Difference between revisions of "Aufgaben:Exercise 4.11Z: Error Probability with QAM"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Quadratur–Amplitudenmodulation }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice…“)
 
 
(21 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID1721__Mod_Z_4_10.png|right|frame|Table with two different&nbsp; "Gaussian error functions"]]
 +
We now make the following assumptions:
 +
* binary bipolar amplitude coefficients &nbsp;$a_ν ∈ \{±1\}$,
 +
* rectangular basic transmission pulse with amplitude &nbsp;$s_0$&nbsp; and bit duration &nbsp;$T_{\rm B}$,
 +
* AWGN noise with noise power density  &nbsp;$N_0$,
 +
* a receiver according to the matched-filter principle,
 +
* the best possible demodulation and detection.
  
  
===Fragebogen===
+
The bit error probability of binary phase modulation &nbsp; $\rm (BPSK)$&nbsp; under these conditions can be calculated using the following equations:
 +
:$$ p_{\rm B, \hspace{0.05cm}BPSK} = {\rm Q}\left ({s_0}/{\sigma_d } \right ), \hspace{0.2cm} E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} ,\hspace{0.2cm} \sigma_d^2 = {N_0}/{T_{\rm B} }$$
 +
:$$\Rightarrow \hspace{0.3cm} p_{\rm B, \hspace{0.05cm}BPSK} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).$$
 +
 
 +
*The corresponding equations of&nbsp; $\rm 4–QAM$&nbsp;  are:
 +
:$$ p_{\rm B, \hspace{0.05cm}4-QAM} = {\rm Q}\left ( {g_0}/{\sigma_d } \right ), \hspace{0.2cm}g_{0} = {s_0}/{\sqrt{2}}, \hspace{0.2cm}E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} ,\hspace{0.2cm} \sigma_d^2 = {N_0}/({2 \cdot T_{\rm B} }).$$
 +
 
 +
*Here it is taken into account that &ndash; in order to achieve the same transmission energy per bit as with BPSK &ndash; one must reduce the  amplitude&nbsp;$g_0$&nbsp; of the rectangular pulses in the two sub-branches of 4-QAM by a factor of &nbsp;$\sqrt{2}$&nbsp;. 
 +
*The envelope is then equal to &nbsp;$s_0$ for both systems.
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation|"Quadrature Amplitude Modulation"]].
 +
*Reference is also made to the page&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#Error_probabilities_-_a_brief_overview|"Error probabilities &ndash; a brief overview"]]&nbsp; in the previous chapter.
 +
* Always assume the following numerical values: &nbsp; $s_0 = 2\,{\rm V}, \hspace{0.05cm} N_0 = 0.25 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}.$
 +
*The bit duration is &nbsp;$T_{\rm B} = 1 \ \rm &micro; s$&nbsp; (question 1)&nbsp; and &nbsp;$T_{\rm B} = 2 \ \rm &micro; s$&nbsp; (from question 2 onwards).
 +
*In the table,&nbsp; the two common Gaussian error functions &nbsp;${\rm Q}(x)$&nbsp;  and &nbsp;$1/2 \cdot {\rm erfc}(x)$&nbsp; are given.
 +
*Energies are to be given in &nbsp;$\rm V^2s$;&nbsp;  thus, they refer&nbsp; to the reference resistance &nbsp;$R = 1 \ \rm \Omega$.
 +
  
<quiz display=simple>
 
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
 +
===Questions===
  
{Input-Box Frage
+
<quiz display=simple>
 +
{What error probability &nbsp;$p_\text{B, BPSK}$&nbsp; results for&nbsp; '''BPSK'''&nbsp; when $T_{\rm B} = 1 \ \rm &micro; s$?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$p_\text{B, BPSK} \ = \ $ { 0.317 3% } $\ \rm 10^{-4}$
  
 +
{What error probability &nbsp;$p_\text{B, BPSK}$&nbsp; results for&nbsp;  '''BPSK'''&nbsp; when $T_{\rm B} = 2 \ \rm &micro; s$?
 +
|type="{}"}
 +
$p_\text{B, BPSK} \ = \ $ { 0.771 3% } $\ \rm 10^{-8}$
  
 +
{What error probability &nbsp;$p_\text{B, 4-QAM}$&nbsp; is obtained for&nbsp; '''4-QAM'''&nbsp; when &nbsp;$E_{\rm B} = 4 · 10^{–6} \ \rm V^2s$?
 +
|type="{}"}
 +
$p_\text{B, 4-QAM} \ = \ $ { 0.771 3% } $\ \rm 10^{-8}$
  
