Difference between revisions of "Signal Representation/Fast Fourier Transform (FFT)"

From LNTwww
 
(56 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
{{LastPage}}
 
{{LastPage}}
 
{{Header
 
{{Header
|Untermenü=Zeit- und frequenzdiskrete Signaldarstellung
+
|Untermenü=Time and Frequency-Discrete Signal Representation
|Vorherige Seite=Spektralanalyse
+
|Vorherige Seite=Spectrum Analysis
 
|Nächste Seite=
 
|Nächste Seite=
 
}}
 
}}
  
==Rechenaufwand von DFT bzw. IDFT==   
+
==Complexity of DFT and IDFT==   
+
<br>
Ein Nachteil der direkten Berechnung der (im Allgemeinen komplexen) DFT–Zahlenfolgen
+
A disadvantage of the direct calculation of the&nbsp; $($generally complex$)$&nbsp; DFT sequences
  
$$<D(\mu)> \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} <d(\nu)>$$
+
:$$\langle \hspace{0.03cm}D(\mu)\hspace{0.03cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm}d(\nu)\hspace{0.03cm} \rangle$$
 
   
 
   
gemäß den in Kapitel [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)|Diskrete Fouriertransformation (DFT)]] angegebenen Gleichungen ist der große RechenaufwandWir betrachten als Beispiel  die DFT, also die Berechnung der $D(\mu)$ aus den $d(\nu)$:
+
according to the equations given in chapter&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|&raquo;Discrete Fourier Transform&raquo;]]&nbsp;  $\rm (DFT)$&nbsp; is the large computational cost.   
 +
 
 +
We consider as an example the DFT,&nbsp; i.e. the calculation of the&nbsp; $D(\mu)$&nbsp; coefficients from the&nbsp; $d(\nu)$&nbsp; coefficients:
 
   
 
   
$$\begin{align*}N \cdot D(\mu) & =  \sum_{\nu = 0 }^{N-1}
+
:$$N \cdot D(\mu) =  \sum_{\nu = 0 }^{N-1}
 
  d(\nu) \cdot  {w}^{\hspace{0.03cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu}
 
  d(\nu) \cdot  {w}^{\hspace{0.03cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu}
  =\\ & =  
+
  =  
   d(0) \cdot w^{\hspace{0.03cm}0} + d(1) \cdot w^{\hspace{0.03cm}\mu}+ d(2) \cdot w^{\hspace{0.03cm}2\mu}+ ... + d(N-1) \cdot w^{\hspace{0.03cm}(N-1)\cdot \mu}\end{align*}$$
+
   d(0) \cdot w^{\hspace{0.03cm}0} + d(1) \cdot w^{\hspace{0.03cm}\mu}+ d(2) \cdot w^{\hspace{0.03cm}2\mu}+\hspace{0.05cm}\text{ ...} \hspace{0.05cm}+ d(N-1) \cdot w^{\hspace{0.03cm}(N-1)\cdot \mu}.$$
  
Der hierfür erforderliche Rechenaufwand soll nun abgeschätzt werden, wobei wir davon ausgehen, dass die Potenzen des komplexen Drehfaktors $w = {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N}$ bereits in Real– und Imaginärteilform in einer Lookup–Tabelle vorliegen:
+
The computational effort required for this is to be estimated,&nbsp; assuming that the powers of the complex rotation factor&nbsp; $w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N}$&nbsp; already exist in real and imaginary part form in a lookup table.&nbsp; To calculate a single coefficient,&nbsp; one then needs&nbsp; $N-1$&nbsp; complex multiplications and as many complex additions,&nbsp; observing:  
*Zur Berechnung eines einzelnen Koeffizienten benötigt man dann $N-1$ komplexe Multiplikationen und ebenso viele komplexe Additionen, wobei zu beachten ist:  
+
*Each complex addition requires two real additions:
*Jede komplexe Addition erfordert zwei reelle Additionen:
 
 
:$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 +
 
:$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 +
 
R_2) + {\rm j} \cdot (I_1 + I_2)\hspace{0.05cm}.$$  
 
R_2) + {\rm j} \cdot (I_1 + I_2)\hspace{0.05cm}.$$  
*Jede komplexe Multiplikation erfordert vier reelle Multiplikationen und zwei reelle Additionen (eine Subtraktion wird wie eine Addition behandelt):
+
*Each complex multiplication requires four real multiplications and two real additions&nbsp; $($a subtraction is treated as an addition$)$:
 
:$$(R_1 + {\rm j} \cdot I_1)  (R_2 + {\rm j} \cdot I_2) = (R_1 \cdot
 
:$$(R_1 + {\rm j} \cdot I_1)  (R_2 + {\rm j} \cdot I_2) = (R_1 \cdot
 
R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot
 
R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot
 
I_1)\hspace{0.05cm}.$$  
 
I_1)\hspace{0.05cm}.$$  
*Somit sind zur Berechnung aller $N$ Koeffizienten insgesamt die folgende Anzahl $M$ reeller Multiplikationen und die Anzahl $A$ reeller Additionen erforderlich:
+
*Thus,&nbsp; the following number of real multiplications and the number of real additions are required to calculate all&nbsp; $N$&nbsp; coefficients in total:
:$$M = 4 \cdot N \cdot (N-1), \hspace{0.2cm}A = 2 \cdot N \cdot
+
:$$M = 4 \cdot N \cdot (N-1),$$
 +
:$$A = 2 \cdot N \cdot
 
(N-1)+2 \cdot N \cdot (N-1)=M \hspace{0.05cm}.$$  
 
(N-1)+2 \cdot N \cdot (N-1)=M \hspace{0.05cm}.$$  
*In heutigen Rechnern benötigen Multiplikationen und Additionen/Subtraktionen etwa die gleiche Rechenzeit. Es genügt, die Gesamtzahl $\mathcal{O} = M + A$ aller Operationen zu betrachten:
+
*In today's computers,&nbsp; multiplications and additions/subtractions need about the same computing time.&nbsp; It is sufficient to consider the total number&nbsp; $\mathcal{O} = M + A$&nbsp; of all operations:
 
:$$\mathcal{O} = 8 \cdot N \cdot (N-1) \approx 8 \cdot N^2\hspace{0.05cm}.$$  
 
:$$\mathcal{O} = 8 \cdot N \cdot (N-1) \approx 8 \cdot N^2\hspace{0.05cm}.$$  
*Daraus folgt: Man benötigt bereits für eine DFT (oder eine IDFT) mit $N = 1000$  knapp acht Millionen Rechenoperationen. Für $N =16 $ sind immerhin noch 1920 Rechenoperationen erforderlich.
 
  
 +
{{BlaueBox|TEXT=
 +
$\text{Conclusion:}$&nbsp;
 +
*For a&nbsp; Discrete Fourier Transform&nbsp; $\rm (DFT)$&nbsp; with&nbsp; $N = 1000$&nbsp; one already needs almost eight million arithmetic operations.&nbsp; The same applies to an IDFT.
 +
 +
*With&nbsp; $N =16$&nbsp; still &nbsp;$1920$&nbsp; computational operations are required.
  
