Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.5: GMSK Modulation"

From LNTwww
m (Javier moved page Exercises:Exercise 3.5: GMSK Modulation to Exercise 3.5: GMSK Modulation: Text replacement - "Exercises:Exercise" to "Aufgaben:Exercise")
Line 11: Line 11:
 
The graphic illustrates the situation:
 
The graphic illustrates the situation:
  
*The digital message is represented by the amplitude coefficients  aμ{±1}  which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask '''(3)''.
+
*The digital message is represented by the amplitude coefficients  aμ{±1}  which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask '''(3)'''.
  
 
*The symmetrical rectangular pulse with duration  T=TB  (GSM bit duration) is dimensionless:
 
*The symmetrical rectangular pulse with duration  T=TB  (GSM bit duration) is dimensionless:
Line 19: Line 19:
 
*The Gaussian low pass is given by its frequency response or impulse response:
 
*The Gaussian low pass is given by its frequency response or impulse response:
 
:HG(f)=eπ(f2fG)2hG(t)=2fGeπ(2fGt)2,
 
:HG(f)=eπ(f2fG)2hG(t)=2fGeπ(2fGt)2,
:wobei die systemtheoretische Grenzfrequenz  fG  verwendet wird. In der GSM–Spezifikation wird aber die 3dB–Grenzfrequenz mit  f3dB=0.3/T  angegeben. Daraus kann  fG  direkt berechnet werden – siehe Teilaufgabe '''(2)'''.
+
:where the system theoretical cut-off frequency  fG  is used. In the GSM specification, however, the 3dB cut-off frequency is specified with  f3dB=0.3/T . From this,  fG  can be calculated directly - see subtask '''(2)'''.
  
*Das Signal nach dem Gaußtiefpass lautet somit:
+
*The signal after the gauss low pass is thus
 
:qG(t)=qR(t)hG(t)=νaνg(tνT).
 
:qG(t)=qR(t)hG(t)=νaνg(tνT).
:Hierbei wird  g(t)  als ''Frequenzimpuls'' bezeichnet. Für diesen gilt:
+
Here  g(t)  is referred to as ''frequency pulse''. For this one:
 
:g(t)=qR(t)hG(t).
 
:g(t)=qR(t)hG(t).
  
*Mit dem tiefpassgefilterten Signal  qG(t), der Trägerfrequenz  fT  und dem Frequenzhub  ΔfA  kann somit für die Augenblicksfrequenz am Ausgang des FSK–Modulators geschrieben werden:
+
*With the low pass filtered signal  qG(t), the carrier frequency  fT  and the frequency deviation  ΔfA  can thus be written for the instantaneous frequency at the output of the FSK modulator::fA(t)=fT+ΔfAqG(t).
:fA(t)=fT+ΔfAqG(t).
 
  
  
Line 38: Line 37:
  
 
*This exercise belongs to the chapter   [[Mobile_Kommunikation/Die_Charakteristika_von_GSM|Die Charakteristika von GSM]].  
 
*This exercise belongs to the chapter   [[Mobile_Kommunikation/Die_Charakteristika_von_GSM|Die Charakteristika von GSM]].  
*Bezug genommen wird auch auf das Kapitel   [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]  im Buch „Beispiele von Nachrichtensystemen”.  
+
*Reference is also made to the chapter   [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]  in the book „Beispiele von Nachrichtensystemen”.  
 
   
 
   
*Verwenden Sie für Ihre Berechnungen die beispielhaften Werte  $f_{\rm T} = 900 \ \rm MHz$  und  ΔfA=68 kHz.
+
*For your calculations use the exemplary values  $f_{\rm T} = 900 \ \ \rm MHz$  and  ΔfA=68 kHz.
*Verwenden Sie zur Lösung der Aufgabe das Gaußintegral (einige Zahlenwerte sind in der Tabelle angegeben):
+
*Use the Gaussian integral to solve the task (some numerical values are given in the table)
[[File:P_ID2226__Bei_A_3_4b.png|right|frame|Tabelle der Gaußschen Fehlerfunktion]]
+
[[File:P_ID2226__Bei_A_3_4b.png|right|frame|some values of the Gaussian integral]]
 
:ϕ(x)=12πxeu2/2du.
 
:ϕ(x)=12πxeu2/2du.
 
