Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.5: GMSK Modulation

From LNTwww

Different signals of GMSK-Modulation

The modulation method used for GSM is  "Gaussian Minimum Shift Keying",  short  GMSK.  This is a special type of  FSK  ("Frequency Shift Keying")  with  CPFSK  ("Continuous Phase Matching"), where:

  • The modulation index has the smallest value that just satisfies the orthogonality condition:   h=0.5   ⇒   "Minimum Shift Keying"  (MSK),
  • A Gaussian low-pass with the impulse response  hG(t)  is inserted before the FSK modulator, with the aim of saving even more bandwidth.


The graphic illustrates the situation:

  • The digital message is represented by the amplitude coefficients  aμ{±1}  which are applied to a "Dirac comb"  (Dirac delta train).  It should be noted that the sequence drawn in is assumed for the subtask  (3).
  • The symmetrical rectangular pulse with duration  T=TB  (GSM bit duration)  is dimensionless:
gR(t)={10f¨urf¨ur|t|<T/2,|t|>T/2.
  • This results for the rectangular signal
qR(t)=qδ(t)gR(t)=νaνgR(tνT).
  • The Gaussian low-pass is given by its frequency response or impulse response:
HG(f)=eπ[f/(2fG)]2hG(t)=2fGeπ(2fGt)2,
where the system theoretical cut-off frequency  fG  is used.  In the GSM specification, however, the 3dB cut-off frequency is specified with  f3dB=0.3/T .  From this,  fG  can be calculated directly - see subtask  (2).
  • The signal after the Gaussian low-pass is thus
qG(t)=qR(t)hG(t)=νaνg(tνT).
  • Here  g(t)  is referred to as "frequency pulse":
g(t)=qR(t)hG(t).
  • With the low-pass filtered signal  qG(t), the carrier frequency  fT  and the frequency deviation  ΔfA  for the instantaneous frequency at the output of the FSK modulator can thus be written:
fA(t)=fT+ΔfAqG(t).


Some Gaussian integral values

Notes:

  • This exercise belongs to the chapter  Characteristics of GSM.
  • Reference is also made to the chapter  Radio Interface  in the book "Examples of Communication Systems".
  • For your calculations use the exemplary values  fT=900  MHz  and  ΔfA=68 kHz.
  • Use the Gaussian integral to solve the task  (some numerical values are given in the table).
ϕ(x)=12πxeu2/2du.


Questionnaire

1

In what range of values the instantaneous frequency  fA(t)  can fluctuate?  Which requirements must be met?

Max [fA(t)] =

 MHz
Min [fA(t)] =

 MHz

2

Which (normalized) system-theoretical cut-off frequency of the Gaussian low-pass results from the requirement  f3dBT=0.3?

fGT = 

3

Calculate the frequency pulse  g(t)  using the function  ϕ(x).  What is the result for  g(t=0)?

g(t=0) = 

4

Which signal value results for  qG(t=3T)  with  a3=1  and  aμ3=+1?  What is the instantaneous frequency  fA(t=3T)?

qG(t=3T) = 

5

Calculate the values  g(t=±T)  of the frequency pulse.

g(t=±T) = 

6

The amplitude coefficients are alternating.  What is the maximum magnitude of  qG(t) ?  Consider  g(t2T)0.

Max |qG(t)| = 


Solution

(1)  If all amplitude coefficients  aμ  are equal to  +1, then  qR(t)=1  is a constant.  Thus, the Gaussian low-pass has no influence and  qG(t)=1  results.

  • The maximum frequency is thus
Max [fA(t)]=fT+ΔfA=900.068MHz_.
  • The minimum instantaneous frequency is
Min [fA(t)]=fTΔfA=899.932MHz_
is obtained when all amplitude coefficients are negative.  In this case qR(t)=qG(t)=1.


(2)  The frequency at which the logarithmic power transfer function is  3 dB  less than for  f=0  is called the "3dB cut-off frequency".

  • This can also be expressed as follows:
|H(f=f3dB)||H(f=0)|=12.
  • In particular the Gauss low-pass because of  H(f=0)=1:
H(f=f3dB)=eπ(f3dB/2fG)2=12(f3dB2fG)2=ln2πfG=π4ln2f3dB.
  • The numerical evaluation leads to  fG1.5f3dB.
  • From  f3dBT=0.3  follows  fGT0.45_.


(3)  The frequency pulse  g(t)  results from the convolution of the rectangular function  gR(t)  with the impulse response  hG(t):

g(t)=gR(t)hG(t)=2fGt+T/2tT/2eπ(2fGτ)2dτ.
  • With the substitution  u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2}  and the function  \phi (x)  you can also write for this:
g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
  • Considering  \phi (-x) = 1 - \phi (x)  and  f_{\rm G} \cdot T = 0.45,  you get for the time  t = 0:
g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.


(4)  With  a_{3} = +1  the result would be  q_{\rm G}(t = 3 T) = 1.  Due to the linearity therefore applies:

q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.


(5)  With the result of  (3)  and  f_{\rm G} \cdot T = 0.45  you get

g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
  • The pulse value  g(t = -T)  is exactly the same due to the symmetry of the Gaussian low-pass.


(6)  With alternating sequence, the absolute values  |q_{\rm G}(\mu \cdot T)|  are all the same for all multiples of the bit duration  T  for reasons of symmetry.

  • All intermediate values at  t \approx \mu \cdot T  are smaller.
  • Taking  g(t ≥ 2T) \approx 0  into account, each individual pulse value  g(0)  is reduced by the preceding pulse with  g(t = T), and by the following pulse with  g(t = -T).
  • So there will be "intersymbol interference" and you get
{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.