Ist der Parameter $N$ eine Potenz zur Basis 2, so können rechenzeitgünstigere Algorithmen angewendet werden. Die Vielzahl solcher aus der Literatur bekannten Verfahren werden unter dem Sammelbegriff '''Fast–Fouriertransformation''' – abgekürzt FFT – zusammengefasst. Alle diese Methoden basieren auf dem Überlagerungssatz der DFT.
+
*If the parameter&nbsp; $N$&nbsp; is a power to the base&nbsp; $2$,&nbsp; more computationally efficient algorithms can be applied.&nbsp; The multitude of such methods known from the literature are summarized under the collective term&nbsp; &raquo;'''Fast Fourier Transform'''&laquo;&nbsp; &ndash; abbreviated&nbsp; $\text{FFT}$.&nbsp; All these methods are based on the&nbsp; &raquo;superposition theorem&laquo;&nbsp; of the DFT.}}
 
   
 
   
==Überlagerungssatz der DFT==   
+
==Superposition theorem of the DFT==   
 
+
<br>
Die Grafik verdeutlicht den so genannten Überlagerungssatz der DFT am Beispiel $N = 16$.
+
The graph illustrates the so-called&nbsp; &raquo;superposition theorem&laquo;&nbsp; of the DFT using the example of&raquo; $N = 16$.&nbsp; Shown here is the transition from the time domain to the spectral domain,&nbsp; i.e. the calculation of the spectral domain coefficients from the time domain coefficients: &nbsp;    $\langle \hspace{0.03cm}D(\mu)\hspace{0.03cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm} d(\nu) \hspace{0.03cm}\rangle.$
  
[[File:P_ID1170__Sig_T_5_5_S2_v2.png|Überlagerungssatz der DFT]]
+
[[File:EN_Sig_T_5_5_S2.png|right|frame|Superposition theorem of the DFT]]
  
Der dadurch beschriebene Algorithmus ist durch folgende Schritte gekennzeichnet:
+
The algorithm described thereby is characterized by the following steps:
*Die Folge  $\langle d(\nu)\rangle$ der Länge $N$ wird in zwei Teilfolgen $\langle d_1(\nu)\rangle$ und $\langle d_2(\nu)\rangle$ jeweils halber Länge separiert (gelb bzw. grün hinterlegt). Mit $0 \le \nu \lt N/2$ erhält man so die Folgenelemente
+
*The sequence&nbsp; $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$&nbsp; of length&nbsp; $N$&nbsp; is divided into two subsequences&nbsp; $\langle \hspace{0.03cm} d_1(\nu)\hspace{0.03cm}\rangle$&nbsp;  and&nbsp; $\langle \hspace{0.03cm} d_2(\nu)\hspace{0.03cm}\rangle$&nbsp; each of half length&nbsp; $($highlighted in yellow and green respectively in the graphic$)$.&nbsp; With&nbsp; $0 \le \nu \lt N/2$&nbsp; one thus obtains the sequence elements
:$$d_1(\nu) = d(2\nu), \hspace{0.2cm}d_2(\nu) = d(2\nu+1)
+
:$$d_1(\nu) = d(2\nu), $$
 +
:$$d_2(\nu) = d(2\nu+1)
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*Die Ausgangsfolgen $\langle D_1(\mu )\rangle$ und $\langle D_2(\mu )\rangle$ der beiden Teilblöcke ergeben sich daraus jeweils durch eine eigene DFT, aber nun nur noch mit halber Länge $N/2 = 8$:
+
*The initial sequences&nbsp; $\langle \hspace{0.03cm}D_1(\mu )\hspace{0.03cm}\rangle$&nbsp; and&nbsp; $\langle \hspace{0.03cm}D_2(\mu )\hspace{0.03cm}\rangle$&nbsp; of the two sub-blocks result from this each by its own DFT,&nbsp; but now only with half length&nbsp; $N/2 = 8$:
:$$\langle D_1(\mu) \rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle d_1(\nu) \rangle , \hspace{0.2cm}
+
:$$\langle \hspace{0.03cm}D_1(\mu) \hspace{0.03cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm}d_1(\nu) \hspace{0.03cm}\rangle , $$
\langle D_2(\mu) \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle d_2(\nu) \rangle \hspace{0.05cm}.$$  
+
:$$ \langle \hspace{0.03cm}D_2(\mu)\hspace{0.03cm} \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm}d_2(\nu) \hspace{0.03cm}\rangle \hspace{0.05cm}.$$  
*Die Ausgangswerte $\langle D_2(\mu )\rangle$ der unteren (grünen) DFT (mit $0 \le \mu \lt N/2$) werden danach im rot umrandeten Block durch komplexe Drehfaktoren hinsichtlich Phasenlage verändert:
+
*The initial values&nbsp; $\langle \hspace{0.03cm} D_2(\mu )\hspace{0.03cm}\rangle$&nbsp; of the lower (green) DFT $($with&nbsp; $0 \le \mu \lt N/2)$&nbsp; are then changed in the block outlined in red by complex rotation factors with respect to phase:
:$$D_2(\mu) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}, \hspace{0.2cm}{\rm wobei}\hspace{0.1cm}w =
+
:$$D_2(\mu) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}, \hspace{0.2cm}{\rm with}\hspace{0.1cm}w =
 
  {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N} \hspace{0.05cm}.$$  
 
  {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N} \hspace{0.05cm}.$$  
*Jeder einzelne '''Butterfly''' im blau umrandeten Block liefert durch Addition bzw. Subtraktion zwei Elemente der gesuchten Ausgangsfolge. Mit $0 \le \mu \lt N/2$ gilt dabei:
+
*Each single&nbsp; &raquo;'''butterfly'''&laquo;&nbsp; in the blue bordered block&nbsp; $($in the middle of the graph$)$&nbsp; yields two elements of the searched sequence by addition or subtraction.&nbsp; With&nbsp; $0 \le \mu \lt N/2$&nbsp; applies:
:$$\begin{align*}D(\mu) & =  {1}/{2}\cdot \left[D_1(\mu) + D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\right],\\
+
:$$D(\mu) =  {1}/{2}\cdot \big[D_1(\mu) + D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big],$$
D(\mu +{N}/{2}) & =  {1}/{2}\cdot \left[D_1(\mu) - D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\right]\hspace{0.05cm}.\end{align*}$$  
+
:$$D(\mu +{N}/{2}) =  {1}/{2}\cdot \big[D_1(\mu) - D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big]\hspace{0.05cm}.$$  
Durch diese erste Anwendung des Überlagerungssatzes halbiert sich somit in etwa der Rechenaufwand.
+
 
 +
'''This first application of the superposition theorem thus roughly halves the computational effort.'''
  