<br clear=all>
 
<br clear=all>
Line 52: Line 51:
 
<quiz display=simple>
 
<quiz display=simple>
  
{In welchem Wertebereich kann die Augenblicksfrequenz&nbsp; fA(t)&nbsp; schwanken? Welche Voraussetzungen müssen dafür erfüllt sein?
+
{In what range of values can the instantaneous frequency&nbsp; fA(t)&nbsp; fluctuate? Which requirements must be met?
 
|type="{}"}
 
|type="{}"}
 
Max [fA(t)] = { 900.068 0.01% }  MHz
 
Max [fA(t)] = { 900.068 0.01% }  MHz
 
Min [fA(t)] = { 899.932 0.01% }  MHz
 
Min [fA(t)] = { 899.932 0.01% }  MHz
  
{Welche (normierte) systemtheoretische Grenzfrequenz des Gaußtiefpasses ergibt sich aus der Forderung&nbsp; f3dBT=0.3?
+
{Which (normalized) system-theoretical cut-off frequency of the Gaussian low pass results from the requirement&nbsp; f3dBT=0.3?
 
|type="{}"}
 
|type="{}"}
 
fGT =  { 0.45 3% }  
 
fGT =  { 0.45 3% }  
  
{Berechnen Sie den Frequenzimpuls&nbsp; g(t)&nbsp; unter Verwendung der Funktion&nbsp; ϕ(x). Wie groß ist der Impulswert&nbsp; g(t=0)?
+
{Calculate the frequency pulse&nbsp; g(t)&nbsp; using the function&nbsp; ϕ(x). How large is the pulse value&nbsp; g(t=0)?
 
|type="{}"}
 
|type="{}"}
 
g(t=0) =  { 0.737 3% }  
 
g(t=0) =  { 0.737 3% }  
  
{Welcher Signalwert ergibt sich für&nbsp; qG(t=3T)&nbsp; mit&nbsp; $a_{3} = –1$&nbsp; sowie&nbsp; aμ3=+1? Wie groß ist die Augenblicksfrequenz&nbsp; fA(t=3T)?
+
{Which signal value results for&nbsp; qG(t=3T)&nbsp; with&nbsp; $a_{3} = -1$&nbsp; and&nbsp; aμ3=+1? What is the instantaneous frequency&nbsp; fA(t=3T)?
 
|type="{}"}
 
|type="{}"}
 
qG(t=3T) =  { -0.51822--0.42978 }  
 
qG(t=3T) =  { -0.51822--0.42978 }  
  
{Berechnen Sie die Impulswerte&nbsp; g(t=±T)&nbsp; des Frequenzimpulses.
+
{Calculate the pulse values&nbsp; g(t=±T)&nbsp; of the frequency pulse
 
|type="{}"}
 
|type="{}"}
 
g(t=±T) =  { 0.131 3% }  
 
g(t=±T) =  { 0.131 3% }  
  
{Die Amplitudenkoeffizienten seien alternierend. Welcher maximale Betrag von&nbsp; qG(t)&nbsp; ergibt sich? Berücksichtigen Sie&nbsp; g(t2T)0.
+
{The amplitude coefficients are alternating. What is the maximum amount of&nbsp; qG(t)&nbsp;? Consider&nbsp; g(t2T)0.
 
|type="{}"}
 
|type="{}"}
 
Max |qG(t)| =  { 0.475 3% }  
 
Max |qG(t)| =  { 0.475 3% }  
Line 84: Line 83:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Sind alle Amplitudenkoeffizienten aμ gleich +1, so ist qR(t)=1 eine Konstante. Damit hat der Gaußtiefpass keinen Einfluss und es ergibt sich qG(t)=1.  
+
'''(1)'''&nbsp; If all amplitude coefficients aμ are equal to +1, then qR(t)=1 is a constant. Thus, the Gaussian low pass has no influence and qG(t)=1 results.  
*Die maximale Frequenz ist somit
+
*The maximum frequency is thus
 
:Max [fA(t)]=fT+ΔfA=900.068MHz_.
 
:Max [fA(t)]=fT+ΔfA=900.068MHz_.
*Das Minimum der Augenblicksfrequenz
+
*The minimum instantaneous frequency
 
:Min [fA(t)]=fTΔfA=899.932MHz_
 
:Min [fA(t)]=fTΔfA=899.932MHz_
:ergibt sich, wenn alle Amplitudenkoeffizienten negativ sind. In diesem Fall ist qR(t)=qG(t)=1.
+
is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=1.
  
