Difference between revisions of "Aufgaben:Exercise 1.7: Coding for Broadband ISDN"

From LNTwww
Line 4: Line 4:
  
 
[[File:P_ID1630__Bei_A_1_7.png|right|frame|HDB3- und 1T2B-Codierung]]
 
[[File:P_ID1630__Bei_A_1_7.png|right|frame|HDB3- und 1T2B-Codierung]]
Beim herkömmlichen ISDN über Kupferleitungen wird der HDB3–Code verwendet (siehe Aufgabe A1.5). Dieser wurde vom sog. AMI–Code abgeleitet, ist wie dieser ein Pseudoternärcode, vermeidet aber mehr als drei aufeinander folgende „$0$”–Symbole, indem die strenge AMI–Codierregel bei längeren Nullfolgen bewusst verletzt wird.
+
Bei herkömmlichem ISDN über Kupferleitungen wird der HDB3–Code verwendet – siehe [[Aufgaben:Aufgabe_1.5:_HDB3–Codierung|Aufgabe 1.5]]: Dieser wurde vom so genannten  AMI–Code abgeleitet,  
 +
*ist wie dieser ein Pseudoternärcode,  
 +
*vermeidet aber mehr als drei aufeinander folgende „$0$”–Symbole,  
 +
*indem die strenge AMI–Codierregel bei längeren Nullfolgen bewusst verletzt wird.
 +
 
  
 
Die Grafik zeigt das HDB3–codierte Signal $c(t)$, das sich aus dem binären redundanzfreien Quellensignal $q(t)$ ergibt. Da im Quellensignal nicht mehr als drei aufeinanderfolgende Nullen auftreten, ist $c(t)$ identisch mit dem AMI–codierten Signal.
 
Die Grafik zeigt das HDB3–codierte Signal $c(t)$, das sich aus dem binären redundanzfreien Quellensignal $q(t)$ ergibt. Da im Quellensignal nicht mehr als drei aufeinanderfolgende Nullen auftreten, ist $c(t)$ identisch mit dem AMI–codierten Signal.
  
Das Ende der 1990–Jahre geplante Breitband–ISDN sollte Datenraten bis $155 \ \rm Mbit/s$ bereitstellen im Vergleich zu $144 \ \rm kbit/s$ des herkömmlichen ISDN mit zwei B–Kanälen und einem D–Kanal). Um diese hohe Datenrate zu erreichen, musste zum einen eine neuere Technik (ATM) verwendet werden, zum zweiten aber auch das Übertragungsmedium gewechselt werden, von der Kupferleitung zur Glasfaser.
+
Das Ende der 1990–Jahre geplante Breitband–ISDN sollte Datenraten bis 155 Mbit/s bereitstellen im Vergleich zu 144 kbit/s des herkömmlichen ISDN mit zwei B–Kanälen und einem D–Kanal. Um diese hohe Datenrate zu erreichen, musste  
 +
*zum einen eine neuere Technik (ATM) verwendet werden,  
 +
*zum zweiten aber auch das Übertragungsmedium gewechselt werden, von der Kupferleitung zur Glasfaser.
 +
 
 +
 
 +
Da das HDB3–codierte Signal $c(t) ∈ \{–1, 0, +1\}$ aber mittels Licht nicht übertragen werden kann, war eine zweite Codierung erforderlich. Der hierfür vorgesehene 1T2B–Code ersetzt jedes Ternärsymbol durch zwei Binärsymbole. Das untere Diagramm zeigt beispielhaft das Binärsignal $b(t) ∈ \{0, 1\}$, das sich nach dieser '''1T2B–Codierung''' aus dem Signal $c(t)$ ergibt.
  
Da das HDB3–codierte Signal $c(t) \{–1, 0, +1\}$ aber mittels Licht nicht übertragen werden kann, war eine zweite Codierung erforderlich. Der hierfür vorgesehene 1T2B–Code ersetzt jedes Ternärsymbol durch zwei Binärsymbole. Das untere Diagramm zeigt beispielhaft das Binärsignal $b(t) ∈ \{0, 1\}$, das sich nach dieser 1T2B–Codierung aus dem Signal $c(t)$ ergibt.
+
Gehen Sie bei dieser Aufgabe davon aus, dass die Bitrate des redundanzfreien Quellensignals $q(t)$ gleich $R_{q} = 2.048 \ \rm Mbit/s$ beträgt. Die jeweiligen Symboldauern der Signale $q(t), c(t)$ und $b(t)$ werden mit $T_{q}$, $T_{c}$ und $T_{b}$ bezeichnet.
  