  {{Beispiel}}  
+
{{GraueBox|TEXT=  
Die DFT–Koeffizienten $d(\nu)$ zur Beschreibung des Zeitverlaufs seien entsprechend der Zeile 2 der folgenden Tabelle „dreieckförmig” belegt. Beachten Sie hierbei die periodische Fortsetzung der DFT, so dass der lineare Anstieg für $t \lt 0$ durch die Koeffizienten $d(9) ... d(15)$ ausgedrückt wird.
+
$\text{Example 1:}$&nbsp;
 +
Let the DFT coefficients&nbsp; $d(\nu)$&nbsp; for the description of the time course be&nbsp; "triangular"&nbsp; according to&nbsp; '''line 2'''&nbsp; of the following table.&nbsp; Note here the periodic continuation of the DFT,&nbsp; so that the linear increase for&nbsp; $t \lt 0$&nbsp; is given by the coefficients&nbsp; $d(8), \hspace{0.05cm}\text{ ...} \hspace{0.05cm}, d(15)$.
  
Durch Anwendung des DFT–Algorithmus mit $N = 16$ erhält man die in der ebenfalls blau hinterlegten Zeile 3 angegebenen Spektralkoeffizienten $D(\mu )$, die bei Vernachlässigung des Aliasingfehlers gleich $D(\mu ) = 4 \cdot \text{si}^2(\pi \cdot \mu/2)$ wären. Man erkennt, dass sich der Aliasingfehler nur auf die ungeradzahligen Koeffizienten auswirkt (schraffierte Felder). Beispielsweise müsste $D$(1) = 16/ $\pi^2 \approx$ 1.621 $\neq$ 1.642 sein.
+
Applying the DFT algorithm with&nbsp; $N = 16$&nbsp; one obtains the spectral coefficients&nbsp; $D(\mu )$&nbsp; given in&nbsp; '''line 3'''&nbsp; which would be equal&nbsp; $D(\mu ) = 4 \cdot \text{sinc}^2(\mu/2)$&nbsp; if the aliasing error were neglected.&nbsp; We can see that the aliasing error only affects the odd coefficients&nbsp; $($shaded boxes$)$.&nbsp; For example,&nbsp; $D(1) = 16/ \pi^2 \approx 1.621\neq 1.642$&nbsp; should be.
  
[[File:P_ID1171__Sig_T_5_5_S2b_v3.png|Beispiel 1 zum Überlagerungssatz der DFT]]
+
[[File:Sig_T_5_5_S2b_Version2.png|right|frame|Result table for &nbsp;$\text{Example 1}$&nbsp; for the superposition theorem of the DFT&nbsp; $($Note: "Zeile" &nbsp; &rArr;&nbsp; "row"$)$]]
  
Spaltet man die Gesamtfolge $\langle d(\nu)\rangle$ in zwei Teilfolgen $\langle {d_1}'(\nu)\rangle$ und $\langle {d_2}'(\nu)\rangle$ auf, und zwar derart, dass die erste (gelb hinterlegte) Teilfolge nur geradzahlige Koeffizienten ($\nu = 0, 2, ... , N–2$) und die zweite (grün hinterlegt) nur ungeradzahlige Koeffizienten ($\nu = 1, 3, ... , N–1$) beinhalten und alle anderen zu 0 gesetzt sind, so erhält man die zugehörigen Folgen im Spektralbereich:
+
If we split the total sequence&nbsp; $\langle \hspace{0.03cm}d(\nu)\hspace{0.03cm}\rangle$&nbsp; into two subsequences  such that the first subsequence&nbsp; $\langle \hspace{0.03cm}{d_1}'(\nu)\hspace{0.03cm}\rangle$ &nbsp; &rArr; &nbsp; yellow marked has only even coefficients&nbsp; $(\nu = 0, 2, \hspace{0.03cm}\text{ ...} \hspace{0.1cm}, N–2)$&nbsp;  and the second subsequence&nbsp; $\langle \hspace{0.03cm}{d_2}'(\nu)\hspace{0.03cm}\rangle$&nbsp; &rArr; &nbsp; green marked contains only odd coefficients&nbsp; $(\nu = 1, 3, \hspace{0.03cm}\text{ ...} \hspace{0.1cm} , N-1)$&nbsp; and all others are set to zero.&nbsp; The corresponding sequences in the spectral domain are obtained:
 
   
 
   
:$$ \langle {D_1}'(\mu) \rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle {d_1}'(\nu) \rangle , \hspace{0.2cm}
+
:$$ \langle \hspace{0.03cm}{D_1}'(\mu)\hspace{0.03cm} \rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm} {d_1}'(\nu) \hspace{0.03cm}\rangle , $$
\langle {D_2}'(\mu) \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle {d_2}'(\nu) \rangle \hspace{0.05cm}.$$
+
:$$ \langle \hspace{0.03cm}{D_2}'(\mu) \hspace{0.03cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle\hspace{0.03cm} {d_2}'(\nu) \rangle \hspace{0.03cm}\hspace{0.05cm}.$$
  
In den gelb bzw. grün hinterlegten Zeilen $4 ... 7$ erkennt man:
+
In the yellow or green lines&nbsp; $4\hspace{0.05cm}\text{ ...} \hspace{0.05cm}7$&nbsp; you can see:
*Wegen $d(\nu) = {d_1}'(\nu) + {d_2}'(\nu)$ gilt auch $D(\mu ) = {D_1}'(\mu ) + {D_2}'(\mu )$. Dies lässt sich zum Beispiel mit dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Multiplikation_mit_Faktor_-_Additionssatz|Additionstheorem linearer Systeme]] begründen.
+
*Because of&nbsp; $d(\nu) = {d_1}'(\nu) + {d_2}'(\nu)$&nbsp; also holds&nbsp;
*Die Periode der Folge $\langle {D_1}'(\mu )\rangle$ beträgt aufgrund des Nullsetzens eines jeden zweiten Zeitkoeffizienten nun $N/2$ im Gegensatz zur Periode $N$ der Ursprungsfolge $\langle D(\mu )\rangle$:
+
:$$D(\mu ) = {D_1}'(\mu ) + {D_2}'(\mu ).$$  
 +
:This can be justified,&nbsp; for example,&nbsp; with the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Multiplication_with_a_factor_-_Addition_Theorem|&raquo;Addition Theorem of Linear Systems&laquo;]].
 +
*The period of the sequence&nbsp; $\langle \hspace{0.03cm}{D_1}'(\mu )\hspace{0.03cm}\rangle$&nbsp; due to the zeroing of every second time coefficient is now&nbsp; $N/2$&nbsp; unlike the period&nbsp; $N$&nbsp; of the sequence&nbsp; $\langle \hspace{0.03cm} D(\mu )\hspace{0.03cm}\rangle$:
 