  
  
'''(2)'''&nbsp; Diejenige Frequenz, bei der die logarithmierte Leistungsübertragungsfunktion gegenüber f=0 um $3 \ \rm dB$ kleiner ist, bezeichnet man als die 3dB–Grenzfrequenz.  
+
'''(2)'''&nbsp; The frequency at which the logarithmic power transfer function is 3 dB less than f=0 is called the 3dB cut-off frequency.  
*Dies lässt sich auch wie folgt ausdrücken:
+
*This can also be expressed as follows:
 
:|H(f=f3dB)||H(f=0)|=12.
 
:|H(f=f3dB)||H(f=0)|=12.
*Insbesondere gilt für den Gaußtiefpass wegen H(f=0)=1:
+
*In particular the Gauss low pass because of H(f=0)=1:
 
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
*Die numerische Auswertung führt auf fG1.5f3dB.  
+
*The numerical evaluation leads to  fG1.5f3dB.  
*Aus $f_{\rm 3dB} \cdot T = 0.3$ folgt somit fGT0.45_.
+
*{\f_{\rm 3dB} \cdot T = 0.3$ is followed by fGT0.45_.
 
 
  
  
Line 130: Line 128:
 
*Es ergeben sich also Impulsinterferenzen und man erhält:
 
*Es ergeben sich also Impulsinterferenzen und man erhält:
 
:Max[qG(t)]=g(t=0)2g(t=T)=0.73720.131=0.475_.
 
