Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.2Z: About PN Modulation"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modualtionsverfahren/PN–Modulation }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type="[]"…“)
 
 
(25 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modualtionsverfahren/PN–Modulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Direct-Sequence_Spread_Spectrum_Modulation
 
}}
 
}}
  
[[File:|right|]]
+
[[File:EN_Bei_A_4_5.png|right|frame|Models of PN modulation (top) and BPSK (bottom)]]
 +
The upper diagram shows the equivalent circuit of&nbsp; PN&nbsp; modulation&nbsp; (Direct-Sequence Spread Spectrum, abbreviated&nbsp; \rm DS–SS)&nbsp; in the equivalent low-pass range,&nbsp; based on AWGN noise &nbsp;n(t).&nbsp;
  
 +
Shown below is the low-pass model of binary phase shift keying&nbsp; \rm (BPSK).&nbsp;
 +
*The low-pass transmitted signal &nbsp;s(t)&nbsp; is set equal to the rectangular source signal &nbsp;q(t) ∈ \{+1, –1\}&nbsp; with rectangular duration &nbsp;T&nbsp; for reasons of uniformity.
  
===Fragebogen===
+
*The function of the integrator can be described as follows:
 +
:$$d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t \hspace{0.05cm}.$$
 +
 
 +
*The two models differ by multiplication with the &nbsp;±1 spreading signal &nbsp;c(t)&nbsp; at transmitter and receiver,&nbsp; where only the spreading factor &nbsp;J&nbsp; is known from &nbsp;c(t).&nbsp;
 +
 
 +
 
 +
It has to be investigated whether the lower BPSK model can also be used for PN modulation and whether the BPSK error probability
 +
:$$p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )$$
 +
is also valid for PN modulation,&nbsp; or how the given equation should be modified.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Direct-Sequence_Spread_Spectrum_Modulation|Direct-Sequence Spread Spectrum Modulation]].
 +
 
 +
*For the solution of this exercise,&nbsp; the specification of the specific spreading sequence&nbsp; (M-sequence or Walsh function)&nbsp; is not important.
 +
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Which detection signal values are possible with BPSK&nbsp; (in the noise-free case)?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- d(νT)&nbsp; can be Gaussian distributed.
+ Richtig
+
- d(νT)&nbsp; can take the values &nbsp;$+1, &nbsp;0&nbsp; and &nbsp;-1$.&nbsp;
 +
+ Only the values &nbsp;d(νT) = +1&nbsp; and &nbsp;d(νT) = -1&nbsp; are possible.
  
 +
{Which values are possible in PN modulation&nbsp; (in the noise-free)&nbsp; case?
 +
|type="[]"}
 +
- d(νT)&nbsp; can be Gaussian distributed.
 +
- d(νT)&nbsp; can take the values &nbsp;+1, &nbsp;0&nbsp; and &nbsp;-1.&nbsp;
 +
+ Only the values &nbsp;d(νT) = +1&nbsp; and &nbsp;d(νT) = -1&nbsp; are possible.
  
{Input-Box Frage
+
{What modification must be made to the BPSK model to make it applicable to PN modulation?
|type="{}"}
+
|type="[]"}
$\alpha$ = { 0.3 }
+
+ The noise &nbsp;n(t)&nbsp; must be replaced by &nbsp;n'(t) = n(t) · c(t).&nbsp;
 +
- The integration must now be done over &nbsp;J · T.&nbsp;
 +
- The noise power &nbsp;σ_n^2&nbsp; must be reduced by a factor of &nbsp;J.&nbsp;
 +
 
 +
{What is the bit error probability &nbsp;p_{\rm B}&nbsp; for &nbsp;10 \lg \  (E_{\rm B}/N_0) = 6\ \rm  dB&nbsp; for PN modulation?&nbsp; <br>Note: &nbsp; For BPSK, the following applies in this case: &nbsp; p_{\rm B} ≈ 2.3 · 10^{–3}.
 +
|type="()"}
 +
- The larger &nbsp;J&nbsp; is chosen, the smaller &nbsp;$p_{\rm B}$ is.
 +
- The larger &nbsp;J&nbsp; is chosen, the larger &nbsp;$p_{\rm B}$ is.
 +
+ Independent of &nbsp;$J,&nbsp; the value &nbsp;p_{\rm B} ≈ 2.3 · 10^{–3}$ is always obtained.
 +
</quiz>
 +
 
 +
===Solution===
 +
{{ML-Kopf}}
 +
'''(1)'''&nbsp; The&nbsp; <u>last solution</u>&nbsp; is correct:
 +
*We are dealing here with an optimal receiver.
 +
*Without noise,&nbsp; the signal&nbsp; b(t)&nbsp; within each bit is constantly equal to&nbsp; +1&nbsp; or&nbsp; -1.
 +
*From the given equation for the integrator
 +
:$$d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t $$
 +
:it follows that&nbsp; d(νT)&nbsp; can take only the values&nbsp; +1&nbsp; and&nbsp; -1.&nbsp;
  
  
  