Gehen Sie bei dieser Aufgabe davon aus, dass die Bitrate des redundanzfreien Quellensignals $q(t)$ gleich $R_{q} = 2.048 \ \rm Mbit/s$ beträgt. Die jeweiligen Symboldauern der Signale $q(t), c(t)$ und $b(t)$ werden mit $T_{q}, T_{c}$ und $T_{b}$ bezeichnet.
+
Die äquivalente Bitrate des pseudoternären Signals $c(t)$ ist $R_{c} = {\rm log_2}(3)/T_{c}$, woraus mit der (echten) Bitrate $R_{q} = 1/T_{q}$ des Quellensignals die relative Redundanz des AMI– bzw. HDB3–Codes berechnet werden kann:
 +
:$$r_{\rm HDB3} = \frac{R_c - R_q}{R_c}= 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} \hspace{0.05cm}.$$
  
Die äquivalente Bitrate des pseudoternären Signals $c(t)$ ist $R_{c} = {\rm ld}(3)/T_{c}$, woraus mit der (echten) Bitrate $R_{q} = 1/T_{q}$ des Quellensignals die relative Redundanz des AMI– bzw. HDB3–Codes berechnet werden kann:
 
:$$r_{\rm HDB3} = \frac{R_c - R_q}{R_c}= 1 - \frac{T_c \cdot {\rm ld}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm ld}\hspace{0.1cm}(M_c)} \hspace{0.05cm}.$$
 
 
Für den 1T2B–Code kann eine ähnliche Gleichung aufgestellt werden, ebenso wie für die beiden Codes in Kombination.
 
Für den 1T2B–Code kann eine ähnliche Gleichung aufgestellt werden, ebenso wie für die beiden Codes in Kombination.
  
  
''Hinweis:''
 
  
Die Aufgabe gehört zum [[Beispiele_von_Nachrichtensystemen/Weiterentwicklungen_von_ISDN|Weiterentwicklungen von ISDN]] des vorliegenden Buches. Die Redundanz wird im [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]] des Buches „Digitalsignalübertragung” definiert und an Beispielen verdeutlicht.
+
 
 +
''Hinweise:''
 +
 
 +
*Die Aufgabe gehört zum Kapitel  [[Beispiele_von_Nachrichtensystemen/Weiterentwicklungen_von_ISDN|Weiterentwicklungen von ISDN]].
 +
* Die Redundanz wird im [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]] des Buches „Digitalsignalübertragung” definiert und an Beispielen verdeutlicht.
 +
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 +
 
 +
 
 
===Fragebogen===
 
===Fragebogen===
  

Revision as of 16:30, 19 December 2017

HDB3- und 1T2B-Codierung

Bei herkömmlichem ISDN über Kupferleitungen wird der HDB3–Code verwendet – siehe Aufgabe 1.5: Dieser wurde vom so genannten AMI–Code abgeleitet,

  • ist wie dieser ein Pseudoternärcode,
  • vermeidet aber mehr als drei aufeinander folgende „$0$”–Symbole,
  • indem die strenge AMI–Codierregel bei längeren Nullfolgen bewusst verletzt wird.


Die Grafik zeigt das HDB3–codierte Signal $c(t)$, das sich aus dem binären redundanzfreien Quellensignal $q(t)$ ergibt. Da im Quellensignal nicht mehr als drei aufeinanderfolgende Nullen auftreten, ist $c(t)$ identisch mit dem AMI–codierten Signal.

Das Ende der 1990–Jahre geplante Breitband–ISDN sollte Datenraten bis 155 Mbit/s bereitstellen im Vergleich zu 144 kbit/s des herkömmlichen ISDN mit zwei B–Kanälen und einem D–Kanal. Um diese hohe Datenrate zu erreichen, musste

  • zum einen eine neuere Technik (ATM) verwendet werden,
  • zum zweiten aber auch das Übertragungsmedium gewechselt werden, von der Kupferleitung zur Glasfaser.


Da das HDB3–codierte Signal $c(t) ∈ \{–1, 0, +1\}$ aber mittels Licht nicht übertragen werden kann, war eine zweite Codierung erforderlich. Der hierfür vorgesehene 1T2B–Code ersetzt jedes Ternärsymbol durch zwei Binärsymbole. Das untere Diagramm zeigt beispielhaft das Binärsignal $b(t) ∈ \{0, 1\}$, das sich nach dieser 1T2B–Codierung aus dem Signal $c(t)$ ergibt.

Gehen Sie bei dieser Aufgabe davon aus, dass die Bitrate des redundanzfreien Quellensignals $q(t)$ gleich $R_{q} = 2.048 \ \rm Mbit/s$ beträgt. Die jeweiligen Symboldauern der Signale $q(t), c(t)$ und $b(t)$ werden mit $T_{q}$, $T_{c}$ und $T_{b}$ bezeichnet.