:Max[qG(t)]=g(t=0)2g(t=T)=0.73720.131=0.475_.
 +
 +
 +
 +
{{ML-Fuß}}
 +
 +
 +
 +
[[Category:Exercises for Mobile Communications|^3.3 Characteristics of GSM^]]
 +
 +
{{quiz-Header|Buchseite=Mobile Kommunikation/Die Charakteristika von GSM
 +
}}
 +
 +
[[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]]
 +
The modulation method used for GSM is&nbsp; ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where
 +
*the modulation index has the smallest value that just satisfies the orthogonality condition: &nbsp; h=0.5 &nbsp; &rArr; &nbsp; ''Minimum Shift Keying'',
 +
*a Gaussian low pass with the impulse response&nbsp; hG(t)&nbsp; is inserted before the FSK modulator, with the aim of saving even more bandwidth.
 +
 +
 +
The graphic illustrates the situation:
 +
 +
*The digital message is represented by the amplitude coefficients&nbsp; aμ{±1}&nbsp; which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask '''(3)'''.
 +
 +
*The symmetrical rectangular pulse with duration&nbsp; T=TB&nbsp; (GSM bit duration) is dimensionless:
 +
:gR(t)={10f¨urf¨ur|t|<T/2,|t|>T/2.
 +
*This results for the rectangular signal
 +
:qR(t)=qδ(t)gR(t)=νaνgR(tνT).
 +
*The Gaussian low pass is given by its frequency response or impulse response:
 +
:HG(f)=eπ(f2fG)2hG(t)=2fGeπ(2fGt)2,
 +
:where the system theoretical cut-off frequency&nbsp; fG&nbsp; is used. In the GSM specification, however, the 3dB cut-off frequency is specified with&nbsp; f3dB=0.3/T&nbsp;. From this,&nbsp; fG&nbsp; can be calculated directly - see subtask '''(2)'''.
 +
 +
*The signal after the gauss low pass is thus
 +
:qG(t)=qR(t)hG(t)=νaνg(tνT).
 +
Here&nbsp; g(t)&nbsp; is referred to as ''frequency pulse''. For this one:
 +
:g(t)=qR(t)hG(t).
 +
 +
*With the low pass filtered signal&nbsp; qG(t), the carrier frequency&nbsp; fT&nbsp; and the frequency deviation&nbsp; ΔfA&nbsp; can thus be written for the instantaneous frequency at the output of the FSK modulator::fA(t)=fT+ΔfAqG(t).
 +
 +
 +
 +
 +
 +
 +
 +
''Notes:''
 +
 +
*This exercise belongs to the chapter&nbsp;  [[Mobile_Kommunikation/Die_Charakteristika_von_GSM|Die Charakteristika von GSM]].
 +
*Reference is also made to the chapter&nbsp;  [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]&nbsp; in the book „Beispiele von Nachrichtensystemen”.
 +
 +
*For your calculations use the exemplary values&nbsp; fT=900  MHz&nbsp; and&nbsp; ΔfA=68 kHz.
 +
*Use the Gaussian integral to solve the task (some numerical values are given in the table)
 +
[[File:P_ID2226__Bei_A_3_4b.png|right|frame|some values of the Gaussian integral]]
 +
:ϕ(x)=12πxeu2/2du.
 +
<br clear=all>
 +
 +
 +
 +
===Fragebogen===
 +
 +
<quiz display=simple>
 +
 +
{In what range of values can the instantaneous frequency&nbsp; fA(t)&nbsp; fluctuate? Which requirements must be met?
 +
|type="{}"}
 +
Max [fA(t)] = { 900.068 0.01% }  MHz
 +
Min [fA(t)] = { 899.932 0.01% }  MHz
 +
 +
{Which (normalized) system-theoretical cut-off frequency of the Gaussian low pass results from the requirement&nbsp; f3dBT=0.3?
 +
|type="{}"}
 +
fGT =  { 0.45 3% }
 +
 +
{Calculate the frequency pulse&nbsp; g(t)&nbsp; using the function&nbsp; ϕ(x). How large is the pulse value&nbsp; g(t=0)?
 +
|type="{}"}
 +
g(t=0) =  { 0.737 3% }
 +
 +
{Which signal value results for&nbsp; qG(t=3T)&nbsp; with&nbsp; a3=1&nbsp; and&nbsp; aμ3=+1? What is the instantaneous frequency&nbsp; fA(t=3T)?
 +
|type="{}"}
 +
qG(t=3T) =  { -0.51822--0.42978 }
 +
 +
{Calculate the pulse values&nbsp; g(t=±T)&nbsp; of the frequency pulse
 +
|type="{}"}
 +
g(t=±T) =  { 0.131 3% }
 +
 +
{The amplitude coefficients are alternating. What is the maximum amount of&nbsp; qG(t)&nbsp;? Consider&nbsp; g(t2T)0.
 +
|type="{}"}
 +
Max |qG(t)| =  { 0.475 3% }
 +
 +
 +
 +
</quiz>
 +
 +
===Sample solution===
 +
{{ML-Kopf}}
 +
 +
'''(1)'''&nbsp; If all amplitude coefficients aμ are equal to +1, then qR(t)=1 is a constant. Thus, the Gaussian low pass has no influence and qG(t)=1 results.
 +
*The maximum frequency is thus
 +
:Max [fA(t)]=fT+ΔfA=900.068MHz_.
 +
*The minimum instantaneous frequency
 +
:Min [fA(t)]=fTΔfA=899.932MHz_
 +
is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=1.
 +
 +
 +
 +
'''(2)'''&nbsp; The frequency at which the logarithmic power transfer function is 3 dB less than f=0 is called the 3dB cut-off frequency.
 +
*This can also be expressed as follows:
 +
:|H(f=f3dB)||H(f=0)|=12.
 +
*In particular the Gauss low pass because of H(f=0)=1:
 +
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 +
*The numerical evaluation leads to  fG1.5f3dB.
 +
 +
  
  

Revision as of 09:47, 30 June 2020

Verschiedene Signale bei GMSK-Modulation

The modulation method used for GSM is  Gaussian Minimum Shift Keying, short GMSK. This is a special type of FSK (Frequency Shift Keying) with CP-FSK (Continuous Phase Matching), where

  • the modulation index has the smallest value that just satisfies the orthogonality condition:   h=0.5   ⇒   Minimum Shift Keying,
  • a Gaussian low pass with the impulse response  hG(t)  is inserted before the FSK modulator, with the aim of saving even more bandwidth.