:$${D_1}'(\mu + {N}/{2}) ={D_1}'(\mu)\hspace{0.05cm}.$$  
 
:$${D_1}'(\mu + {N}/{2}) ={D_1}'(\mu)\hspace{0.05cm}.$$  
* $\langle {D_2}'(\mu )\rangle$ beinhaltet zusätzlich einen Phasenfaktor (Verschiebung um einen Abtastwert), der einen Vorzeichenwechsel zweier um $N/2$ auseinanderliegender Koeffizienten bewirkt:
+
* The sequence&nbsp; $\langle \hspace{0.03cm} {D_2}'(\mu )\hspace{0.03cm}\rangle$&nbsp; additionally contains a phase factor&nbsp; $($shift by one sample$)$&nbsp; which causes a sign change of two coefficients separated by&nbsp; $N/2$:
:$${D_2}'(\mu + {N}/{2}) =-{D_2}'(\mu)\hspace{0.05cm}.$$  
+
:$${D_2}'(\mu + {N}/{2}) = - {D_2}'(\mu)\hspace{0.05cm}.$$  
*Die Berechnung von $\langle {D_1}'(\mu )\rangle$ und $\langle {D_2}'(\mu )\rangle$ ist aber jeweils ebenso aufwändig wie die Bestimmung von $\langle D(\mu )\rangle$ , da $\langle {d_1}'(\nu)\rangle$ und $\langle {d_2}'(\nu)\rangle$ ebenfalls aus $N$ Elementen bestehen, auch wenn einige 0 sind.  
+
*The calculation of&nbsp; $\langle \hspace{0.03cm}{D_1}'(\mu )\hspace{0.03cm}\rangle$&nbsp; and&nbsp; $\langle \hspace{0.03cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$&nbsp; is,&nbsp; however,&nbsp; in each case as time-consuming as the determination of&nbsp; $\langle \hspace{0.03cm}D(\mu )\hspace{0.03cm}\rangle$,&nbsp; since&nbsp; $\langle \hspace{0.03cm}{d_1}'(\nu)\hspace{0.03cm}\rangle$&nbsp; and&nbsp; $\langle \hspace{0.03cm}{d_2}'(\nu)\hspace{0.03cm}\rangle$&nbsp;  also consist of&nbsp; $N$&nbsp; elements,&nbsp; even if half of them are zeros.}}
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp;
 +
To continue the first example, the previous table is now extended by the rows &nbsp;$8$&nbsp; to &nbsp;$12$&nbsp;.
 +
                     
 +
[[File:EN_Sig_T_5_5_S2c.png|right|frame|Result table for &nbsp;$\text{Example 2}$&nbsp; for the superposition theorem of the DFT]]
 +
 
 +
Omitting the coefficients&nbsp; ${d_1}'(\nu) = 0$&nbsp; with odd indices and&nbsp; ${d_2}'(\nu) = 0$&nbsp; with even indices,&nbsp; we arrive at the subsequences&nbsp; $\langle \hspace{0.03cm}d_1(\nu)\hspace{0.03cm}\rangle$&nbsp; and&nbsp; $\langle \hspace{0.03cm}d_2(\nu)\hspace{0.03cm}\rangle$&nbsp; corresponding to lines &nbsp;$9$&nbsp; and &nbsp;$11$.&nbsp;
  
{{end}}                        
+
You can see:
 +
*The time sequences&nbsp; $\langle \hspace{0.03cm}{d_1}(\nu )\hspace{0.03cm}\rangle$&nbsp; and&nbsp; $\langle \hspace{0.03cm}{d_2}(\nu )\hspace{0.03cm}\rangle$&nbsp; exhibit as well as the corresponding spectral sequences&nbsp; $\langle \hspace{0.03cm}{D_1}(\mu )\hspace{0.03cm}\rangle$&nbsp; and&nbsp; $\langle \hspace{0.03cm}{D_2}(\mu )\hspace{0.03cm}\rangle$&nbsp; only have the dimension&nbsp; $(N/2)$.
  
{{Beispiel}}
+
*A comparison of the lines&nbsp; $5$,&nbsp; $7$,&nbsp; $10$&nbsp; and&nbsp; $12$&nbsp; shows the following relationship for&nbsp; $0 \le \mu \lt N/2$&nbsp;:
Verzichtet man auf die Koeffizienten $d_1'(ν)$ = 0 mit ungeraden sowie auf $d_2'(ν)$ = 0 mit geraden Indizes, so kommt man zu den Teilfolgen $\langle d_1(ν)\rangle$ und $\langle d_2(ν)\rangle$ ⇒  Zeilen 9 und 11. Man erkennt:
+
:$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu)\hspace{0.05cm},$$
*Die beiden Zeitfolgen 〈d1(ν)〉 und 〈d2(ν)〉 weisen damit ebenso wie die dazugehörigen Spektralfolgen 〈D1(μ)〉 und 〈D2(μ)〉 nur noch die Dimension N/2 auf.
+
:$$ {D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu)\cdot w^{\hspace{0.04cm}\mu}\hspace{0.05cm}.$$  
*Ein Vergleich der Zeilen 5, 7, 10 und 12 zeigt für 0 ≤ $\mu$ < $N$/2 folgenden Zusammenhang:
+
*Correspondingly,&nbsp; for&nbsp; $N/2 \le \mu \lt N$:
$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu),\hspace{0.35cm}
+
:$${D_1}'(\mu) =  {1}/{2}\cdot {D_1}(\mu - {N}/{2})\hspace{0.05cm},$$
{D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu)\cdot w^{\hspace{0.04cm}\mu}\hspace{0.05cm}.$$  
+
:$$ {D_2}'(\mu) =  {1}/{2}\cdot {D_2}(\mu {-} {N}/{2})\cdot w^{\hspace{0.04cm}\mu}$$
*Entsprechend erhält man für $N$/2 ≤ $\mu$ < $N$:
+
:$$ \Rightarrow \hspace{0.3cm}{D_2}'(\mu) = { - } {1}/{2}\cdot {D_2}(\mu-N/2)\cdot w^{\hspace{0.04cm}\mu {-} N/2}\hspace{0.05cm}.$$
$$\begin{align*}{D_1}'(\mu) \hspace{-0.2cm} & \hspace{-0.2cm}{1}/{2}\cdot {D_1}(\mu-{N}/{2}),\\
+
 
{D_2}'(\mu) \hspace{-0.2cm}& \hspace{-0.2cm}{1}/{2}\cdot {D_2}(\mu-{N}/{2})\cdot w^{\hspace{0.04cm}\mu}
+
*For example,&nbsp; with&nbsp; $N = 16$ &nbsp; &nbsp; $w = {\rm e}^{ - {\rm j}\hspace{0.04cm} \cdot \hspace{0.04cm}\pi/8}$&nbsp; for the indices&nbsp; $\mu = 1$&nbsp; respectively&nbsp; $\mu = 9$:&nbsp;
=-{1}/{2}\cdot {D_2}(\mu-{N}/{2})\cdot w^{\hspace{0.04cm}\mu- N/2}\hspace{0.05cm}.\end{align*}$$  
+
:$${D_1}'(1)  =  {1.708}/{2} = 0.854,\hspace{0.8cm}
*Zum Beispiel erhält man mit $N$ = 16 $w$ = exp(–j $\cdot \pi$/8) für die Indizes $\mu$ = 1 bzw. $\mu$ = 9:
+
  {D_2}'(1) ={1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}
$${D_1}'(1)  =  {1.708}/{2} = 0.854,\hspace{0.2cm}
 