</quiz>
+
'''(2)'''&nbsp; Again the&nbsp; <u>last solution</u>&nbsp; is correct:
 +
* In the noise-free and interference-free case &nbsp; ⇒ &nbsp; n(t) = 0,&nbsp; the twofold multiplication by&nbsp; c(t) ∈ \{+1, –1\}&nbsp; can be omitted,
 +
*so that the upper model is identical to the lower model.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; <u>Solution 1</u>&nbsp; is correct:
 +
*Since both models are identical in the noise-free case,&nbsp; only the noise signal has to be adjusted: &nbsp; n'(t) = n(t) · c(t).
 +
*In contrast,&nbsp; the other two solutions are not applicable:
 +
*The integration must still be done over&nbsp; T = J · T_c&nbsp; and the PN modulation does not reduce the AWGN noise.
 +
 
 +
 
  
===Musterlösung===
+
'''(4)'''&nbsp; The&nbsp; <u>last solution</u>&nbsp; is correct:
{{ML-Kopf}}
+
*Multiplying the AWGN noise by the high-frequency&nbsp; ±1 signal&nbsp; c(t),&nbsp; the product is also Gaussian and white.
'''1.'''
+
*Because of &nbsp;{\rm E}\big[c^2(t)\big] = 1,&nbsp; the noise variance is not changed either.&nbsp; Thus:                                                           
'''2.'''
+
*The equation&nbsp; $p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt {{2 E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )&nbsp; valid for BPSK is also applicable for PN modulation,&nbsp; independent of spreading factor&nbsp; J$&nbsp; and specific spreading sequence.
'''3.'''
+
*Ergo:&nbsp; For AWGN noise,&nbsp; band spreading neither increases nor decreases the error probability.
'''4.'''
 
'''5.'''
 
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^5.2 PN–Modulation^]]
+
[[Category:Modulation Methods: Exercises|^5.2 PN Modulation^]]

Latest revision as of 18:55, 4 March 2023

Models of PN modulation (top) and BPSK (bottom)

The upper diagram shows the equivalent circuit of  \rm PN  modulation  (Direct-Sequence Spread Spectrum, abbreviated  \rm DS–SS)  in the equivalent low-pass range,  based on AWGN noise  n(t)

Shown below is the low-pass model of binary phase shift keying  \rm (BPSK)

  • The low-pass transmitted signal  s(t)  is set equal to the rectangular source signal  q(t) ∈ \{+1, –1\}  with rectangular duration  T  for reasons of uniformity.
  • The function of the integrator can be described as follows:
d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t \hspace{0.05cm}.
  • The two models differ by multiplication with the  ±1 spreading signal  c(t)  at transmitter and receiver,  where only the spreading factor  J  is known from  c(t)


It has to be investigated whether the lower BPSK model can also be used for PN modulation and whether the BPSK error probability

p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )

is also valid for PN modulation,  or how the given equation should be modified.



Notes:

  • For the solution of this exercise,  the specification of the specific spreading sequence  (M-sequence or Walsh function)  is not important.


Questions

1

Which detection signal values are possible with BPSK  (in the noise-free case)?

d(νT)  can be Gaussian distributed.
d(νT)  can take the values  +1,  0  and  -1
Only the values  d(νT) = +1  and  d(νT) = -1  are possible.

2

Which values are possible in PN modulation  (in the noise-free)  case?

d(νT)  can be Gaussian distributed.
d(νT)  can take the values  +1,  0  and  -1
Only the values  d(νT) = +1  and  d(νT) = -1  are possible.

3

What modification must be made to the BPSK model to make it applicable to PN modulation?

The noise  n(t)  must be replaced by  n'(t) = n(t) · c(t)
The integration must now be done over  J · T
The noise power  σ_n^2  must be reduced by a factor of  J

4

What is the bit error probability  p_{\rm B}  for  10 \lg \ (E_{\rm B}/N_0) = 6\ \rm dB  for PN modulation? 
Note:   For BPSK, the following applies in this case:   p_{\rm B} ≈ 2.3 · 10^{–3}.

The larger  J  is chosen, the smaller  p_{\rm B} is.
The larger  J  is chosen, the larger  p_{\rm B} is.
Independent of  J,  the value  p_{\rm B} ≈ 2.3 · 10^{–3} is always obtained.


Solution

(1)  The  last solution  is correct:

  • We are dealing here with an optimal receiver.
  • Without noise,  the signal  b(t)  within each bit is constantly equal to  +1  or  -1.
  • From the given equation for the integrator
d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t
it follows that  d(νT)  can take only the values  +1  and  -1


(2)  Again the  last solution  is correct:

  • In the noise-free and interference-free case   ⇒   n(t) = 0,  the twofold multiplication by  c(t) ∈ \{+1, –1\}  can be omitted,
  • so that the upper model is identical to the lower model.


(3)  Solution 1  is correct:

  • Since both models are identical in the noise-free case,  only the noise signal has to be adjusted:   n'(t) = n(t) · c(t).
  • In contrast,  the other two solutions are not applicable:
  • The integration must still be done over  T = J · T_c  and the PN modulation does not reduce the AWGN noise.


(4)  The  last solution  is correct:

  • Multiplying the AWGN noise by the high-frequency  ±1 signal  c(t),  the product is also Gaussian and white.
  • Because of  {\rm E}\big[c^2(t)\big] = 1,  the noise variance is not changed either.  Thus:
  • The equation  p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt {{2 E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )  valid for BPSK is also applicable for PN modulation,  independent of spreading factor  J  and specific spreading sequence.
  • Ergo:  For AWGN noise,  band spreading neither increases nor decreases the error probability.