The graphic illustrates the situation:

  • The digital message is represented by the amplitude coefficients  aμ{±1}  which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask (3).
  • The symmetrical rectangular pulse with duration  T=TB  (GSM bit duration) is dimensionless:
gR(t)={10f¨urf¨ur|t|<T/2,|t|>T/2.
  • This results for the rectangular signal
qR(t)=qδ(t)gR(t)=νaνgR(tνT).
  • The Gaussian low pass is given by its frequency response or impulse response:
HG(f)=eπ(f2fG)2hG(t)=2fGeπ(2fGt)2,
where the system theoretical cut-off frequency  fG  is used. In the GSM specification, however, the 3dB cut-off frequency is specified with  f3dB=0.3/T . From this,  fG  can be calculated directly - see subtask (2).
  • The signal after the gauss low pass is thus
qG(t)=qR(t)hG(t)=νaνg(tνT).

Here  g(t)  is referred to as frequency pulse. For this one:

g(t)=qR(t)hG(t).
  • With the low pass filtered signal  qG(t), the carrier frequency  fT  and the frequency deviation  ΔfA  can thus be written for the instantaneous frequency at the output of the FSK modulator::fA(t)=fT+ΔfAqG(t).




Notes:

  • For your calculations use the exemplary values  fT=900  MHz  and  ΔfA=68 kHz.
  • Use the Gaussian integral to solve the task (some numerical values are given in the table)
some values of the Gaussian integral
ϕ(x)=12πxeu2/2du.



Fragebogen

1

In what range of values can the instantaneous frequency  fA(t)  fluctuate? Which requirements must be met?

Max [fA(t)] =

 MHz
Min [fA(t)] =

 MHz

2

Which (normalized) system-theoretical cut-off frequency of the Gaussian low pass results from the requirement  f3dBT=0.3?

fGT = 

3

Calculate the frequency pulse  g(t)  using the function  ϕ(x). How large is the pulse value  g(t=0)?

g(t=0) = 

4

Which signal value results for  qG(t=3T)  with  a3=1  and  aμ3=+1? What is the instantaneous frequency  fA(t=3T)?

qG(t=3T) = 

5

Calculate the pulse values  g(t=±T)  of the frequency pulse

g(t=±T) = 

6

The amplitude coefficients are alternating. What is the maximum amount of  qG(t) ? Consider  g(t2T)0.

Max |qG(t)| = 


Sample solution

(1)  If all amplitude coefficients aμ are equal to +1, then qR(t)=1 is a constant. Thus, the Gaussian low pass has no influence and qG(t)=1 results.

  • The maximum frequency is thus
Max [fA(t)]=fT+ΔfA=900.068MHz_.
  • The minimum instantaneous frequency
Min [fA(t)]=fTΔfA=899.932MHz_

is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=1.


(2)  The frequency at which the logarithmic power transfer function is 3 dB less than f=0 is called the 3dB cut-off frequency.

