&nbsp; simultaneously gives an upper bound for the DSB-AM.
 +
 
 +
*A comparison of the parameters&nbsp; $m = A_{\rm N}/A_{\rm T}$&nbsp; and&nbsp; $μ = A_{\rm N}/(2A_{\rm T})$&nbsp; leads to the result:
 +
:$$K_{\rm max} = \frac{\mu}{4} = \frac{m}{8} \hspace{0.15cm}\underline {=6.25 \%}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^2.4  Einseitenbandmodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.4  Single Sideband Amplitude Modulation^]]

Latest revision as of 15:17, 9 April 2022

(Normalized) envelope in
Single-sideband modulation

Let us consider the transmission of the cosine signal

$$ q(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t)$$

according to the modulation method  $\rm USB–AM$  ("upper-sideband amplitude modulation")  with carrier.  At the receiver,  the high frequency range (HF) is reset to the low frquency range (LF) with an   envelope demodulator.

The channel is assumed to be ideal such that the received signal  $r(t)$  is identical to the transmitted signal  $s(t)$ .  With the sideband-to-carrier ratio

$$ \mu = \frac{A_{\rm N}}{2 \cdot A_{\rm T}}$$

the equivalent low-pass signal  (German:  "äquivalentes Tiefpass-Signal"   ⇒   subscript:  "TP")  can be written as:

$$r_{\rm TP}(t) = A_{\rm T} \cdot \left( 1 + \mu \cdot {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm N}\cdot \hspace{0.03cm}\hspace{0.03cm}t} \right) \hspace{0.05cm}$$

The envelope – i.e.,  the magnitude of this complex signal – can be determined by geometric considerations.  Independent of the parameter  $μ$,  one obtains:

$$a(t ) = A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu \cdot \cos(\omega_{\rm N} \cdot t)}\hspace{0.05cm}.$$

The time-independent envelope  $a(t)$  for  $μ = 1$  and  $μ = 0.5$  is shown in the graph.  In each case,  the amplitude-matched cosine oscillations,  which would be a prerequisite for distortion-free demodulation,  are plotted as dashed comparison curves.

  • The periodic signal  $a(t)$  can be approximated by a  Fourier series :
$$a(t ) = A_{\rm 0} + A_{\rm 1} \cdot \cos(\omega_{\rm N} \cdot t) + A_{\rm 2} \cdot \cos(2\omega_{\rm N} \cdot t)+ A_{\rm 3} \cdot \cos(3\omega_{\rm N} \cdot t)\hspace{0.05cm}+\text{...}$$
  • The Fourier coefficients were determined using a simulation program.   With  $μ = 1$  the following values were obtained:
$$A_{\rm 0} = 1.273\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.849\,{\rm V},\hspace{0.3cm}A_{\rm 2} = -0.170\,{\rm V},\hspace{0.3cm} A_{\rm 3} = 0.073\,{\rm V},\hspace{0.3cm}A_{\rm 4} = 0.040\,{\rm V} \hspace{0.05cm}.$$
  • Accordingly,  for  $μ = 0.5$,  the simulation yielded:
$$A_{\rm 0} = 1.064\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.484\,{\rm V},\hspace{0.3cm}A_{\rm 2} = 0.058\,{\rm V} \hspace{0.05cm}.$$
The values not given here can be ignored when calculating of the distortion factor.
  • The sink signal  $v(t)$  is obtained from  $a(t)$  as follows:
$$v(t) = 2 \cdot \big [a(t ) - A_{\rm 0} \big ] \hspace{0.05cm}.$$
The factor of  $2$  corrects for the amplitude loss due to  "single-sideband amplitude modulation",  while the subtraction of the DC signal coefficient  $A_0$  takes into account the influence of the high-pass within the envelope demodulator.
  • In questions  (1)  to  (3),  it is assumed that  $A_{\rm N} = 2 \ \rm V$, $A_{\rm T} = 1 \ \rm V$   ⇒   $μ = 1$, 
    whereas from question  (4),   $A_{\rm N} = A_{\rm T} = 1 \ \rm V$  should apply for the parameter  $μ = 0.5$.



Hints:

  • This exercise belongs to the chapter  Single-Sideband Modulation.
  • Particular reference is made to the page   Sideband-to-carrier ratio.
  • Also compare your results to the rule of thumb which states that
    "for the envelope demodulation of an SSB-AM signal with sideband-to-carrier ratio  $μ$,  the distortion factor is  $K ≈ μ/4$".