 +
{Which statements apply if we consider only one branch &nbsp; $\rm (I$&nbsp; or&nbsp; $\rm Q)$&nbsp; of the 4–QAM?
 +
|type="[]"}
 +
+ The same result is obtained as for the entire 4-QAM.
 +
- The distance of the noisless samples from the threshold&nbsp; $E=0$&nbsp; is the same &nbsp;$(s_0)$&nbsp;  as in BPSK.
 +
- The same result is obtained for the noise power as in BPSK.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; With the values given,&nbsp; for &nbsp;"Binary Phase Shift Keying"&nbsp; (BPSK),&nbsp; one gets:
'''2.'''
+
:$$E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} = \frac{1}{2}\cdot (2\,{\rm V})^2 \cdot 1\,{\rm &micro; s} = 2 \cdot 10^{-6}\,{\rm V^2s}
'''3.'''
+
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}  {E_{\rm B}}/{N_0} = \frac {2 \cdot 10^{-6}\,{\rm V^2s}}{0.25 \cdot 10^{-6}\,{\rm V^2/Hz}} = 8$$
'''4.'''
+
:$$ \Rightarrow \hspace{0.3cm} p_\text{B, BPSK} = {\rm Q}\left ( \sqrt{16} \right ) = {\rm Q}\left ( 4 \right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{8}\right )\hspace{0.05cm}.$$
'''5.'''
+
*Based on the given &nbsp; $x$–values in the table,&nbsp; it is convenient to use the first equation in this subtask:
'''6.'''
+
:$$p_\text{B, BPSK} = {\rm Q}\left ( 4 \right ) \hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4} }\hspace{0.05cm}.$$
'''7.'''
+
 
 +
 
 +
 
 +
'''(2)'''&nbsp; With twice the bit duration,&nbsp; the energy is also twice as large:&nbsp; $E_{\rm B} = 4 · 10^{–6} \ \rm  V^2s$  ⇒  $E_{\rm B}/N_0 = 16$.
 +
*It follows that:
 +
:$$p_\text{B, BPSK} = {\rm Q}\left ( \sqrt{32} \right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{16}\right ) ={1}/{2}\cdot {\rm erfc}\left ( 4\right ) \hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}\hspace{0.05cm}.$$
 +
*For pragmatic reasons,&nbsp; the last column of the table was used here.
 +
 
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Substituting the equations given for the 4-QAM into each other,&nbsp; we get the same result as for the BPSK:
 +
:$$p_{\rm B, \hspace{0.05cm}4-QAM} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \equiv p_\text{B, BPSK}.$$
 +
*Also,&nbsp; since the energy per bit has not changed from subtask&nbsp; '''(2)''',&nbsp;  the same error probability will arise:
 +
:$$p_{\rm B, \hspace{0.05cm}4-QAM}= {\rm Q}\left ( \sqrt{32} \right ) = {1}/{2}\cdot {\rm erfc}\left ( 4\right ) \hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Only&nbsp; <u>Answer 1</u>&nbsp; is correct:
 +
*Of course the error probability is the same in the two branches.&nbsp;  Why would it not be?
 +
*This would no longer be true with a phase offset between the transmitter and receiver though.
 +
*However,&nbsp; the distance of the useful samples from the threshold is&nbsp; $g_0$&nbsp; here and thus smaller than the envelope &nbsp; $s_0$&nbsp; of the entire 4-QAM by a factor of $\sqrt{2}$&nbsp;.
 +
*However,&nbsp; if the inphase branch&nbsp; (or the quadrature branch)&nbsp; is considered as a stand-alone BPSK,&nbsp; the noise power is also half that of BPSK because of the lower symbol rate.&nbsp;  Therefore,&nbsp; the error probability remains the same.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.3 Quadratur–Amplitudenmodulation^]]
+
[[Category:Modulation Methods: Exercises|^4.3 Quadrature Amplitude Modulation^]]

Latest revision as of 07:43, 18 April 2022

Table with two different  "Gaussian error functions"

We now make the following assumptions:

  • binary bipolar amplitude coefficients  $a_ν ∈ \{±1\}$,
  • rectangular basic transmission pulse with amplitude  $s_0$  and bit duration  $T_{\rm B}$,
  • AWGN noise with noise power density  $N_0$,
  • a receiver according to the matched-filter principle,
  • the best possible demodulation and detection.


The bit error probability of binary phase modulation   $\rm (BPSK)$  under these conditions can be calculated using the following equations:

$$ p_{\rm B, \hspace{0.05cm}BPSK} = {\rm Q}\left ({s_0}/{\sigma_d } \right ), \hspace{0.2cm} E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} ,\hspace{0.2cm} \sigma_d^2 = {N_0}/{T_{\rm B} }$$
$$\Rightarrow \hspace{0.3cm} p_{\rm B, \hspace{0.05cm}BPSK} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).$$
  • The corresponding equations of  $\rm 4–QAM$  are:
$$ p_{\rm B, \hspace{0.05cm}4-QAM} = {\rm Q}\left ( {g_0}/{\sigma_d } \right ), \hspace{0.2cm}g_{0} = {s_0}/{\sqrt{2}}, \hspace{0.2cm}E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} ,\hspace{0.2cm} \sigma_d^2 = {N_0}/({2 \cdot T_{\rm B} }).$$
  • Here it is taken into account that – in order to achieve the same transmission energy per bit as with BPSK – one must reduce the amplitude $g_0$  of the rectangular pulses in the two sub-branches of 4-QAM by a factor of  $\sqrt{2}$ .
  • The envelope is then equal to  $s_0$ for both systems.