  {D_2}'(1) ={1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}
 
 
  \pi/8} = 0.788$$
 
  \pi/8} = 0.788$$
$$\Rightarrow  D(1) = {D_1}'(1)+ {D_2}'(1)= 1.642 \hspace{0.05cm}.$$  
+
:$$\Rightarrow  D(1) = {D_1}'(1)+ {D_2}'(1)= 1.642 \hspace{0.05cm}.$$  
$${D_9}'(1)  =  {1.708}/{2} = 0.854,\hspace{0.15cm}
+
:$${D_9}'(1)  =  {1.708}/{2} = 0.854,\hspace{0.8cm}
  {D_2}'(9) =-{1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}
+
  {D_2}'(9) = - {1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}
  \pi/8} = -0.788$$
+
  \pi/8} = - 0.788$$
$$\Rightarrow  D(9) = {D_1}'(9)+ {D_2}'(9)= 0.066 \hspace{0.05cm}.$$
+
:$$\Rightarrow  D(9) = {D_1}'(9)+ {D_2}'(9)= 0.066 \hspace{0.05cm}.$$}}
 +
  
[[File:P_ID1172__Sig_T_5_5_S2c_v1.png|Beispiel 2 zum Überlagerungssatz der DFT]]
+
{{BlaueBox|TEXT=
 +
$\text{Conclusion:}$&nbsp; 
 +
*This first application of the superposition theorem almost halves the computational effort.
 +
 +
*Instead of&nbsp; $\mathcal{O}= 1920$&nbsp; one only needs &nbsp;$\mathcal{O} = 2 - 448 + 8 \cdot (4+2) + 16 \cdot 2 = 976$&nbsp; real operations.
 +
 +
*The first summand accounts for the two DFT calculations with&nbsp; $N/2 = 8$.
 +
 +
*The remainder is needed for the eight complex multiplications and the&nbsp; $16$&nbsp; complex additions and subtractions, respectively.}}
  
{{end}}
+
==Radix-2 algorithm according to Cooley and Tukey== 
 +
<br>
 +
Like other FFT algorithms,&nbsp; the method &nbsp; [CT65]<ref name ='CT65'>Cooley, J.W.; Tukey, J.W.:&nbsp; An Algorithm for the Machine Calculation of Complex Fourier Series.&nbsp; <br>In:&nbsp; Mathematics of Computation, Vol. 19, No. 90. (Apr., 1965), pp. 297-301.</ref>&nbsp;  from &nbsp; [https://en.wikipedia.org/wiki/James_Cooley &raquo;$\text{James W. Cooley}$&laquo;]&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/John_Tukey &raquo;$\text{John W. Tukey}$&laquo;]&nbsp; is based on the superposition theorem of the DFT.&nbsp; It only works if the number of interpolation points is a power of two.
 +
 
 +
The diagram illustrates the algorithm for&nbsp; $N = 8$,&nbsp; again showing the transformation from the time to the frequency domain.
 +
[[File:EN_Sig_T_5_5_S3a.png|right|frame|Radix-2 algorithm&nbsp; $($flow diagram$)$;&nbsp; note:&nbsp; "level"&nbsp; and&nbsp; stage" are synonymous terms]]
 +
 
 +
*Before the FFT algorithm,&nbsp; the input values&nbsp; $d(0), \hspace{0.05cm}\text{...} \hspace{0.1cm}, d( N - 1)$&nbsp; have to be reordered in the grey block&nbsp; &raquo;Bit Reversal Operation&laquo;.
 
   
 
   
 +
*The computation is done in&nbsp; $\text{log}_2 N = 3$&nbsp; stages,&nbsp; where in each stage&nbsp; $N/2 = 4$&nbsp; equal computations are performed with different&nbsp; $\mu$&ndash;values as exponent of the complex rotation factor.&nbsp; Such a basic operation is called&nbsp; &raquo;'''butterfly'''&laquo;.
 +
 +
*Each butterfly calculates from two&nbsp; $($generally complex$)$&nbsp; input variables&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; the two output variables&nbsp; $A + B \cdot w^{\mu}$&nbsp; and&nbsp; $A - B \cdot w^{\mu}$&nbsp; according to the following sketch.
  
Durch diese erste Anwendung des Überlagerungssatzes halbiert sich nahezu der Rechenaufwand. Statt $\mathcal{O}$ = 1920 benötigt man nur $\mathcal{O}$ = 2 · 448 + 8 · (4+2) + 16 · 2 = 976 reelle Operationen. Der erste Summand berücksichtigt die beiden DFT–Berechnungen mit $N$/2 = 8, der Rest die acht komplexen Multiplikationen und die 16 komplexen Additionen bzw. Subtraktionen.
 
  
==Radix-2-Algorithmus nach Cooley und Tukey== 
+
[[File:P_ID1174__Sig_T_5_5_S3b_neu.png|center|frame|Butterfly of the DFT algorithm]]
+
<br clear=all>
Ebenso wie andere FFT–Algorithmen baut das hier vorgestellte Verfahren von Cooley und Tukey auf dem Überlagerungssatz der DFT auf. Es funktioniert nur dann, wenn die Stützstellenzahl $N$ eine Zweierpotenz ist. Das folgende Bild verdeutlicht den Algorithmus – siehe auch [CT65] – für das Beispiel $N$ = 8, wobei die Transformation vom Zeit– in den Frequenzbereich dargestellt ist.
+
{{BlaueBox|TEXT=
 +
$\text{Conclusion:}$&nbsp; 
 +
The complex spectral coefficients&nbsp; $D(0), \hspace{0.05cm}\text{...} \hspace{0.1cm}, D( N - 1)$&nbsp; are obtained at the output of the last stage after division by&nbsp; $N$.  
 +
*As shown in&nbsp; [[Aufgaben:Exercise_5.5Z:_Complexity_of_the_FFT|$\text{Exercise 5.5Z}$]],&nbsp;  this results in a much shorter computation time compared to the DFT,&nbsp; for example for&nbsp; $N = 1024$&nbsp; by more than a factor $150$.
  
[[File:P_ID1173__Sig_T_5_5_S3a_neu.png|Radix-2-Algorithmus (Flussdiagramm)]]
+
*The inverse DFT for calculating the time coefficients from the spectral coefficients is done with the same algorithm and only slight modifications.}}
  
Vor dem eigentlichen FFT-Algorithmus müssen die Eingangswerte $d$(0), ... , $d$( $N$–1) im grauen Block Bitumkehroperation umsortiert werden. Weiter erkennt man aus obiger Darstellung:
 
*Die Berechnung erfolgt in $\text{log}_2 N$ = 3 Stufen, wobei in jeder Stufe genau $N$/2 = 4 prinzipiell gleiche Berechnungen mit unterschiedlichem $\mu$ (= Exponent des komplexen Drehfaktors) ausgeführt werden. Eine solche Basisoperation bezeichnet man auch als Butterfly.
 