  • This can also be expressed as follows:
|H(f=f3dB)||H(f=0)|=12.
  • In particular the Gauss low pass because of H(f=0)=1:
H(f=f3dB)=eπ(f3dB/2fG)2=12(f3dB2fG)2=ln2πfG=π4ln2f3dB.
  • The numerical evaluation leads to fG1.5f3dB.
  • {\f_{\rm 3dB} \cdot T = 0.3isfollowedbyf_{\rm G} \cdot T \underline{\approx 0.45}.{\rm g}(t) ergibt sich aus der Faltung von Rechteckfunktion g_{\rm R}(t) mit der Impulsantwort h_{\rm G}(t): :'"`UNIQ-MathJax54-QINU`"' *Mit der Substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} und der Funktion \phi (x) kann man hierfür auch schreiben: :'"`UNIQ-MathJax55-QINU`"' *Für die Zeit t = 0 gilt unter Berücksichtigung von \phi (-x) = 1 - \phi (x) und f_{\rm G} \cdot T = 0.45: :'"`UNIQ-MathJax56-QINU`"' '''(4)'''  Mit a_{3} = +1 würde sich q_{\rm G}(t = 3 T) = 1 ergeben. Aufgrund der Linearität gilt somit: :'"`UNIQ-MathJax57-QINU`"' '''(5)'''  Mit dem Ergebnis aus (3) und f_{\rm G} \cdot T = 0.45 erhält man: :'"`UNIQ-MathJax58-QINU`"' *Der Impulswert g(t = -T) ist aufgrund der Symmetrie des Gaußtiefpasses genau so groß. '''(6)'''  Bei alternierender Folge sind aus Symmetriegründen die Beträge |q_{\rm G}(\mu \cdot T)| bei allen Vielfachen der Bitdauer T alle gleich. *Alle Zwischenwerte bei t \approx \mu \cdot T sind dagegen kleiner. *Unter Berücksichtigung von g(t ≥ 2T) \approx 0 wird jeder einzelne Impulswert g(0) durch den vorangegangenen Impuls mit g(t = T) verkleinert, ebenso vom folgenden Impuls mit g(t = -T). *Es ergeben sich also Impulsinterferenzen und man erhält: :'"`UNIQ-MathJax59-QINU`"' '"`UNIQ--html-00000004-QINU`"' [[Category:Exercises for Mobile Communications|^3.3 Characteristics of GSM^]] '"`UNIQ--html-00000005-QINU`"' [[Mobile Kommunikation/Die Charakteristika von GSM | Return to book]] '"`UNIQ--html-00000006-QINU`"' [[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]] The modulation method used for GSM is  ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where *the modulation index has the smallest value that just satisfies the orthogonality condition:   h = 0.5   ⇒   ''Minimum Shift Keying'', *a Gaussian low pass with the impulse response  h_{\rm G}(t)  is inserted before the FSK modulator, with the aim of saving even more bandwidth. The graphic illustrates the situation: *The digital message is represented by the amplitude coefficients  a_{\mu} ∈ \{±1\}  which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask '''(3)'''. *The symmetrical rectangular pulse with duration  T = T_{\rm B}  (GSM bit duration) is dimensionless: :'"`UNIQ-MathJax60-QINU`"' *This results for the rectangular signal :'"`UNIQ-MathJax61-QINU`"' *The Gaussian low pass is given by its frequency response or impulse response: :'"`UNIQ-MathJax62-QINU`"' :where the system theoretical cut-off frequency  f_{\rm G}  is used. In the GSM specification, however, the 3dB cut-off frequency is specified with  f_{\rm 3dB} = 0.3/T . From this,  f_{\rm G}  can be calculated directly - see subtask '''(2)'''. *The signal after the gauss low pass is thus :'"`UNIQ-MathJax63-QINU`"' Here  g(t)  is referred to as ''frequency pulse''. For this one: :'"`UNIQ-MathJax64-QINU`"' *With the low pass filtered signal  q_{\rm G}(t), the carrier frequency  f_{\rm T}  and the frequency deviation  \Delta f_{\rm A}  can thus be written for the instantaneous frequency at the output of the FSK modulator::'"`UNIQ-MathJax65-QINU`"' ''Notes:'' *This exercise belongs to the chapter  [[Mobile_Kommunikation/Die_Charakteristika_von_GSM|Die Charakteristika von GSM]]. *Reference is also made to the chapter  [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]  in the book „Beispiele von Nachrichtensystemen”. *For your calculations use the exemplary values  f_{\rm T} = 900 \ \ \rm MHz  and  \Delta f_{\rm A} = 68 \ \rm kHz. *Use the Gaussian integral to solve the task (some numerical values are given in the table) [[File:P_ID2226__Bei_A_3_4b.png|right|frame|some values of the Gaussian integral]] :'"`UNIQ-MathJax66-QINU`"' <br clear="all"> ==='"`UNIQ--h-2--QINU`"'Fragebogen=== '"`UNIQ--quiz-00000007-QINU`"' ==='"`UNIQ--h-3--QINU`"'Sample solution=== '"`UNIQ--html-00000003-QINU`"' '''(1)'''  If all amplitude coefficients a_{\mu} are equal to +1, then q_{\rm R}(t) = 1 is a constant. Thus, the Gaussian low pass has no influence and q_{\rm G}(t) = 1 results. *The maximum frequency is thus :'"`UNIQ-MathJax67-QINU`"' *The minimum instantaneous frequency :'"`UNIQ-MathJax68-QINU`"' is obtained when all amplitude coefficients are negative. In this case q_{\rm R}(t) = q_{\rm G}(t) = -1. '''(2)'''  The frequency at which the logarithmic power transfer function is 3 \ \rm dB less than f = 0 is called the 3dB cut-off frequency. *This can also be expressed as follows: :'"`UNIQ-MathJax69-QINU`"' *In particular the Gauss low pass because of H(f = 0) = 1: :'"`UNIQ-MathJax70-QINU`"' *The numerical evaluation leads to f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}$.