Hints:

  • This exercise belongs to the chapter  "Quadrature Amplitude Modulation".
  • Reference is also made to the page  "Error probabilities – a brief overview"  in the previous chapter.
  • Always assume the following numerical values:   $s_0 = 2\,{\rm V}, \hspace{0.05cm} N_0 = 0.25 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}.$
  • The bit duration is  $T_{\rm B} = 1 \ \rm µ s$  (question 1)  and  $T_{\rm B} = 2 \ \rm µ s$  (from question 2 onwards).
  • In the table,  the two common Gaussian error functions  ${\rm Q}(x)$  and  $1/2 \cdot {\rm erfc}(x)$  are given.
  • Energies are to be given in  $\rm V^2s$;  thus, they refer  to the reference resistance  $R = 1 \ \rm \Omega$.


Questions

1

What error probability  $p_\text{B, BPSK}$  results for  BPSK  when $T_{\rm B} = 1 \ \rm µ s$?

$p_\text{B, BPSK} \ = \ $

$\ \rm 10^{-4}$

2

What error probability  $p_\text{B, BPSK}$  results for  BPSK  when $T_{\rm B} = 2 \ \rm µ s$?

$p_\text{B, BPSK} \ = \ $

$\ \rm 10^{-8}$

3

What error probability  $p_\text{B, 4-QAM}$  is obtained for  4-QAM  when  $E_{\rm B} = 4 · 10^{–6} \ \rm V^2s$?

$p_\text{B, 4-QAM} \ = \ $

$\ \rm 10^{-8}$

4

Which statements apply if we consider only one branch   $\rm (I$  or  $\rm Q)$  of the 4–QAM?

The same result is obtained as for the entire 4-QAM.
The distance of the noisless samples from the threshold  $E=0$  is the same  $(s_0)$  as in BPSK.
The same result is obtained for the noise power as in BPSK.


Solution

(1)  With the values given,  for  "Binary Phase Shift Keying"  (BPSK),  one gets:

$$E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} = \frac{1}{2}\cdot (2\,{\rm V})^2 \cdot 1\,{\rm µ s} = 2 \cdot 10^{-6}\,{\rm V^2s} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {E_{\rm B}}/{N_0} = \frac {2 \cdot 10^{-6}\,{\rm V^2s}}{0.25 \cdot 10^{-6}\,{\rm V^2/Hz}} = 8$$
$$ \Rightarrow \hspace{0.3cm} p_\text{B, BPSK} = {\rm Q}\left ( \sqrt{16} \right ) = {\rm Q}\left ( 4 \right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{8}\right )\hspace{0.05cm}.$$
  • Based on the given   $x$–values in the table,  it is convenient to use the first equation in this subtask:
$$p_\text{B, BPSK} = {\rm Q}\left ( 4 \right ) \hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4} }\hspace{0.05cm}.$$


(2)  With twice the bit duration,  the energy is also twice as large:  $E_{\rm B} = 4 · 10^{–6} \ \rm V^2s$ ⇒ $E_{\rm B}/N_0 = 16$.

  • It follows that:
$$p_\text{B, BPSK} = {\rm Q}\left ( \sqrt{32} \right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{16}\right ) ={1}/{2}\cdot {\rm erfc}\left ( 4\right ) \hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}\hspace{0.05cm}.$$
  • For pragmatic reasons,  the last column of the table was used here.



(3)  Substituting the equations given for the 4-QAM into each other,  we get the same result as for the BPSK:

$$p_{\rm B, \hspace{0.05cm}4-QAM} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \equiv p_\text{B, BPSK}.$$
  • Also,  since the energy per bit has not changed from subtask  (2),  the same error probability will arise:
$$p_{\rm B, \hspace{0.05cm}4-QAM}= {\rm Q}\left ( \sqrt{32} \right ) = {1}/{2}\cdot {\rm erfc}\left ( 4\right ) \hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}\hspace{0.05cm}.$$


(4)  Only  Answer 1  is correct:

  • Of course the error probability is the same in the two branches.  Why would it not be?
  • This would no longer be true with a phase offset between the transmitter and receiver though.
  • However,  the distance of the useful samples from the threshold is  $g_0$  here and thus smaller than the envelope   $s_0$  of the entire 4-QAM by a factor of $\sqrt{2}$ .
  • However,  if the inphase branch  (or the quadrature branch)  is considered as a stand-alone BPSK,  the noise power is also half that of BPSK because of the lower symbol rate.  Therefore,  the error probability remains the same.