*Jeder Butterfly berechnet aus zwei (im Allgemeinen komplexen) Eingangsgrößen $A$ und $B$ die beiden Ausgangsgrößen $A + B \cdot w\mu$ sowie $A – B \cdot w\mu$ entsprechend folgender Skizze:
 
  
[[File:P_ID1174__Sig_T_5_5_S3b_neu.png|Butterfly des DFT-Algorithmus]]
+
{{GraueBox|TEXT=
 +
$\text{Example 3:}$&nbsp; 
 +
Finally,&nbsp; the C program&nbsp; $\text{fft(N, Re, Im)}$&nbsp; according to the Radix-2 algorithm described above is given:
 +
[[File:EN_Sig_Programm.png|right|frame|Radix-2 algorithm (C program)]]
  
*Die komplexen Spektralkoeffizienten $D$(0), ... , $D$( $N$–1) erhält man am Ausgang der letzten Stufe nach Division durch $N$. Wie in Aufgabe Z5.5 gezeigt wird, ergibt sich gegenüber der DFT eine deutlich kürzere Rechenzeit – z.B. für $N$ = 1024 um mehr als den Faktor 150.
+
*The two float arrays&nbsp; &raquo;Re&laquo;&nbsp; and&nbsp; &raquo;Im&raquo;&nbsp; contain the&nbsp; $N$&nbsp; real and imaginary parts of the complex time coefficients&nbsp; $d(0)$, ... , $d( N - 1)$.
Die inverse DFT zur Berechnung der Zeitkoeffizienten aus den Spektralkoeffizienten lässt sich mit dem gleichen Algorithmus und nur geringfügigen Modifizierungen bewerkstelligen.
 
  
 +
*In the same fields&nbsp; &raquo;Re&laquo;&nbsp; and&nbsp; &raquo;Im&raquo;&nbsp; the complex coefficients&nbsp; $D(0)$, ... , $D( N - 1)$&nbsp; are returned to the main program.
  
Nachfolgend sehen Sie das C–Programm '''fft(N, Re, Im)''' gemäß dem oben beschriebenen Radix–2–Algorithmus:
+
*Due to the&nbsp; &raquo;in-place&nbsp; programming&laquo;, &nbsp; $N$&nbsp; complex storage elements are thus sufficient for this algorithm but only if the input values are reordered at the beginning.
  
[[File:P_ID1175__Sig_T_5_5_S3c_neu.png|Radix-2-Algorithmus (C-Programm)]]
+
*This is done by the program&nbsp; &raquo;bit-reversal&laquo;,&nbsp; where the contents of&nbsp; ${\rm Re}( \nu)$&nbsp; and&nbsp; ${\rm Im}( \nu)$&nbsp; are entered into the elements&nbsp; ${\rm Re}( \kappa)$&nbsp; and&nbsp; ${\rm Im}( \kappa)$.&nbsp; $\text{Example 4}$&nbsp; illustrates this procedure.}}
 +
<br clear=all>
  
*Beim Aufruf beinhalten die beiden Float–Arrays „Re” und „Im” die jeweils $N$ Real– und Imaginärteile der komplexen Zeitkoeffizienten $d$(0), ... , $d$( $N$ – 1).
+
{{GraueBox|TEXT=
*In den gleichen Feldern „Re” und „Im” werden die N komplexen Spektralkoeffizienten $D$(0), ... , $D$( $N$–1) am Programmende an das aufrufende Programm zurückgegeben.
+
[[File:EN_Sig_T_5_5_S3d_v2.png|100px|right|frame|Radix-2 algorithm $($Bit-reversal operation for&nbsp; $N = 8)$]]
*Aufgrund dieser „In–Place”–Programmierung reichen für diesen Algorithmus $N$ komplexe Speicherplätze aus, allerdings nur, wenn zu Beginn die Eingangswerte umsortiert werden.
+
$\text{Example 4: Bit-reversal operation}$&nbsp;
*Dies geschieht durch das Programm „bitumkehr”, wobei die Inhalte von Re( $\nu$) und Im( $\nu$) in die Elemente Re( $\kappa$) und Im( $\kappa$) eingetragen werden. Die folgende Tabelle gilt für $N$ = 8.
 
  
[[File:P_ID1176__Sig_T_5_5_S3d_neu.png|Radix-2-Algorithmus (Bitumkehroperation)]]
+
#The new index&nbsp; $\kappa$&nbsp; is obtained by writing the index&nbsp; $\nu$&nbsp; as a dual number and then representing the&nbsp; $\text{log}_2 \hspace{0.05cm} N$&nbsp; bits in reverse order.<br><br>
 +
#For example,&nbsp; $\nu = 3$&nbsp; becomes the new index&nbsp; $\kappa = 6$.}}
  
Schreibt man den Index $\nu$ als Dualzahl und stellt die $\text{log}_2 N$ Bits in umgekehrter Reihenfolge dar, so ergibt sich der neue Index $\kappa$. Beispielsweise wird so aus $\nu$ = 3 der neue Index $\kappa$ = 6.
 
  
 +
==Exercises for the chapter== 
 +
<br>
 +
[[Aufgaben:Exercise 5.5: Fast Fourier Transform|Exercise 5.5: Fast Fourier Transform]]
  
==Aufgabe zum Kapitel== 
+
[[Aufgaben:Exercise 5.5Z: Complexity of The FFT|Exercise 5.5Z: Complexity of the FFT]]
  
[[Aufgaben:5.5 Fast-Fouriertransformation|A5.5 Fast-Fouriertransformation]]
+
==References==
  
  

Latest revision as of 15:38, 28 June 2023

Complexity of DFT and IDFT


A disadvantage of the direct calculation of the  $($generally complex$)$  DFT sequences

$$\langle \hspace{0.03cm}D(\mu)\hspace{0.03cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm}d(\nu)\hspace{0.03cm} \rangle$$

according to the equations given in chapter  »Discrete Fourier Transform»  $\rm (DFT)$  is the large computational cost.

We consider as an example the DFT,  i.e. the calculation of the  $D(\mu)$  coefficients from the  $d(\nu)$  coefficients:

$$N \cdot D(\mu) = \sum_{\nu = 0 }^{N-1} d(\nu) \cdot {w}^{\hspace{0.03cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} = d(0) \cdot w^{\hspace{0.03cm}0} + d(1) \cdot w^{\hspace{0.03cm}\mu}+ d(2) \cdot w^{\hspace{0.03cm}2\mu}+\hspace{0.05cm}\text{ ...} \hspace{0.05cm}+ d(N-1) \cdot w^{\hspace{0.03cm}(N-1)\cdot \mu}.$$

The computational effort required for this is to be estimated,  assuming that the powers of the complex rotation factor  $w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N}$  already exist in real and imaginary part form in a lookup table.  To calculate a single coefficient,  one then needs  $N-1$  complex multiplications and as many complex additions,  observing:

  • Each complex addition requires two real additions:
$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 + R_2) + {\rm j} \cdot (I_1 + I_2)\hspace{0.05cm}.$$
  • Each complex multiplication requires four real multiplications and two real additions  $($a subtraction is treated as an addition$)$:
$$(R_1 + {\rm j} \cdot I_1) (R_2 + {\rm j} \cdot I_2) = (R_1 \cdot R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot I_1)\hspace{0.05cm}.$$
  • Thus,  the following number of real multiplications and the number of real additions are required to calculate all  $N$  coefficients in total:
$$M = 4 \cdot N \cdot (N-1),$$
$$A = 2 \cdot N \cdot (N-1)+2 \cdot N \cdot (N-1)=M \hspace{0.05cm}.$$
  • In today's computers,  multiplications and additions/subtractions need about the same computing time.  It is sufficient to consider the total number  $\mathcal{O} = M + A$  of all operations:
$$\mathcal{O} = 8 \cdot N \cdot (N-1) \approx 8 \cdot N^2\hspace{0.05cm}.$$

$\text{Conclusion:}$ 

  • For a  Discrete Fourier Transform  $\rm (DFT)$  with  $N = 1000$  one already needs almost eight million arithmetic operations.  The same applies to an IDFT.
  • With  $N =16$  still  $1920$  computational operations are required.
  • If the parameter  $N$  is a power to the base  $2$,  more computationally efficient algorithms can be applied.  The multitude of such methods known from the literature are summarized under the collective term  »Fast Fourier Transform«  – abbreviated  $\text{FFT}$.  All these methods are based on the  »superposition theorem«  of the DFT.