Die äquivalente Bitrate des pseudoternären Signals $c(t)$ ist $R_{c} = {\rm log_2}(3)/T_{c}$, woraus mit der (echten) Bitrate $R_{q} = 1/T_{q}$ des Quellensignals die relative Redundanz des AMI– bzw. HDB3–Codes berechnet werden kann:

$$r_{\rm HDB3} = \frac{R_c - R_q}{R_c}= 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} \hspace{0.05cm}.$$

Für den 1T2B–Code kann eine ähnliche Gleichung aufgestellt werden, ebenso wie für die beiden Codes in Kombination.



Hinweise:


Fragebogen

1

Welche Zuordnung hat der hier verwendete 1T2B–Code?

$c(t) = +1 \Rightarrow b(t) = 10, c(t) = 0 \Rightarrow b(t) = 00, c(t) = –1 \Rightarrow b(t) = 01$
$c(t) = +1 \Rightarrow b(t) = 11, c(t) = 0 \Rightarrow b(t) = 01, c(t) = –1 \Rightarrow b(t) = 00$
$c(t) = +1 \Rightarrow b(t) = 01, c(t) = 0 \Rightarrow b(t) = 11, c(t) = –1 \Rightarrow b(t) = 10$

2

Wie groß sind die Symboldauern von $q(t), c(t)$ und $b(t)$?

$T_{q} \ = \ $

$\ \rm \mu s$
$T_{c} \ = \ $

$\ \rm \mu s$
$T_{b} \ = \ $

$\ \rm \mu s$

3

Berechnen Sie die relative Redundanz des HDB3–Codes.

$r_{\rm HDB3} \ = \ $

$\ \%$

4

Berechnen Sie die relative Redundanz des 1T2B–Codes.

$r_{\rm 1T2B} \ = \ $

$\ \%$

5

Welche relative Redundanz besitzt das Signal $b(t)$?

$r_{\rm HDB3+1T2B} \ = \ $

$\ \%$


Musterlösung

(1)  Richtig ist Lösungsvorschlag 2, wie ein Vergleich der Signalverläufe $c(t)$ und $b(t)$ zeigt.

(2)  Die Symboldauer (Bitdauer) von $q(t)$ beträgt $T_{q} \underline{ = 1/R_{q} = 0.488 \ \rm \mu s}$. Die Symboldauer $T_{c}$ des AMI–Codes (und des HDB3–Codes) ist genau so groß. Dagegen ist die Symboldauer (Bitdauer) nach der 1T2B–Codierung nur halb so groß: $T_{b} = T_{c}/2 \underline{= 0.244 \ \rm \mu s}$.

(3)  Mit der angegebenen Gleichung ergibt sich mit $M_{q} = 2, M_{c} = 3$ und $T_{c} = T_{q}$:

$$r_{\rm HDB3} = 1 - \frac{T_c \cdot {\rm ld}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm ld}\hspace{0.1cm}(M_c)} = 1 - \frac{1}{{\rm ld}\hspace{0.1cm}(3)} \hspace{0.15cm}\underline{= 36.9\,\%} \hspace{0.05cm}.$$

(4)  asst man die Gleichung an den Coder 2 an, so erhält man mit $M_{c} = 3, M_{b} = 2, T_{b} = T_{c}/2$:

$$r_{\rm 1T2B} = 1 - \frac{T_b \cdot {\rm ld}\hspace{0.1cm}(M_c)}{T_c \cdot {\rm ld}\hspace{0.1cm}(M_b)} = 1 - \frac{{\rm ld}\hspace{0.1cm}(3)}{2} \hspace{0.15cm}\underline{= 20.7\,\%} \hspace{0.05cm}.$$

(5)  Die Redundanz erhält man, wenn man die angegebene Gleichung auf das Eingangssignal $q(t)$ und das Ausgangssignal $c(t)$ bezieht. Mit $M_{q} = M_{b} = 2$ und $T_{b} = T_{q}/2$ folgt daraus:

$$r_{\rm HDB3+1T2B} = 1 - \frac{T_b \cdot {\rm ld}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm ld}\hspace{0.1cm}(M_b)} = 1 - \frac{T_b}{T_q} \hspace{0.15cm}\underline{= 50\,\%} \hspace{0.05cm}.$$

Zum gleichen Ergebnis kommt man über die Rechnung

$$1-r_{\rm HDB3+1T2B} \ = \ (1-r_{\rm HDB3}) \cdot (1-r_{\rm 1T2B}) =$$
$$\hspace{2.7cm} \ = \ (1- 1 +\frac{1}{{\rm ld}\hspace{0.1cm}(3)}) \cdot (1-1+ \frac{{\rm ld}\hspace{0.1cm}(3)}{2}) = 50\,\% \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}r_{\rm HDB3+1T2B}= 50\,\% \hspace{0.05cm}.$$