Questions

1

Give the maximum and minimum values of the sink signal  $v(t)$  when  $μ = 1$.

$v_{\rm max} \ = \ $

$\ \rm V$
$v_{\rm min} \ = \ $

$\ \rm V$

2

Calculate the distortion factor when  $μ = 1$.

$K \ = \ $

$\ \text{%}$

3

How can you recognize the nonlinear distortions in the signal  $v(t)$?

The lower cosine half-wave is more peaked than the upper one.
The DC component  ${\rm Ε}\big[v(t)\big ] = 0$.

4

Give the maximum and minimum values of the sink signal  $v(t)$  when  $μ = 0.5$.

$v_{\rm max} \ = \ $

$\ \rm V$
$v_{\rm min} \ = \ $

$\ \rm V$

5

Calculate the distortion factor when  $μ = 0.5$.

$K \ = \ $

$\ \text{%}$

6

What is the upper bound  $K_{\rm max}$  of the distortion factor in  "double-sideband amplitude modulation"  $\text{(DSB-AM)}$  with  $m = 0.5$ 
and envelope demodulation,  if one sideband is completely damped by the channel.

$K_{\rm max} \ = \ $

$\ \text{%}$


Solution

(1)  The maximum value   $a_{\rm max} = 2\ \rm V$  and the minimum value   $a_{\rm min} = 0$  can be read off the graph or calculated using the equation given:

$$ a_{\rm max} = A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu}= A_{\rm T} \cdot (1+ \mu) = 2\,{\rm V} \hspace{0.05cm},$$
$$a_{\rm min} = A_{\rm T} \cdot \sqrt{1+ \mu^2 - 2 \mu}= A_{\rm T} \cdot (1- \mu) = 0 \hspace{0.05cm}.$$
  • For the two extreme values of the sink signal it follows:
$$ v_{\rm max} = 2 \cdot [a_{\rm max} - A_{\rm 0}] = 2 \cdot [2\,{\rm V} - 1.273\,{\rm V}] \hspace{0.15cm}\underline {=1.454\,{\rm V}}\hspace{0.05cm},$$
$$ v_{\rm min} = -2 \cdot A_{\rm 0} \hspace{0.15cm}\underline {= -2.546\,{\rm V}}\hspace{0.05cm}.$$


(2)  Ignoring the Fourier coefficients   $A_5$,  $A_6$,  etc., we obtain:

$$K = \frac{\sqrt{A_2^2 + A_3^2+ A_4^2 }}{A_1}= \frac{\sqrt{0.170^2 + 0.073^2 + 0.040^2 }{\,\rm V}}{0.849\,{\rm V}}\hspace{0.15cm}\underline { \approx 22.3 \%}.$$
  • Here,  the approximation  $K ≈ μ/4$  yields the value $25\%$.


(3)  Only the  first answer  is correct.

  • Due to the high-pass within the envelope demodulator,  the DC signal component would also be equal to zero if no distortions were present.



(4)  Like in subtask  (1)  here it holds that:

$$v_{\rm max} = 2 \cdot [a_{\rm max} - A_{\rm 0}] = 2 \cdot [1.5\,{\rm V} - 1.064\,{\rm V}] \hspace{0.15cm}\underline {= 0.872\,{\rm V}}\hspace{0.05cm},$$
$$ v_{\rm min} = -2 \cdot A_{\rm 0} \hspace{0.15cm}\underline {= -2.128\,{\rm V}}\hspace{0.05cm}.$$


(5)  A smaller sideband-to-carrier ratio also results in a smaller distortion factor:

$$K = \frac{0.058{\,\rm V}}{0.484\,{\rm V}}\hspace{0.15cm}\underline { \approx 12 \%}.$$
  • The simple approximation   $K ≈ μ/4$  here yields  $12.5\%$.
  • It can be concluded that the above rule of thumb is more accurate for smaller values of   $μ$.


(6)  Thus,  the distortion factor is largest when one of the sidebands is entirely cut out.

  • However,  since the envelope demodulator has no information to distinguish between
  1. a SSB–AM, or
  2. a DSB-AM which has been extremely affected by the channel,
  $K_{\rm max} ≈ μ/4$  simultaneously gives an upper bound for the DSB-AM.
  • A comparison of the parameters  $m = A_{\rm N}/A_{\rm T}$  and  $μ = A_{\rm N}/(2A_{\rm T})$  leads to the result:
$$K_{\rm max} = \frac{\mu}{4} = \frac{m}{8} \hspace{0.15cm}\underline {=6.25 \%}.$$