Superposition theorem of the DFT


The graph illustrates the so-called  »superposition theorem«  of the DFT using the example of» $N = 16$.  Shown here is the transition from the time domain to the spectral domain,  i.e. the calculation of the spectral domain coefficients from the time domain coefficients:   $\langle \hspace{0.03cm}D(\mu)\hspace{0.03cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm} d(\nu) \hspace{0.03cm}\rangle.$

Superposition theorem of the DFT

The algorithm described thereby is characterized by the following steps:

  • The sequence  $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$  of length  $N$  is divided into two subsequences  $\langle \hspace{0.03cm} d_1(\nu)\hspace{0.03cm}\rangle$  and  $\langle \hspace{0.03cm} d_2(\nu)\hspace{0.03cm}\rangle$  each of half length  $($highlighted in yellow and green respectively in the graphic$)$.  With  $0 \le \nu \lt N/2$  one thus obtains the sequence elements
$$d_1(\nu) = d(2\nu), $$
$$d_2(\nu) = d(2\nu+1) \hspace{0.05cm}.$$
  • The initial sequences  $\langle \hspace{0.03cm}D_1(\mu )\hspace{0.03cm}\rangle$  and  $\langle \hspace{0.03cm}D_2(\mu )\hspace{0.03cm}\rangle$  of the two sub-blocks result from this each by its own DFT,  but now only with half length  $N/2 = 8$:
$$\langle \hspace{0.03cm}D_1(\mu) \hspace{0.03cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm}d_1(\nu) \hspace{0.03cm}\rangle , $$
$$ \langle \hspace{0.03cm}D_2(\mu)\hspace{0.03cm} \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm}d_2(\nu) \hspace{0.03cm}\rangle \hspace{0.05cm}.$$
  • The initial values  $\langle \hspace{0.03cm} D_2(\mu )\hspace{0.03cm}\rangle$  of the lower (green) DFT $($with  $0 \le \mu \lt N/2)$  are then changed in the block outlined in red by complex rotation factors with respect to phase:
$$D_2(\mu) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}, \hspace{0.2cm}{\rm with}\hspace{0.1cm}w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N} \hspace{0.05cm}.$$
  • Each single  »butterfly«  in the blue bordered block  $($in the middle of the graph$)$  yields two elements of the searched sequence by addition or subtraction.  With  $0 \le \mu \lt N/2$  applies:
$$D(\mu) = {1}/{2}\cdot \big[D_1(\mu) + D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big],$$
$$D(\mu +{N}/{2}) = {1}/{2}\cdot \big[D_1(\mu) - D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big]\hspace{0.05cm}.$$

This first application of the superposition theorem thus roughly halves the computational effort.

$\text{Example 1:}$  Let the DFT coefficients  $d(\nu)$  for the description of the time course be  "triangular"  according to  line 2  of the following table.  Note here the periodic continuation of the DFT,  so that the linear increase for  $t \lt 0$  is given by the coefficients  $d(8), \hspace{0.05cm}\text{ ...} \hspace{0.05cm}, d(15)$.

Applying the DFT algorithm with  $N = 16$  one obtains the spectral coefficients  $D(\mu )$  given in  line 3  which would be equal  $D(\mu ) = 4 \cdot \text{sinc}^2(\mu/2)$  if the aliasing error were neglected.  We can see that the aliasing error only affects the odd coefficients  $($shaded boxes$)$.  For example,  $D(1) = 16/ \pi^2 \approx 1.621\neq 1.642$  should be.

Result table for  $\text{Example 1}$  for the superposition theorem of the DFT  $($Note: "Zeile"   ⇒  "row"$)$

If we split the total sequence  $\langle \hspace{0.03cm}d(\nu)\hspace{0.03cm}\rangle$  into two subsequences such that the first subsequence  $\langle \hspace{0.03cm}{d_1}'(\nu)\hspace{0.03cm}\rangle$   ⇒   yellow marked has only even coefficients  $(\nu = 0, 2, \hspace{0.03cm}\text{ ...} \hspace{0.1cm}, N–2)$  and the second subsequence  $\langle \hspace{0.03cm}{d_2}'(\nu)\hspace{0.03cm}\rangle$  ⇒   green marked contains only odd coefficients  $(\nu = 1, 3, \hspace{0.03cm}\text{ ...} \hspace{0.1cm} , N-1)$  and all others are set to zero.  The corresponding sequences in the spectral domain are obtained:

$$ \langle \hspace{0.03cm}{D_1}'(\mu)\hspace{0.03cm} \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm} {d_1}'(\nu) \hspace{0.03cm}\rangle , $$
$$ \langle \hspace{0.03cm}{D_2}'(\mu) \hspace{0.03cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle\hspace{0.03cm} {d_2}'(\nu) \rangle \hspace{0.03cm}\hspace{0.05cm}.$$

In the yellow or green lines  $4\hspace{0.05cm}\text{ ...} \hspace{0.05cm}7$  you can see:

  • Because of  $d(\nu) = {d_1}'(\nu) + {d_2}'(\nu)$  also holds 
$$D(\mu ) = {D_1}'(\mu ) + {D_2}'(\mu ).$$
This can be justified,  for example,  with the  »Addition Theorem of Linear Systems«.
  • The period of the sequence  $\langle \hspace{0.03cm}{D_1}'(\mu )\hspace{0.03cm}\rangle$  due to the zeroing of every second time coefficient is now  $N/2$  unlike the period  $N$  of the sequence  $\langle \hspace{0.03cm} D(\mu )\hspace{0.03cm}\rangle$:
$${D_1}'(\mu + {N}/{2}) ={D_1}'(\mu)\hspace{0.05cm}.$$
  • The sequence  $\langle \hspace{0.03cm} {D_2}'(\mu )\hspace{0.03cm}\rangle$  additionally contains a phase factor  $($shift by one sample$)$  which causes a sign change of two coefficients separated by  $N/2$:
$${D_2}'(\mu + {N}/{2}) = - {D_2}'(\mu)\hspace{0.05cm}.$$
  • The calculation of  $\langle \hspace{0.03cm}{D_1}'(\mu )\hspace{0.03cm}\rangle$  and  $\langle \hspace{0.03cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$  is,  however,  in each case as time-consuming as the determination of  $\langle \hspace{0.03cm}D(\mu )\hspace{0.03cm}\rangle$,  since  $\langle \hspace{0.03cm}{d_1}'(\nu)\hspace{0.03cm}\rangle$  and  $\langle \hspace{0.03cm}{d_2}'(\nu)\hspace{0.03cm}\rangle$  also consist of  $N$  elements,  even if half of them are zeros.


$\text{Example 2:}$  To continue the first example, the previous table is now extended by the rows  $8$  to  $12$ .

Result table for  $\text{Example 2}$  for the superposition theorem of the DFT

Omitting the coefficients  ${d_1}'(\nu) = 0$  with odd indices and  ${d_2}'(\nu) = 0$  with even indices,  we arrive at the subsequences  $\langle \hspace{0.03cm}d_1(\nu)\hspace{0.03cm}\rangle$  and  $\langle \hspace{0.03cm}d_2(\nu)\hspace{0.03cm}\rangle$  corresponding to lines  $9$  and  $11$. 

You can see:

  • The time sequences  $\langle \hspace{0.03cm}{d_1}(\nu )\hspace{0.03cm}\rangle$  and  $\langle \hspace{0.03cm}{d_2}(\nu )\hspace{0.03cm}\rangle$  exhibit as well as the corresponding spectral sequences  $\langle \hspace{0.03cm}{D_1}(\mu )\hspace{0.03cm}\rangle$  and  $\langle \hspace{0.03cm}{D_2}(\mu )\hspace{0.03cm}\rangle$  only have the dimension  $(N/2)$.
  • A comparison of the lines  $5$,  $7$,  $10$  and  $12$  shows the following relationship for  $0 \le \mu \lt N/2$ :
$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu)\hspace{0.05cm},$$
$$ {D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu)\cdot w^{\hspace{0.04cm}\mu}\hspace{0.05cm}.$$
  • Correspondingly,  for  $N/2 \le \mu \lt N$:
$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu - {N}/{2})\hspace{0.05cm},$$
$$ {D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu {-} {N}/{2})\cdot w^{\hspace{0.04cm}\mu}$$
$$ \Rightarrow \hspace{0.3cm}{D_2}'(\mu) = { - } {1}/{2}\cdot {D_2}(\mu-N/2)\cdot w^{\hspace{0.04cm}\mu {-} N/2}\hspace{0.05cm}.$$
  • For example,  with  $N = 16$   ⇒   $w = {\rm e}^{ - {\rm j}\hspace{0.04cm} \cdot \hspace{0.04cm}\pi/8}$  for the indices  $\mu = 1$  respectively  $\mu = 9$: 
$${D_1}'(1) = {1.708}/{2} = 0.854,\hspace{0.8cm} {D_2}'(1) ={1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi/8} = 0.788$$
$$\Rightarrow D(1) = {D_1}'(1)+ {D_2}'(1)= 1.642 \hspace{0.05cm}.$$
$${D_9}'(1) = {1.708}/{2} = 0.854,\hspace{0.8cm} {D_2}'(9) = - {1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi/8} = - 0.788$$
$$\Rightarrow D(9) = {D_1}'(9)+ {D_2}'(9)= 0.066 \hspace{0.05cm}.$$


$\text{Conclusion:}$ 

  • This first application of the superposition theorem almost halves the computational effort.
  • Instead of  $\mathcal{O}= 1920$  one only needs  $\mathcal{O} = 2 - 448 + 8 \cdot (4+2) + 16 \cdot 2 = 976$  real operations.
  • The first summand accounts for the two DFT calculations with  $N/2 = 8$.
  • The remainder is needed for the eight complex multiplications and the  $16$  complex additions and subtractions, respectively.

Radix-2 algorithm according to Cooley and Tukey


Like other FFT algorithms,  the method   [CT65][1]  from   »$\text{James W. Cooley}$«  and  »$\text{John W. Tukey}$«  is based on the superposition theorem of the DFT.  It only works if the number of interpolation points is a power of two.

The diagram illustrates the algorithm for  $N = 8$,  again showing the transformation from the time to the frequency domain.

Radix-2 algorithm  $($flow diagram$)$;  note:  "level"  and  stage" are synonymous terms
  • Before the FFT algorithm,  the input values  $d(0), \hspace{0.05cm}\text{...} \hspace{0.1cm}, d( N - 1)$  have to be reordered in the grey block  »Bit Reversal Operation«.
  • The computation is done in  $\text{log}_2 N = 3$  stages,  where in each stage  $N/2 = 4$  equal computations are performed with different  $\mu$–values as exponent of the complex rotation factor.  Such a basic operation is called  »butterfly«.
  • Each butterfly calculates from two  $($generally complex$)$  input variables  $A$  and  $B$  the two output variables  $A + B \cdot w^{\mu}$  and  $A - B \cdot w^{\mu}$  according to the following sketch.


Butterfly of the DFT algorithm


$\text{Conclusion:}$  The complex spectral coefficients  $D(0), \hspace{0.05cm}\text{...} \hspace{0.1cm}, D( N - 1)$  are obtained at the output of the last stage after division by  $N$.

  • As shown in  $\text{Exercise 5.5Z}$,  this results in a much shorter computation time compared to the DFT,  for example for  $N = 1024$  by more than a factor $150$.
  • The inverse DFT for calculating the time coefficients from the spectral coefficients is done with the same algorithm and only slight modifications.


$\text{Example 3:}$  Finally,  the C program  $\text{fft(N, Re, Im)}$  according to the Radix-2 algorithm described above is given:

Radix-2 algorithm (C program)
  • The two float arrays  »Re«  and  »Im»  contain the  $N$  real and imaginary parts of the complex time coefficients  $d(0)$, ... , $d( N - 1)$.
  • In the same fields  »Re«  and  »Im»  the complex coefficients  $D(0)$, ... , $D( N - 1)$  are returned to the main program.
  • Due to the  »in-place  programming«,   $N$  complex storage elements are thus sufficient for this algorithm but only if the input values are reordered at the beginning.
  • This is done by the program  »bit-reversal«,  where the contents of  ${\rm Re}( \nu)$  and  ${\rm Im}( \nu)$  are entered into the elements  ${\rm Re}( \kappa)$  and  ${\rm Im}( \kappa)$.  $\text{Example 4}$  illustrates this procedure.


Radix-2 algorithm $($Bit-reversal operation for  $N = 8)$

$\text{Example 4: Bit-reversal operation}$ 

  1. The new index  $\kappa$  is obtained by writing the index  $\nu$  as a dual number and then representing the  $\text{log}_2 \hspace{0.05cm} N$  bits in reverse order.

  2. For example,  $\nu = 3$  becomes the new index  $\kappa = 6$.


Exercises for the chapter


Exercise 5.5: Fast Fourier Transform

Exercise 5.5Z: Complexity of the FFT

References

  1. Cooley, J.W.; Tukey, J.W.:  An Algorithm for the Machine Calculation of Complex Fourier Series. 
    In:  Mathematics of Computation, Vol. 19, No. 90. (Apr., 1965), pp. 297-301.